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Updates

* Homework 1 Discussion

« Homework 3 Out - Due March@th



Updates

* 17th Feb - Tuesday - Wanrou « 18th Feb - Wednesday - Zaiba

* 1:30 PM - 3:00 PM | Location: Richards Hall 243 * ,1:00 PM - 2:30 PM | Location: EL 311
g_/

e Linear algebra — * Derivatives

¢ \ectors * Gradients

e Matrices * Derivatives of some common functions

« Vector and Matrix operations *_Chain Rule, Product Rule, Quotient Rule
* Probabilities

* Bayes’ rule and conditional probability

* Distributions

 CDFs and PDFs



Today’s Outline

* Logistic Regression
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Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function
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* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
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Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function
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Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function
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Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

i
l+e~*

e Linear regression predicts unbounded
real valuesas y = 0, + 0, - x
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« But we need probabilities in [0, 1]




Logistic Regression

* Wrap the linear regression equation in a Sigmoid function

» Logistics regression models the probability of the positive class
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The decision boundary is the hyperplane where P(Y = 1| X = x) = 0.5, which
occurs when @+ 0, - x =0




Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 6y + 60, - x =0

If 6, + 0, - x > 0, classify as “positive class”

— Why?



Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when @+ 0, - x =0

© Assumethatthreshold<los|

If 6, + 0, - x > 0, classify as “positive class”
— Why?
Because o(k > 0) > 0.5 —> tve
C
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Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when @+ 0, - x =0

If 6, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

If 0, + 0, - x < 0, classify as “negative class”
Why?



Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when @+ 0, - x =0

I1 Oy + 0, - 32 0, classify as “positive class”
' Why?

“ Because f(k >0)>0.5

If 0, + 0, - x < 0, classify as “negative class”
Why?
Because o(k < 0) < 0.5
l—



Logistic Regression

Model:
$ =00+ 0, - x) ~—

Loss:

L | .
£(0) = — D ¥ Pog(y®) + (1 — yDlog(1 — y)
i=1 L —




Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.

Given some dataset D and a model with parameters\é’ I
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Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters &

éMLE = arg max,P(D |0)

Probability that we observe training dataset D, given
that the model has parameters 0



Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters &

éMLE = arg max,P(D | 0)

Find 6 such that this probability is maximized



Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters &

éMLE = arg max,P(D |0)

Under what parameter values would we have been most
likely to observe exactly the data we did observe?



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

e ———

_ What we want to find:
O g = arg max)P(D | 6)

Probability:
P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with @ fixed.




Logistic Regression

How do we train this?

Maximum Likelihood Estimation

_ What we want to find:
O g = arg max)P(D | 6)

Probability:
P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with @ fixed.

A . .
| Likelihood:
L0 @ = P@ @) - Given fixed observed data D, how likely are different parameter values 6?
This is a function of 8 with D fixed.



Logistic Regression
Probability vs Likelihood

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.
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Logistic Regression )

» e = Cheds o 4 1o ek
Probability vs Likelihood

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.

Probability Perspective: IfP = 0.5 (fair coin), vlvrhat's [P(7 heads in 10 flips |6)?
| — m— _ >

10
Answer: P(X =7[0=0.5) = < ) .0.57 - (1 = 0.5)10-7 z
\, — 7 \




Logistic Regression
Probability vs Likelihood

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.

Probability Perspective: If @ = 0.5 (fair coin), what's [P(7 heads in 10 flips |8)?

10
Answer: P(X =716 = 0.5) = < ; ) .0.57-1-05"9""~0.117

Likelihood Perspective: Given we observed 7 heads, whichlﬂ value mJeS this outcome most plausible?



Logistic Regression
Probability vs Likelihood

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.

Probability Perspective: If @ = 0.5 (fair coin), what's [P(7 heads in 10 flips |8)?

o—ﬁ

10
Answer: [F(X =710=0.5) = < ; ) .0.57-1-05"9""~0.117

Likelihood Perspective: Given we observed 7 heads, which 6 value makes this outcome most plausible?

LO=05/X=7)=0.117
L-

————

—



Logistic Regression —D => T het / (0 hwet.
Probability vs Likelihood PCp|0) = o7

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.

