

Logistic Regression

DS 4400 | Machine Learning and Data Mining I

Zohair Shafi

Spring 2026

Monday | February 9, 2026

Updates

- Homework 1 Discussion
- Homework 3 Out - Due March 4th

Updates

- 17th Feb - Tuesday - Wanrou
- 1:30 PM - 3:00 PM | Location: Richards Hall 243
 - Linear algebra
 - Vectors
 - Matrices
 - Vector and Matrix operations
- Probabilities
 - Bayes' rule and conditional probability
 - Distributions
 - CDFs and PDFs

- 18th Feb - Wednesday - Zaiba
- 1:00 PM - 2:30 PM | Location: EL 311
 - Derivatives
 - Gradients
 - Derivatives of some common functions
 - Chain Rule, Product Rule, Quotient Rule

Today's Outline

- Logistic Regression

Logistic Regression

① Model: $\hat{y} = \sigma(\theta_0 + \theta_1 x)$

\downarrow

$0 - 1$ Unbounded

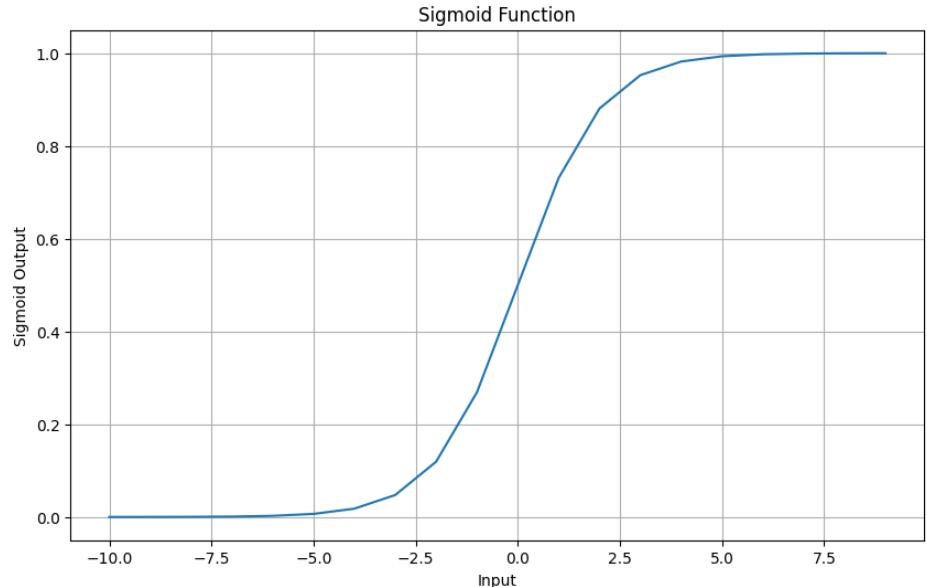
② Loss Function: Negative log likelihood loss.

③ Derivative $\rightarrow 0 \rightarrow$ solve for theta.

Logistic Regression

- Despite its name, logistic regression is a **classification** algorithm.
- It models the probability of class membership using a logistic (sigmoid) function.

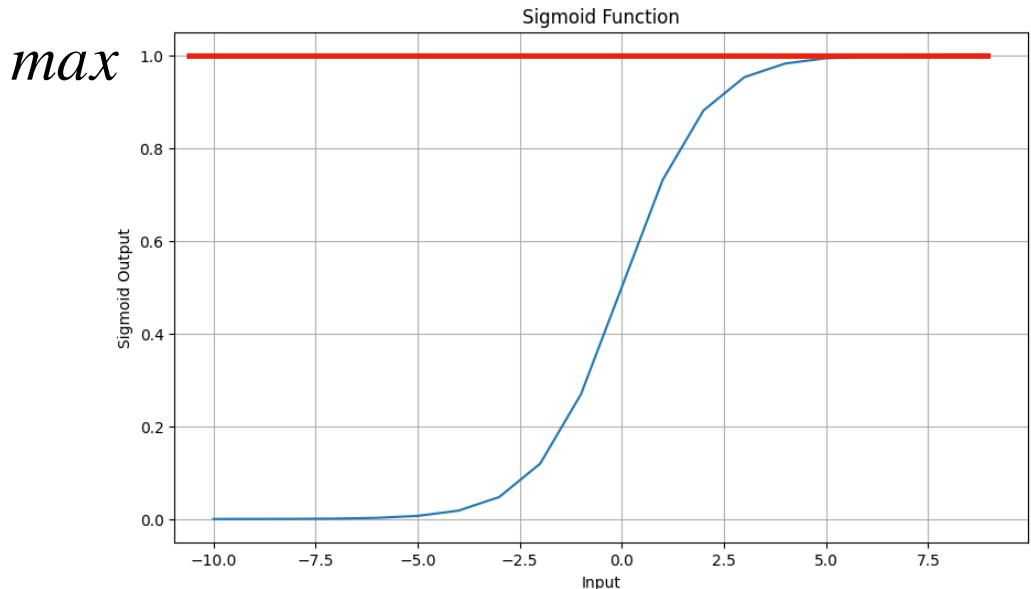
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Logistic Regression

- Despite its name, logistic regression is a **classification** algorithm.
- It models the probability of class membership using a logistic (sigmoid) function.

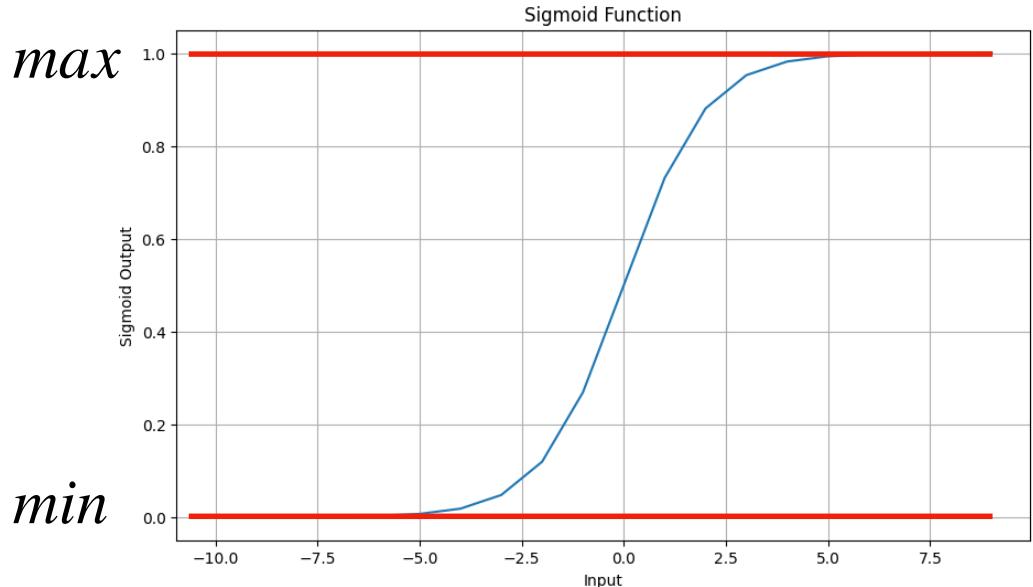
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Logistic Regression

