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Updates

• Homework 1 Discussion 


• Homework 3 Out - Due March 6thq



Updates

• 17th Feb - Tuesday - Wanrou


• 1:30 PM - 3:00 PM | Location: Richards Hall 243


• Linear algebra 


• Vectors 


• Matrices 


• Vector and Matrix operations 


• Probabilities 


• Bayes’ rule and conditional probability 


• Distributions 


• CDFs and PDFs

• 18th Feb - Wednesday - Zaiba 


• 1:00 PM - 2:30 PM | Location: EL 311


• Derivatives 


• Gradients 


• Derivatives of some common functions 


• Chain Rule, Product Rule, Quotient Rule  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Today’s Outline

• Logistic Regression



Logistic Regression
Model y Coto n

w̅
0 1

Lossfunction Negative log
likelihood loss

Derivative 0 solve forthete



Logistic Regression

• Despite its name, logistic regression is a classification algorithm.


• It models the probability of class membership using a logistic (sigmoid) 
function.


σ(x) = 1
1 + e−x
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Logistic Regression

• Despite its name, logistic regression is a classification algorithm.


• It models the probability of class membership using a logistic (sigmoid) 
function.
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Logistic Regression

• Despite its name, logistic regression is a classification algorithm.


• It models the probability of class membership using a logistic (sigmoid) 
function.





• Linear regression predicts unbounded 
real values as 


• But we need probabilities in 

σ(x) = 1
1 + e−x

̂y = θ0 + θ1 ⋅ x

[0, 1]



Logistic Regression

• Wrap the linear regression equation in a Sigmoid function


• Logistics regression models the probability of the positive class 





The decision boundary is the hyperplane where , which 
occurs when 

ℙ(Y = 1 |X = x) = σ(θ0 + θ1 ⋅ x) = 1
1 + e−(θ0+θ1⋅x)

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

IF



Logistic Regression

The decision boundary is the hyperplane where , which 
occurs when  

If , classify as “positive class” 
Why?  

Because 


If , classify as “negative class” 
Why?  

Because 

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5 
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Logistic Regression

The decision boundary is the hyperplane where , which 
occurs when  

If , classify as “positive class” 
Why?  

Because 


If , classify as “negative class” 
Why?  

Because 

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5 
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Logistic Regression

Model: 
 


Loss: 
 

̂y = σ(θ0 + θ1 ⋅ x)

ℓ(θ) = 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  

Maximum Likelihood Estimation (MLE) is a principled method for estimating the 
parameters of a statistical model.  

 
Key Idea - Choose parameters that make the observed data most probable.
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Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most 
probable. 

Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)

Probability that we observe training dataset , given 
that the model has parameters 

D
θ



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most 
probable. 

Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)

Find  such that this probability is maximizedθ



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most 
probable. 

Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)

Under what parameter values would we have been most 
likely to observe exactly the data we did observe?



Maximum Likelihood Estimation  

What we want to find:  



Probability:  
 - Given fixed parameters , 

what is the probability of observing data ? 
 This is a function of  with  fixed.

̂θMLE = arg maxθℙ(D |θ)

ℙ(D |θ) θ
D

D θ

Logistic Regression
How do we train this? 



Maximum Likelihood Estimation  

What we want to find:  



Probability:  
 - Given fixed parameters , 

what is the probability of observing data ? 
 This is a function of  with  fixed. 

 
Likelihood: 

 - Given fixed observed data , how likely are different parameter values ? 
 This is a function of  with  fixed. 

̂θMLE = arg maxθℙ(D |θ)

ℙ(D |θ) θ
D

D θ

L(θ |D) = ℙ(D |θ) D θ
θ D

Logistic Regression
How do we train this? 

I



Coin Flips 

Suppose you flip a coin 10 times and get 7 heads.


Probability Perspective: If  (fair coin), what's (7 heads in 10 flips)?


Answer: 


Likelihood Perspective: Given we observed 7 heads, which  value makes this outcome most plausible?





 (higher)


0.009 (lower)


θ = 0.5 ℙ
ℙ(X = 7 |θ = 0.5) = C(10,7) ⋅ 0.510 ≈ 0.117

θ

L(θ = 0.5 |X = 7) = 0.117
L(θ = 0.7 |X = 7) = 0.267
L(θ = 0.3 |X = 7) =

Logistic Regression
Probability vs Likelihood

BinomialTheorem

P Theurs zofi.es
PChead 1 PChead
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Probability vs Likelihood
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
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Each label  follows a Bernoulli Distribution with parameter  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Each label  follows a Bernoulli Distribution with parameter  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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
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For independent observations (rows of data) , 
the likelihood is the product of individual probabilities


D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

Logistic Regression
Likelihood Function

y
assuming

independence



For independent observations (rows of data) , 
the likelihood is the product of individual probabilities