Probability Perspective: pr= 0.5 (fair coin),Jwhat' ?
L —
10
Answer: P(X = 7|6 = 0.5) =\< ; ) 0.522(1-05"9"7"~0.117

Likelihood Perspective: Given we observed 7 heads, which 6 value makes this outcome most plausible?

LP=05|X=7)=0.117

L(O=0.7]|X="7)=0.267 (higher)

L0 =0.3|X="7)=0.009 (lower)

ALolGETgy L 6
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Logistic Regression 0 3(&10 \7
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Logistic Regression
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Logistic Regression -

1)
A | ). -
dosg = = %?EZES%SE " ‘iﬂ}iﬂe ‘ij‘l
. -4) > P00 = lyl oo
Dﬁv\m’rN-—— @j %;l Von( “PA?_ -5
(PC(%«(-&'A} f'd) A =0 g
—— - é;b 0 P20 'Ola\t)i 20

ﬁ'iDOOQ 1 O 2 P=J“ - J«JO P oo
c7~(i(90+®-;)— :S \—
Xlr ~ [_:}J ~(inph) = ©-7
0-1 o-4 D-6

o<




Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z), x(3), - ,x(m)},
the likelihood is the product of individual probabilities

L@O|D)=P(D|0) =", P(x\"|0)

C— —u [ J
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Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z), x(3), - ,x(m)},
the likelihood is the product of individual probabilities

L@O|D)=P(D|0) =", P(x\"|0)

But, products are numerically unstable and difficult to differentiate
So, we take log on both sides to convert products to sums



Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z), x(3), - ,x(m)},
the likelihood is the product of individual probabilities

L@O|D)=P(D|0) =", P(x\"|0)

log(L(O| D)) = ) log(P(x?) | 6)
i=1
Using properties of log:

log(a®) = b - log(a)
log(ab) = log(a) + log(b))



Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z), x(3), - ,x(m)},
the likelihood is the product of individual probabilities

L@O|D)=P(D|0) =", P(x\"|0)

log(L©O|D)) = D, log(P(?)|6)
i=1

For logistic regression
Input Features: x € R / D

' s:y € {0,1}
Training Data: (x(l),y(l)), (x(z)’y(z)), (Xv),y(j)), ey (x(’"),y(m)) })




Logistic Regression



Logistic Regression

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)



Logistic Regression
Quick Aside: Bernoulli Distribution
Bernoulli Distribution models a single binary outcome

Is P(X = success) = p and
P(X = failure) = g = (1 — p)

Then probability mass function P is

PX=x)=p*-(1-p"*

I~




Logistic Regression

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)

P(Y=y|X=x)=p'(1-p)'~



Logistic Regression

PY=1|X=x;0)=0(6,+ 0, - x)

Each label y; follows a Bernoulli Distribution with parameter

=P(Y = 1]x) p M/j

P(Y=y|X=x)=py(1—p)1_y (-p il o

Whe

Whert = 1)—>p 1-p'=p
”]y/;%ﬁ P’ - p)! =



Logistic Regression

P(Y =1|X = x:0) =M

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)

P(Y=y|X=x)=p'(1-p)'~

Wheny =1 —>£’1(1 - =p
Wheny =0 — p°(1 —p)! = (1 - p)



Logistic Regression

For a single observation (x(i), y(i))

Probability of observing y(i) given you have seen input data x%W and 4

()

j j (@) —

Where|p; = 6(0, + 0, - x)




Logistic Regression

For the entire dataset {(x1), y(1)), (x®®),y@), (x®, ), ... (x™, ym)}
Assuming observations are independent

Likelihood is the product of all individual probabilities

L@O|D) = I PGP |xD;0) = T p?"'(1 — p)' ="

e d




Logistic Regression

For the entire dataset {(x1), y(1)), (x®®),y@), (x®, ), ... (x™, ym)}
Assuming observations are independent
Likelihood is the product of all individual probabilities

()

. . (i) _
L@|D) = 11, PV | x;0) = I p* (1 — p)' ™

We want to maximize likelihood

éMLE = arg maxyP(D | 0)



Logistic Regression

L@|D) =117 p"(1 — p)' ="