- Despite its name, logistic regression is a **classification** algorithm.
- It models the probability of class membership using a logistic (sigmoid) function.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Logistic Regression

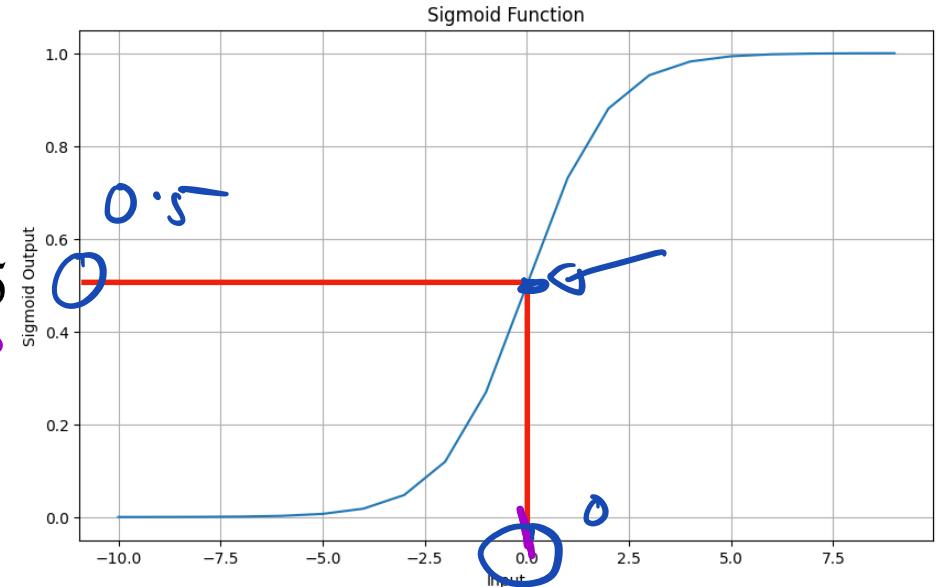
- Despite its name, logistic regression is a **classification** algorithm.
- It models the probability of class membership using a logistic (sigmoid) function.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$\hat{y} = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

$\hat{y} = 0$

$\hat{y} = 0.5$

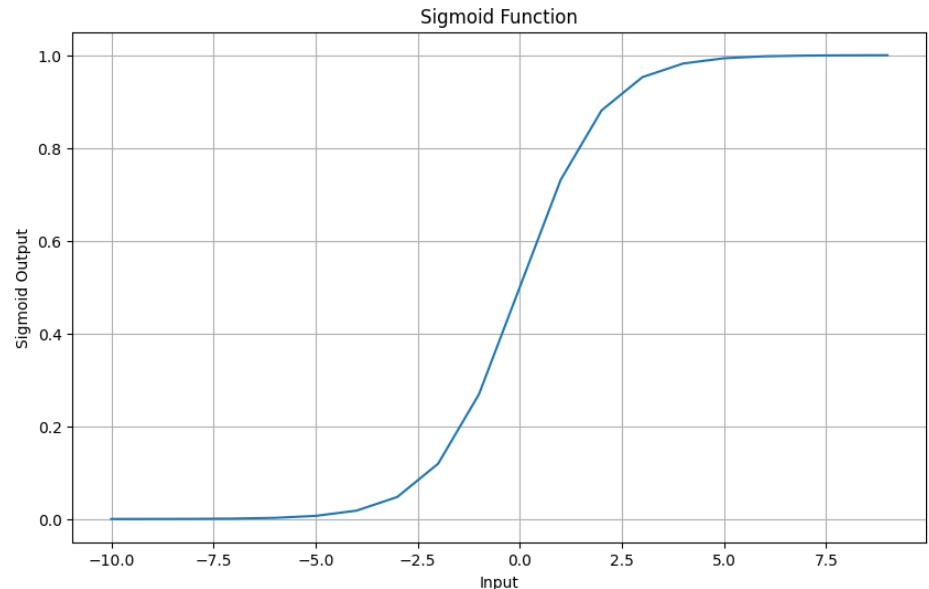


Logistic Regression

- Despite its name, logistic regression is a **classification** algorithm.
- It models the probability of class membership using a logistic (sigmoid) function.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Linear regression predicts **unbounded** real values as $\hat{y} = \theta_0 + \theta_1 \cdot x$
- But we need probabilities in $[0, 1]$

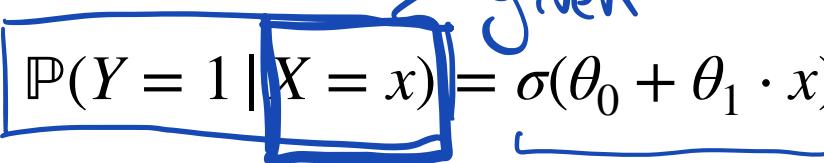


Logistic Regression

- Wrap the linear regression equation in a Sigmoid function
- Logistics regression models the probability of the positive class

$$\mathbb{P}(Y = 1 | X = x) = \sigma(\theta_0 + \theta_1 \cdot x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 \cdot x)}}$$

given



The decision boundary is the hyperplane where $\mathbb{P}(Y = 1 | X = x) = 0.5$, which occurs when $\theta_0 + \theta_1 \cdot x = 0$

Logistic Regression

The decision boundary is the hyperplane where $\mathbb{P}(Y = 1 | X = x) = 0.5$, which occurs when $\theta_0 + \theta_1 \cdot x = 0$

Assume that threshold = 0.5

If $\theta_0 + \theta_1 \cdot x \geq 0$, classify as “positive class”
Why?

Logistic Regression

The decision boundary is the hyperplane where $\mathbb{P}(Y = 1 | X = x) = 0.5$, which occurs when $\theta_0 + \theta_1 \cdot x = 0$

Assume that threshold = 0.5

If $\theta_0 + \theta_1 \cdot x \geq 0$, classify as “positive class”

Why?

Because $\sigma(k \geq 0) \geq 0.5 \rightarrow +ve$

Logistic Regression

The decision boundary is the hyperplane where $\mathbb{P}(Y = 1 | X = x) = 0.5$, which occurs when $\theta_0 + \theta_1 \cdot x = 0$

Assume that threshold = 0.5

If $\theta_0 + \theta_1 \cdot x \geq 0$, classify as “positive class”
Why?