D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

Logistic Regression
Likelihood Function

But, products are numerically unstable and difficult to differentiate 
So, we take  on both sides to convert products to sums  log



For independent observations (rows of data) , 
the likelihood is the product of individual probabilities





D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

log(L(θ |D)) =
m

∑
i=1

log(ℙ(x(i)) |θ)

Logistic Regression
Likelihood Function

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))



For independent observations (rows of data) , 
the likelihood is the product of individual probabilities








For logistic regression  
Input Features:  

Binary Labels:  
Training Data: 

D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

log(L(θ |D)) =
m

∑
i=1

log(ℙ(x(i)) |θ)

x ∈ ℝm

y ∈ {0,1}
{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . , (x(m), y(m))}

Logistic Regression
Likelihood Function

my






Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression



Bernoulli Distribution models a single binary outcome


Is  and 



Then probability mass function  is 


ℙ(X = success) = p
ℙ(X = failure) = q = (1 − p)

P

P(X = x) = px ⋅ (1 − p)1−x

Logistic Regression
Quick Aside: Bernoulli Distribution






Each label  follows a Bernoulli Distribution with parameter  






ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

Logistic Regression






Each label  follows a Bernoulli Distribution with parameter  






When 


When 

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

y = 1 → p1(1 − p)0 = p

y = 0 → p0(1 − p)1 = (1 − p)

Logistic Regression

y

B D






Each label  follows a Bernoulli Distribution with parameter  






When 


When 

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

y = 1 → p1(1 − p)0 = p

y = 0 → p0(1 − p)1 = (1 − p)

Logistic Regression



For a single observation  
 

Probability of observing  given you have seen input data  and 





Where 

(x(i), y(i))

y(i) x(i) θ

ℙ(y(i) |x(i); θ) = py(i)

i (1 − pi)1−y(i)

pi = σ(θ0 + θ1 ⋅ x)

Logistic Regression



For the entire dataset  
 

Assuming observations are independent 


Likelihood is the product of all individual probabilities 


 

{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . (x(m), y(m))}

L(θ |D) = Πm
i=1ℙ(y(i) |x(i); θ) = Πm

i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression

1



For the entire dataset  
 

Assuming observations are independent 


Likelihood is the product of all individual probabilities 


 

{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . (x(m), y(m))}

L(θ |D) = Πm
i=1ℙ(y(i) |x(i); θ) = Πm

i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression

We want to maximize likelihood
̂θMLE = arg maxθℙ(D |θ)



 L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression
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log(L(θ)) =
m

∑
i=1

log(py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)
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Using properties of log: 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log(ab) = log(a) + log(b))
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Logistic Regression

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))

This is called the log-likelihood function for logistic regression



log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

This is called the log-likelihood function for logistic regression


Remember we want to maximize likelihood


But when we deal with “loss” functions and gradient descent, we want to 
minimize the loss



ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Solution: Minimize negative likelihood 



ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Solution: Minimize negative likelihood 


Remember that  is the predicted output where 
pi

pi = σ(θ0 + θ1 ⋅ x)



ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

Binary Cross Entropy Loss



ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

When , i.e., actual positive





 
When , i.e., actual negative


y(i) = 1
ℓ(θ) = − log( ̂y(i))

y(i) = 0
ℓ(θ) = − log(1 − ̂y(i))

E



ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

When , i.e., actual positive





 
When , i.e., actual negative


y(i) = 1
ℓ(θ) = − log( ̂y(i))

y(i) = 0
ℓ(θ) = − log(1 − ̂y(i))

If , Loss = 0


If , Loss = 

̂y(i) = 1

̂y(i) = 0 +∞

If , Loss = 0


If , Loss = 

̂y(i) = 0

̂y(i) = 1 +∞
O
O






Find partial derivative


To simplify, lets find the derivative for a single sample

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression
Finding θ

O












Want to find 


Using Chain Rule





ℓ(θ) = ylog( ̂y) + (1 − y)log(1 − ̂y)
̂y = σ(z)

z = θ0 + θ1x
∂ℓ
∂θ

∂ℓ
∂θ

= ∂ℓ
∂ ̂y

⋅ ∂ ̂y
∂z

⋅ ∂z
∂θ

Logistic Regression
Finding θ

888



Summing over all samples 





In matrix form 


∂ℓ
∂θ

= 1
m

m

∑
i=1

x(i) ⋅ ( ̂y(i) − y(i))

∇θ(ℓ(θ)) = 1
m

XT( ̂Y − Y)

Logistic Regression
Finding θ

examples
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Model: 
  

Loss:  
 

 
Gradient: 


̂y = σ(θ0 + θ1x)

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

∇θ(ℓ(θ)) = 1
m

XT( ̂Y − Y)

Logistic Regression
Summary



Why not MSE? 


Logistic Regression
Summary

Not love for logistic regression

Gradients are small



Logistic Regression
Summary
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Logistic Regression
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Next Class

• More classification algorithms