Logistic Regression

L@|D) =1 p> (1 — pp)' ="

(@)

log(L(9)) = log(IT™ p*"(1 — p)'=")

Using properties of log:

(t) _
et b - logle log(L(0)) = Z log(p?" (1 — p)'=")

log(ab) = log(a) + log(b))

logL®) = Y. ylog(p) + (1 = yDlog(1 ~ p;)

i=1 T e




Logistic Regression

L@|D) =1 p> (1 — pp)' ="

(@)

log(L(®)) = log(TT p>" (1 — p)' ")

Using properties of log:

(l) _
et b - logle log(L(0)) = Z log(p?" (1 — p)'=")

log(ab) = log(a) + log(b))

log(L(6)) = Z yPlog(p) + (1 — yMlog(1 - p)
i=1

This is called the log-likelihood function for logistic regression



Logistic Regression

log(L(0)) = Y yVlog(py) + (1 — yD)log(1 — p)
i=1

This is called the log-likelihood function for logistic regression
Remember we want to maximize likelihood

But when we deal with “loss” functions and gradient descent, we want to
minimize the loss



Logistic Regression

£6) = — ), yPlog(p) + (1 — yMlog(1 - p))
i=1

Solution: Minimize negative likelihood



Logistic Regression

£0) = = Y, yOloglp) + (1 = yDlog(1 = p)

i=1
Solution: Minimize negative likelihood
Remember that p, is the predicted output where

pi = 6(90"‘61 ’X)



Logistic Regression

1 & . y
£0) = —— Y yVlog(3?} + (1 — yD)log(1 — $)
m i=1

Binary Cross Entropy Loss
\ e




Logistic Regression

IR . y
£0) = —— Y yVlog3?) + (1 — yD)log(1 — $)
m i=1

When y¥) = 1, i.e., actual positive

20) =~ logG?)
When y(i) = 0, iLe., actual negative
£0) = —log(1 =)




Logistic Regression

13 . y
£6) = —— ) yPlog3) + (1 = yD)log(1 - 57)
Mot
When y¥) = 1, i.e., actual positive

NG 50 — ~
£0) = — log(3®) 13 =11Loss=0_
Ifj}(i) =0, Loss = +00

When y(i) = (), i.e., actual negative
L , If)A)(i) = (0, Loss :@
£(0) = — log(1 — )

If 5 =1, Loss =



Logistic Regression
Finding 6

1 & . o . N
£6) = —— D yVlog3") + (1 = yD)log(1 ~ 3)
S
Find partial derivative

To simplify, lets find the derivative for a single sample



Logistic Regression
Finding 6

£(0) = ylog(® + (1 = ylog(1 =9 —0)

y=0() (3
z2=6y+60x O

ot
Want to find —
00

Using Chain Rule
ot _ of 0y 0z

00 3 0z 00
\Qy\\)‘g

O @ @)




Logistic Regression

Finding 6
Summing over all samples
of 1 F =1
_9 — Z xO . ()A,(l) _ y(’))
 Qamed 0 mi ~
\ In matrix form
E(@——- %Q@)\—\MS. 1 .
V,(£0) =—X'(Y-YY
e J(£(O) =—X"(¥ = ¥)

[— D

mx )




Logistic Regression

Summary

Model:
5\7 = 6(90 + 91)(3)
L~

Loss:

13 . »
£0) = —— 2, yPlog(3™) + (1 - y")log(1 —3)
m i=1

Gradient:

1 A
Vo(£(0) = —X"(V - 1)

m



Logistic Regression

Summary

Why not MSE?
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Logistic Regression o~(Ce 191 #0a%)

Summary




Logistic Regression

Summary
&)
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Logistic Regression

Summary




Logistic Regression

Summary




Logistic Regression

Summary

x12+x22=r
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Logistic Regression

2 4 42—
Summary xpt+xy=r

07 (xi +x3) = 6




Logistic Regression

2 4 42—
Summary xpt+xy=r

02(x2 + x2) = 62

:'(‘\:: VO +3) =1 /63

@ \-{ @




Logistic Regression

Summary




Logistic Regression

Summary




Next Class

* More classification algorithms