Because $\sigma(k \geq 0) \geq 0.5$

If $\theta_0 + \theta_1 \cdot x \leq 0$, classify as “negative class”
Why?

Logistic Regression

The decision boundary is the hyperplane where $\mathbb{P}(Y = 1 | X = x) = 0.5$, which occurs when $\theta_0 + \theta_1 \cdot x = 0$

Assume that threshold = 0.5

If $\theta_0 + \theta_1 \cdot x \geq 0$, classify as “positive class”
Why?

Because $\sigma(k \geq 0) \geq 0.5$

If $\theta_0 + \theta_1 \cdot x \leq 0$, classify as “negative class”
Why?

Because $\sigma(k \leq 0) \leq 0.5$

Logistic Regression

Model:

$$\hat{y} = \sigma(\theta_0 + \theta_1 \cdot x)$$

Loss:

$$\ell(\theta) = \frac{1}{m} \sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for **estimating the parameters of a statistical model**.

Key Idea - Choose parameters that make the observed data **most probable**.

Logistic Regression

How do we train this?

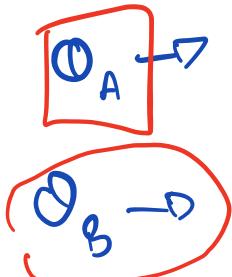
Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for **estimating the parameters of a statistical model**.

Key Idea - Choose parameters that make the observed data **most probable**.

Given some dataset D and a model with parameters θ

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most probable.

Given some dataset D and a model with parameters θ

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$

Probability that we observe training dataset D , given that the model has parameters θ

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most probable.

Given some dataset D and a model with parameters θ

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$

Find θ such that this probability is maximized

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most probable.

Given some dataset D and a model with parameters θ

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$

Under what parameter values would we have been **most likely to observe exactly the data we did observe?**

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

What we want to find:

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$

Probability:

$\mathbb{P}(D | \theta)$ - Given fixed parameters θ ,
what is the probability of observing data D ?

This is a function of D with θ fixed.

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

What we want to find:

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$

Probability:

$\mathbb{P}(D | \theta)$ - Given **fixed parameters** θ ,
what is the probability of observing data D ?
This is a function of D with θ fixed.

Likelihood:

$L(\theta | D) = \mathbb{P}(D | \theta)$ - Given fixed observed data D , how **likely** are different parameter values θ ?
This is a function of θ with D fixed.

Logistic Regression

Probability vs Likelihood

Coin Flips

Suppose you flip a coin **10 times** and get **7 heads**.

Binomial Theorem:

$$P(7 \text{ heads} | 10 \text{ flips}) = P(\text{head})^7 \cdot (1 - P(\text{head}))^{10-7} \cdot \binom{10}{7}$$

Logistic Regression

Probability vs Likelihood

$D = 7$ heads out of 10 trials.

Coin Flips

Suppose you flip a coin **10 times** and get **7 heads**.

Probability Perspective: If $\theta = 0.5$ (fair coin), what's $\mathbb{P}(7 \text{ heads in 10 flips} \mid \theta)$?

$$\text{Answer: } \mathbb{P}(X = 7 \mid \theta = 0.5) = \binom{10}{7} \cdot 0.5^7 \cdot (1 - 0.5)^{10-7} \approx 0.117$$

Logistic Regression

Probability vs Likelihood

Coin Flips

Suppose you flip a coin **10 times** and get **7 heads**.

Probability Perspective: If $\theta = 0.5$ (fair coin), what's $\mathbb{P}(7 \text{ heads in 10 flips} \mid \theta)$?

$$\text{Answer: } \mathbb{P}(X = 7 \mid \theta = 0.5) = \binom{10}{7} \cdot 0.5^7 \cdot (1 - 0.5)^{10-7} \approx 0.117$$

Likelihood Perspective: Given we observed 7 heads, which θ value makes this outcome most plausible?

Logistic Regression

Probability vs Likelihood

Coin Flips

Suppose you flip a coin **10 times** and get **7 heads**.

Probability Perspective: If $\theta = 0.5$ (fair coin), what's $\mathbb{P}(7 \text{ heads in 10 flips} \mid \theta)$?

Answer: $\mathbb{P}(X = 7 \mid \theta = 0.5) = \binom{10}{7} \cdot 0.5^7 \cdot (1 - 0.5)^{10-7} \approx 0.117$

Likelihood Perspective: Given we observed 7 heads, which θ value makes this outcome most plausible?

$$L(\theta = 0.5 \mid X = 7) = 0.117$$

Logistic Regression $\rightarrow D \Rightarrow 7 \text{ heads / 10 trials.}$

Probability vs Likelihood

$$P(D|0) = 0.117$$

Coin Flips

Suppose you flip a coin **10 times** and get **7 heads**.

Probability Perspective: If $\theta = 0.5$ (fair coin), what's $P(7 \text{ heads in 10 flips} | \theta)$?

$$\text{Answer: } P(X = 7 | \theta = 0.5) = \binom{10}{7} \cdot 0.5^7 \cdot (1 - 0.5)^{10-7} \approx 0.117$$

Likelihood Perspective: Given we observed 7 heads, which θ value makes this outcome most plausible?

$$L(\theta = 0.5 | X = 7) = 0.117$$

$$L(\theta = 0.7 | X = 7) = 0.267 \text{ (higher)}$$

$$L(\theta = 0.3 | X = 7) = 0.009 \text{ (lower)}$$

$$L(\theta | (x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}))$$

Logistic Regression

At this point,
threshold doesn't matter.

① Model $\rightarrow \hat{y} = \sigma(\theta_0 + \theta_1 x) \Rightarrow P(y=1|x, \theta) \rightarrow P$

② Bernoulli distribution $\rightarrow P(y) = \begin{cases} p & \text{if } y=1 \\ 1-p & \text{if } y=0 \end{cases} \rightarrow \text{step function piece wise}$

$$P^y \cdot (1-p)^{1-y}$$

$$\text{If } y=1 \rightarrow p \cdot (1-p)^{1-y} = p$$

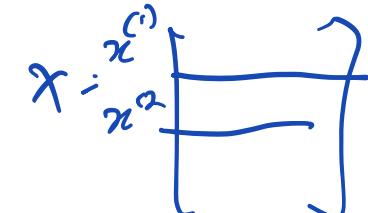
$$y=0 \rightarrow p^0 \cdot (1-p)^{1-y} = (1-p)$$

Product.

③ MLE

$$\underbrace{L(\theta|D)}_{\text{Maximise}} = \underbrace{P(D|\theta)}_{\text{Maximise}} = \prod_i P(y_i|x_i, \theta)$$

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$



Logistic Regression

$$L(\theta|D) = P(D|\theta) = \prod_{i=1}^m P(y_i | x_i, \theta)$$

$$\begin{aligned} \log(L(\theta|D)) &= \sum_{i=1}^m \log(P(y_i | x_i, \theta)), \\ &= \sum_{i=1}^m \log(P_i^{y_i} \cdot (1-P_i)^{1-y_i}) \end{aligned}$$

$$\log(L(\theta|D)) = \sum_{i=1}^m y_i \log P_i + (1-y_i) \log(1-P_i) \rightarrow \text{log likelihood}$$

$$L(\theta) = - \sum_{i=1}^m y_i \log P_i + (1-y_i) \log(1-P_i)$$

$$\max P(x) = \min -f(x)$$

↳ Negative log likelihood.

Binary Cross Entropy.

$$\begin{aligned} ① \log(ab) &= \log a + \log b \\ ② \log(a^b) &= b \cdot \log(a) \\ P &= P(y=1 | x, \theta) \end{aligned}$$

Logistic Regression

$$L(\theta) = -y \log p + (1-y) \log(1-p)$$

$$p = \sigma(z)$$

$$z = \theta_0 + \theta_1 x$$

$$\frac{\partial L(\theta)}{\partial \theta_1} = \frac{\partial L(\theta)}{\partial p} \cdot \frac{\partial p}{\partial z} \cdot \frac{\partial z}{\partial \theta_1}$$

$$\frac{-y}{p} + \frac{(1-y)}{1-p} \cdot \sigma(z) \cdot (1 - \sigma(z))$$

① $\frac{\partial(\log x)}{\partial x} = \frac{1}{x}$

② $\frac{\partial(\sigma(x))}{\partial x} = \sigma(x) \cdot (1 - \sigma(x))$

if $\theta_0 \rightarrow 1$
 $\theta_1 \rightarrow x$

Logistic Regression

$$\ell(\theta) = -y \log p + (1-y) \log(1-p)$$

$$p = \sigma(z) =$$

$$z = \theta_0 + \theta_1 x$$

$$\frac{-y}{p} + \frac{1-y}{1-p} \cdot \frac{\sigma(z) \cdot (1-\sigma(z)) \cdot x}{p \cdot (1-p) \cdot x}$$

$$\frac{-y(1-p) + p(1-y)}{p(1-p)}$$

$$\boxed{\frac{p-y}{p(1-p)}}$$

① $\frac{\partial(\log x)}{\partial x} = \frac{1}{x}$

② $\frac{\partial \sigma(x)}{\partial x} = \sigma(x) \cdot (1-\sigma(x))$

$$\left. \begin{aligned} \frac{p-y}{p(1-p)} \cdot \frac{p(1-p) \cdot x}{x} \\ \frac{\partial \ell(\theta)}{\partial \theta_1} = x \cdot (p-y) \\ \frac{\partial \ell(\theta)}{\partial \theta_0} = (p-y) \end{aligned} \right\}$$

Logistic Regression

$$\text{Loss} = - \frac{1}{m} \sum_{i=1}^m \left[y \log p + (1-y) \log e^{(1-p)} \right]$$

$$\text{Derivative} = (p-y) \cdot x$$

$$\frac{\partial (0_0 + 0_1 x) - y}{\partial x} \cdot x = 0$$

$$\left[\frac{\partial (0_0 + 0_1 x) - y}{\partial 0_0} \quad \frac{\partial (0_0 + 0_1 x) - y}{\partial 0_1} \right]$$

0-1 0-1

$$y=1 \quad \begin{cases} p=0 \rightarrow \log 0 \rightarrow \infty \\ p=1 \rightarrow \log 1 \rightarrow 0 \end{cases}$$

$$y=0 \rightarrow p=0 \rightarrow \log 1 \rightarrow 0$$
$$p=1 \rightarrow \log 0 \rightarrow \infty$$

$$\tilde{o}(\text{input}) = \begin{matrix} 0.7 \\ 0.6 \\ 0.5 \end{matrix}$$

Logistic Regression

Likelihood Function

For **independent** observations (rows of data) $D = \{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$, the likelihood is the **product** of individual probabilities

$$L(\theta | D) = \underbrace{\mathbb{P}(D | \theta)}_{\text{assuming independence.}} = \underbrace{\prod_{i=1}^m \mathbb{P}(x^{(i)} | \theta)}_{\downarrow}$$

Logistic Regression

Likelihood Function

For **independent** observations (rows of data) $D = \{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$, the likelihood is the **product** of individual probabilities

$$L(\theta | D) = \mathbb{P}(D | \theta) = \prod_{i=1}^m \mathbb{P}(x^{(i)} | \theta)$$

But, products are numerically **unstable** and difficult to differentiate

So, we take *log* on both sides to convert products to sums

Logistic Regression

Likelihood Function

For **independent** observations (rows of data) $D = \{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$, the likelihood is the **product** of individual probabilities

$$L(\theta | D) = \mathbb{P}(D | \theta) = \prod_{i=1}^m \mathbb{P}(x^{(i)} | \theta)$$

$$\log(L(\theta | D)) = \sum_{i=1}^m \log(\mathbb{P}(x^{(i)} | \theta))$$

Using properties of \log :

$$\begin{aligned}\log(a^b) &= b \cdot \log(a) \\ \log(ab) &= \log(a) + \log(b)\end{aligned}$$

Logistic Regression

Likelihood Function

For **independent** observations (rows of data) $D = \{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$, the likelihood is the **product** of individual probabilities

$$L(\theta | D) = \mathbb{P}(D | \theta) = \prod_{i=1}^m \mathbb{P}(x^{(i)} | \theta)$$

$$\log(L(\theta | D)) = \sum_{i=1}^m \log(\mathbb{P}(x^{(i)} | \theta))$$

For logistic regression

Input Features: $x \in \mathbb{R}^m$

Binary Labels: $y \in \{0,1\}$

Training Data: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Logistic Regression

$$\mathbb{P}(Y = 1 | X = x; \theta) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Logistic Regression

$$\mathbb{P}(Y = 1 | X = x; \theta) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Each label y_i follows a **Bernoulli Distribution** with parameter

$$p_i = \mathbb{P}(Y = 1 | x_i)$$

Logistic Regression

Quick Aside: Bernoulli Distribution

Bernoulli Distribution models a single binary outcome

Is $\mathbb{P}(X = \text{success}) = p$ and
 $\mathbb{P}(X = \text{failure}) = q = (1 - p)$

Then probability mass function P is

$$P(X = x) = p^x \cdot (1 - p)^{1-x}$$

Logistic Regression

$$\mathbb{P}(Y = 1 \mid X = x; \theta) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Each label y_i follows a **Bernoulli Distribution** with parameter

$$p_i = \mathbb{P}(Y = 1 \mid x_i)$$

$$\mathbb{P}(Y = y \mid X = x) = p^y(1 - p)^{1-y}$$

Logistic Regression

$$\mathbb{P}(Y = 1 | X = x; \theta) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Each label y_i follows a **Bernoulli Distribution** with parameter

$$p_i = \mathbb{P}(Y = 1 | x_i)$$

$$\mathbb{P}(Y = y | X = x) = p^y(1 - p)^{1-y}$$

$$\left\{ \begin{array}{ll} p & \text{if } y = 1 \\ 1-p & \text{if } y = 0 \end{array} \right\}$$

When $y = 1 \rightarrow p^1(1 - p)^0 = p$

When $y = 0 \rightarrow p^0(1 - p)^1 = 1 - p$

Logistic Regression

$$\mathbb{P}(Y = 1 | X = x; \theta) = \sigma(\theta_0 + \theta_1 \cdot x)$$

Each label y_i follows a **Bernoulli Distribution** with parameter

$$p_i = \mathbb{P}(Y = 1 | x_i)$$

$$\mathbb{P}(Y = y | X = x) = p^y(1 - p)^{1-y}$$

When $y = 1 \rightarrow p^1(1 - p)^0 = p$

When $y = 0 \rightarrow p^0(1 - p)^1 = (1 - p)$

Logistic Regression

For a **single** observation $(x^{(i)}, y^{(i)})$

Probability of observing $y^{(i)}$ given you have seen input data $x^{(i)}$ and θ

$$\mathbb{P}(y^{(i)} | x^{(i)}; \theta) = p_i^{y^{(i)}} (1 - p_i)^{1 - y^{(i)}}$$

Where $p_i = \sigma(\theta_0 + \theta_1 \cdot x)$

Logistic Regression

For the **entire dataset** $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Assuming observations are **independent**

Likelihood is the product of all individual probabilities

$$L(\theta | D) = \prod_{i=1}^m \mathbb{P}(y^{(i)} | x^{(i)}; \theta) = \prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}}$$

Logistic Regression

For the **entire dataset** $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Assuming observations are **independent**

Likelihood is the product of all individual probabilities

$$L(\theta | D) = \prod_{i=1}^m \mathbb{P}(y^{(i)} | x^{(i)}; \theta) = \prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1 - y^{(i)}}$$

We want to **maximize** likelihood

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \mathbb{P}(D | \theta)$$

Logistic Regression

$$L(\theta | D) = \prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1 - y^{(i)}}$$

Logistic Regression

$$L(\theta | D) = \prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}}$$

$$\log(L(\theta)) = \underline{\log}(\prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}})$$

Using properties of log:

$$\begin{aligned} \log(a^b) &= b \cdot \log(a) \\ \log(ab) &= \log(a) + \log(b) \end{aligned}$$

$$\log(L(\theta)) = \sum_{i=1}^m \log(p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}})$$

$$\log(L(\theta)) = \sum_{i=1}^m \underbrace{y^{(i)} \log(p_i)}_{\text{Red bracket}} + \underbrace{(1 - y^{(i)}) \log(1 - p_i)}_{\text{Red bracket}}$$

Logistic Regression

$$L(\theta | D) = \prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}}$$

$$\log(L(\theta)) = \log(\prod_{i=1}^m p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}})$$

Using properties of log:

$$\begin{aligned}\log(a^b) &= b \cdot \log(a) \\ \log(ab) &= \log(a) + \log(b)\end{aligned}$$

$$\log(L(\theta)) = \sum_{i=1}^m \log(p_i^{y^{(i)}} (1 - p_i)^{1-y^{(i)}})$$

$$\log(L(\theta)) = \sum_{i=1}^m y^{(i)} \log(p_i) + (1 - y^{(i)}) \log(1 - p_i)$$

This is called the **log-likelihood** function for logistic regression

Logistic Regression

$$\log(L(\theta)) = \sum_{i=1}^m y^{(i)} \log(p_i) + (1 - y^{(i)}) \log(1 - p_i)$$

This is called the **log-likelihood** function for logistic regression

Remember we want to **maximize** likelihood

But when we deal with “loss” functions and gradient descent, we want to **minimize** the loss

Logistic Regression

$$\ell(\theta) = - \sum_{i=1}^m y^{(i)} \log(p_i) + (1 - y^{(i)}) \log(1 - p_i)$$

Solution: Minimize **negative** likelihood

Logistic Regression

$$\ell(\theta) = - \sum_{i=1}^m y^{(i)} \log(p_i) + (1 - y^{(i)}) \log(1 - p_i)$$

Solution: Minimize **negative** likelihood

Remember that p_i is the predicted output where

$$p_i = \sigma(\theta_0 + \theta_1 \cdot x)$$

Logistic Regression

$$\ell(\theta) = -\frac{1}{m} \sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Binary Cross Entropy Loss

Logistic Regression

$$\ell(\theta) = -\frac{1}{m} \sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

When $y^{(i)} = 1$, i.e., actual positive

$$\ell(\theta) = -\log(\hat{y}^{(i)})$$

When $y^{(i)} = 0$, i.e., actual negative

$$\ell(\theta) = -\log(1 - \hat{y}^{(i)})$$

Logistic Regression

$$\ell(\theta) = -\frac{1}{m} \sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

When $y^{(i)} = 1$, i.e., actual positive

$$\ell(\theta) = -\log(\hat{y}^{(i)})$$

If $\hat{y}^{(i)} = 1$, Loss = 0

If $\hat{y}^{(i)} = 0$, Loss = $+\infty$

When $y^{(i)} = 0$, i.e., actual negative

$$\ell(\theta) = -\log(1 - \hat{y}^{(i)})$$

If $\hat{y}^{(i)} = 0$, Loss = 0

If $\hat{y}^{(i)} = 1$, Loss = $+\infty$

Logistic Regression

Finding θ

$$\ell(\theta) = -\frac{1}{m} \sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Find partial derivative

To simplify, lets find the derivative for a **single** sample

Logistic Regression

Finding θ

$$\ell(\theta) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \quad -\textcircled{1}$$

$$\hat{y} = \sigma(z) \quad -\textcircled{2}$$

$$z = \theta_0 + \theta_1 x \quad -\textcircled{3}$$

Want to find $\frac{\partial \ell}{\partial \theta}$

Using Chain Rule

$$\frac{\partial \ell}{\partial \theta} = \frac{\partial \ell}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial \theta}$$

Logistic Regression

Finding θ

Summing over all samples

$$\frac{\partial \ell}{\partial \theta} = \frac{1}{m} \sum_{i=1}^m x^{(i)} \cdot (\hat{y}^{(i)} - y^{(i)})$$

examples

$$x \in \mathbb{R}^{m \times n}$$

features.

$$P, Y \in \mathbb{R}^{m \times 1}$$

In matrix form

$$\nabla_{\theta}(\ell(\theta)) = \frac{1}{m} X^T (\hat{Y} - Y)$$
$$X^T [P - Y]$$

Logistic Regression

Summary

Model:

$$\hat{y} = \sigma(\theta_0 + \theta_1 x)$$

Loss:

$$\ell(\theta) = -\frac{1}{m} \sum_{i=1}^m y^{(i)} \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Gradient:

$$\nabla_{\theta}(\ell(\theta)) = \frac{1}{m} X^T (\hat{Y} - Y)$$

Logistic Regression

Summary

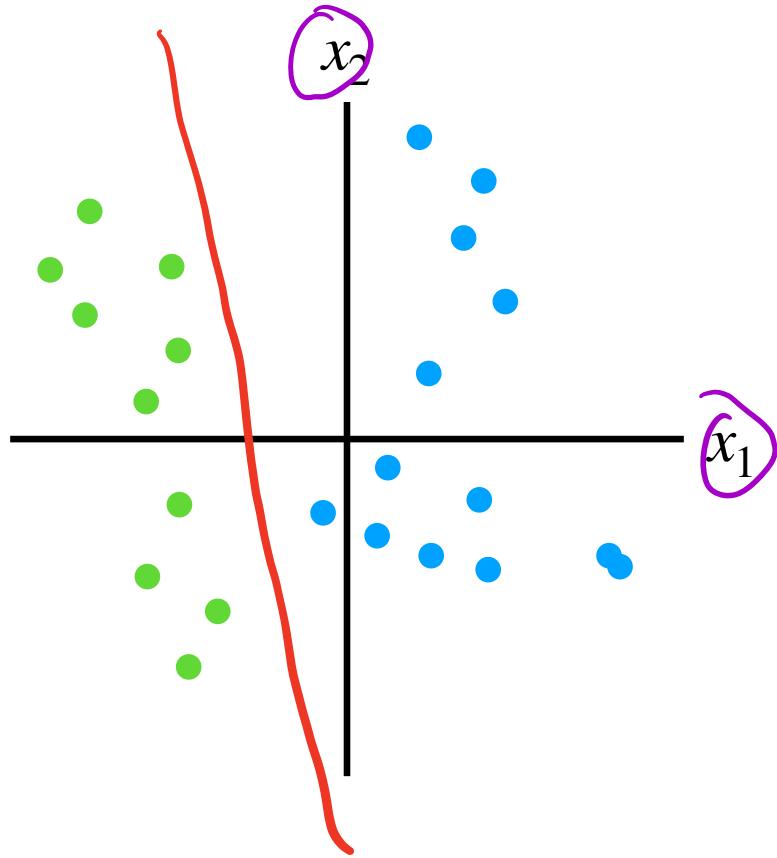
Why not MSE?

- ① Not convex for logistic regression
- ② Gradients are small

Logistic Regression

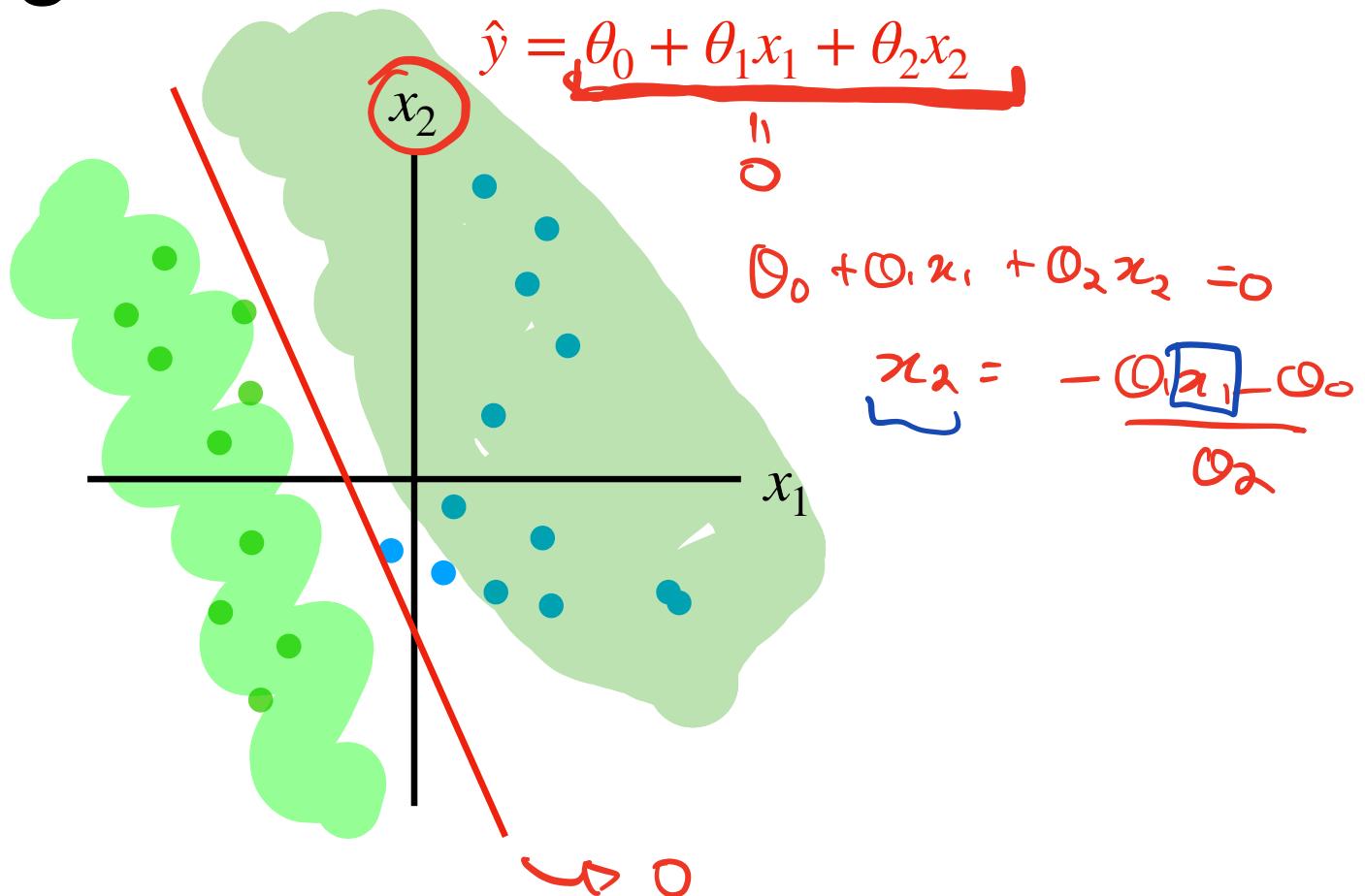
Summary

$$\sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$



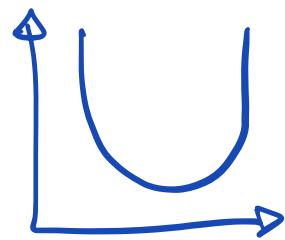
Logistic Regression

Summary

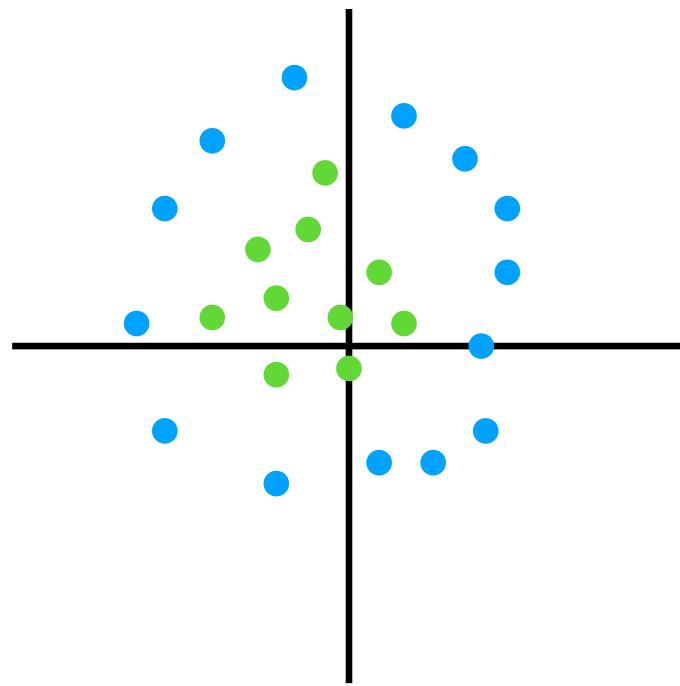


Logistic Regression

Summary

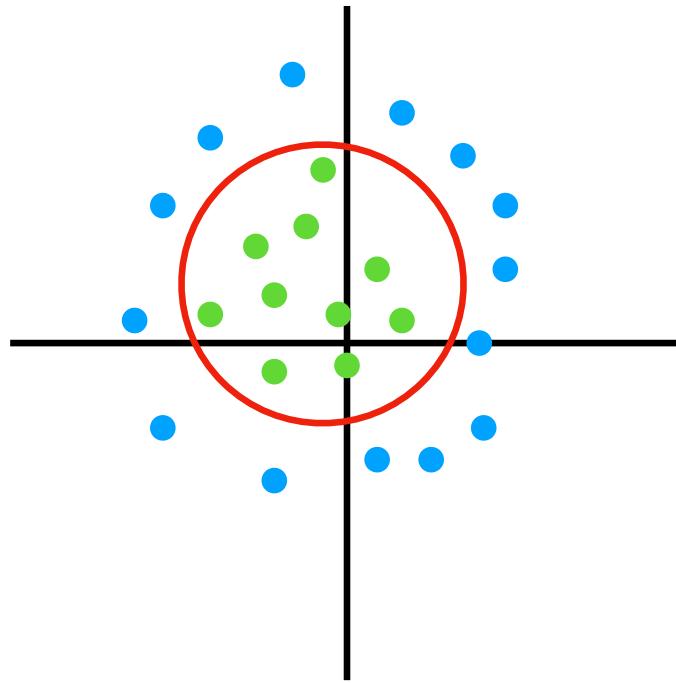


$$\theta_0 + \theta_1 x^2$$



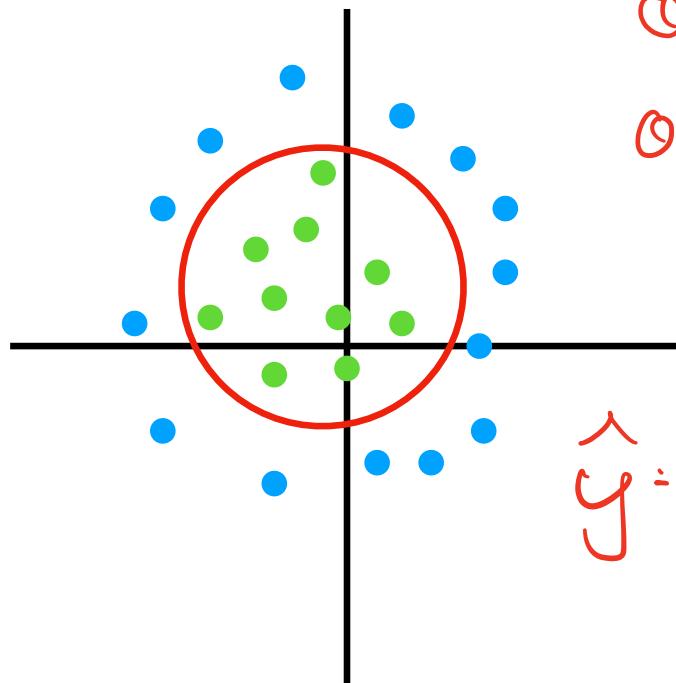
Logistic Regression

Summary



Logistic Regression

Summary



$$x_1^2 + x_2^2 = r^2$$

$$\theta_1(x_1^2 + x_2^2) = \theta_0^2$$

$$\theta_1^2(x_1^2 + x_2^2) = \theta_0^2$$

$$\theta_1 \sqrt{x_1^2 + x_2^2} = \theta_0$$

$$\hat{y} = \sigma(\theta_1 \sqrt{x_1^2 + x_2^2} - \theta_0)$$

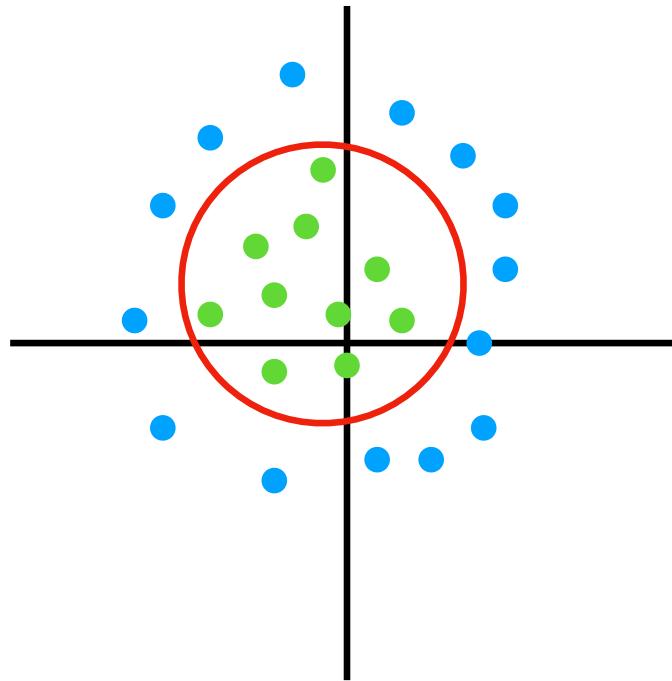
\downarrow
 x_3

Logistic Regression

Summary

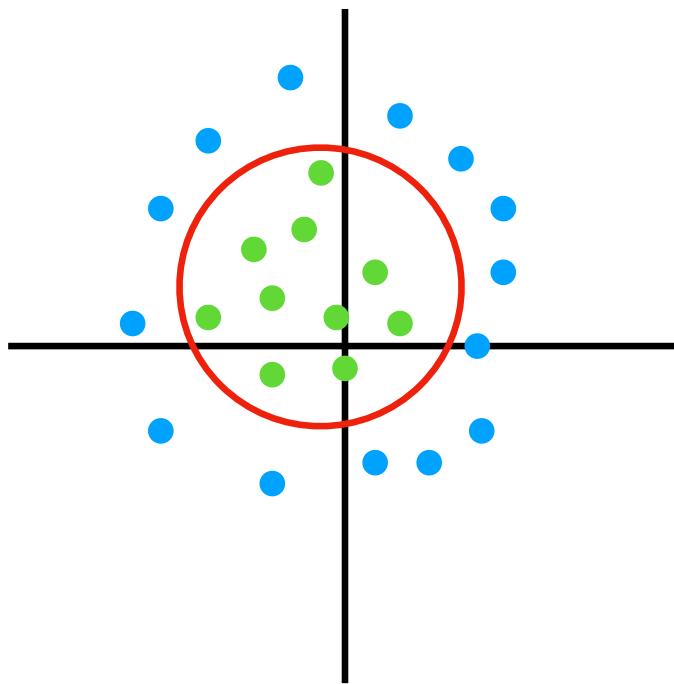
$$x_1^2 + x_2^2 = r^2$$

$$\theta_1^2(x_1^2 + x_2^2) = \theta_0^2$$



Logistic Regression

Summary



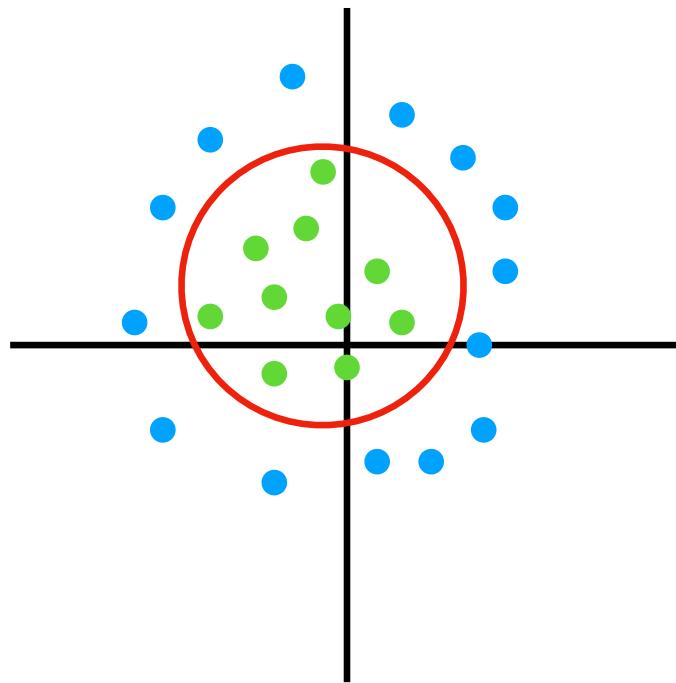
$$x_1^2 + x_2^2 = r^2$$

$$\theta_1^2(x_1^2 + x_2^2) = \theta_0^2$$

$$\sqrt{\theta_1^2(x_1^2 + x_2^2)} = \sqrt{\theta_0^2}$$

Logistic Regression

Summary



$$x_1^2 + x_2^2 = r^2$$

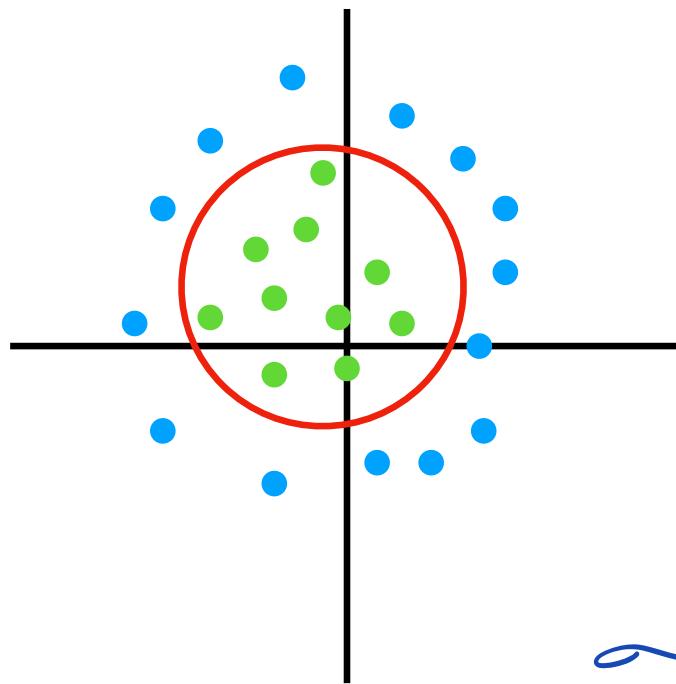
$$\theta_1^2(x_1^2 + x_2^2) = \theta_0^2$$

$$\sqrt{\theta_1^2(x_1^2 + x_2^2)} = \sqrt{\theta_0^2}$$

$$\theta_1 \sqrt{(x_1^2 + x_2^2)} = \theta_0$$

Logistic Regression

Summary



$$x_1^2 + x_2^2 = r^2$$

$$\theta_1^2(x_1^2 + x_2^2) = \theta_0^2$$

$$\sqrt{\theta_1^2(x_1^2 + x_2^2)} = \sqrt{\theta_0^2}$$

$$\theta_1\sqrt{(x_1^2 + x_2^2)} = \theta_0$$

$$\hat{y} = \theta_1\sqrt{(x_1^2 + x_2^2)} - \theta_0$$

$$\approx (\theta_1\sqrt{(x_1^2 + x_2^2)} - \theta_0)$$

Next Class

- More classification algorithms