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Updates

e Homework 1 Discussion

e Homework 3 Out - Due March 6th



Updates

 1/th Feb - Tuesday - Wanrou * 18th Feb - Wednesday - Zaiba
* 1:30 PM - 3:00 PM | Location: Richards Hall 243 e 1:00 PM - 2:30 PM | Location: EL 311
* Linear algebra e Derivatives
* \ectors * Gradients
e Matrices * Derivatives of some common functions
» Vector and Matrix operations * Chain Rule, Product Rule, Quotient Rule

* Probabilities
 Bayes’ rule and conditional probability
» Distributions

e CDFs and PDFs



Today’s Outline

* | ogistic Regression



Logistic Regression



Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)
function.
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Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)

function.
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Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

o(x) = ——
|l +e—*

* Linear regression predicts unbounded
real valuesasy = 6, + 0, - x

-
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« But we need probabilities in [0, 1]




Logistic Regression

 Wrap the linear regression equation in a Sigmoid function

* | ogistics regression models the probability of the positive class

1
] + ¢—(6+0;-x)

PY=1|X=x)=0(0,+0, - x) =

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 6, + 0, - x = 0



Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 0y + 0, - x = 0

If 6, + 0, - x > 0, classify as “positive class”
Why?
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Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 0y + 0, - x = 0

If 0, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

If 6, + 0, - x < 0, classify as “negative class”
Why?
Because o(k < 0) < 0.5



Logistic Regression

Model:
j\}: 0(90"‘91 ‘X)

L osS:

1 — . A . ¢
£0) =— D, ylog(y?) + (1 = y)log(1 = y)
=1



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.
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Given some dataset D and a model with parameters @




Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key ldea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters @

Probability that we observe training dataset D, given
that the model has parameters @



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key ldea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters @

Find 0 such that this probability is maximized



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key ldea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters @

Under what parameter values would we have been most
likely to observe exactly the data we did observe?



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

A What we want to find:

Probability:

(D]06)

P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with & fixed.



Logistic Regression

How do we train this?

Maximum Likelihood Estimation

A What we want to find:

Probability:
P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with & fixed.

Likelihood:
L(@| D) = P(D|0) - Given fixed observed data D, how likely are different parameter values 6?
This is a function of @ with D fixed.



Logistic Regression
Probability vs Likelihood

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.
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Suppose you flip a coin 10 times and get 7 heads.

Probability Perspective: If @ = 0.5 (fair coin), what's [P(7 heads in 10 flips |0)?

10
Answer: P(X = 7|6 = 0.5) = ( i ) 057 (1 =057 ~0.117
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Logistic Regression
Probability vs Likelihood

Coin Flips

Suppose you flip a coin 10 times and get 7 heads.

Probability Perspective: If @ = 0.5 (fair coin), what's [P(7 heads in 10 flips |0)?

10
Answer: P(X = 7|6 = 0.5) = ( i ) 057 (1 =057 ~0.117

Likelihood Perspective: Given we observed 7 heads, which @ value makes this outcome most plausible?
LO=05|X=7)=0.117
L@ =0.7|X=7)=0.267 (higher)

L@ =0.3|X=7)=0.009 (lower)
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Likelihood Function

For independent observations (rows of data) D = {x(l),x(z),x(

Logistic Regression

the likelihood is the product of individual probabillities

L(O|D) = I

(D|6) =117, |

(x”6)

3)

’ [ ] [ ]

.,x(m)},



Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x'V, x® x9  xm},
the likelihood is the product of individual probabilities

LO|D)=PD|0) =11", P(x"|0)

But, products are numerically unstable and difficult to differentiate
So, we take [og on both sides to convert products to sums



Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x'V, x® x9  xm},
the likelihood is the product of individual probabilities

LO|D)=PD|0) =11", P(x"|0)

log(L(0] D)) = ) log(P(x")] 6)
=1

Using properties of log:

log(a®) = b - log(a)
log(ab) = log(a) + log(b))



Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x'V, x® x9  xm},
the likelihood is the product of individual probabilities

LO|D)=PD|0) =11", P(x"|0)

log(L(0] D)) = ) log(P(x")] 6)
=1

For logistic regression
Input Features: x € R"
Binary Labels: y € {0,1}
Training Data: {(x™", y(D), (x@, y@)), (x®, y3) ... (x, y(m))




Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)



Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)




Logistic Regression

Quick Aside: Bernoulli Distribution

Bernoulli Distribution models a single binary outcome

Is P(X = success) = p and
P(X = failure) = g = (1 — p)

Then probability mass function P is

PX=x)=p*-(1-p)'~*



Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

P(Y=y|X=x)=p'(1-p)~



Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

PY=y|X=x)=p'(1-p)~
Wheny=1-pl(1-=p)Y=p
Wheny =0 — p°(1 = p)l = (1 - p)



Logistic Regression

P(Y=1|X=x,0) =060+ 0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

PY=y|X=x)=p'(1-p)~
Wheny=1-pl(1-p)Y =p
Wheny =0 — p%1 —p)! = (1 - p)



Logistic Regression

For a single observation (x”, y)
Probability of observing y*) given you have seen input data x*) and @
POO1x;0) = (1 = p)' "

Where p; = o(0, + 0, - x)




Logistic Regression

For the entire dataset {(x1), y()), (x?), y2) (x©) y©O)) . (x™ )]
Assuming observations are independent

Likelihood is the product of all individual probabilities

m l l m 1) —y®)
L D) = L, Py | x®;0) = T p*"(1 = pp'=



Logistic Regression

For the entire dataset {(x1), y()), (x?), y2) (x©) y©O)) . (x™ )]
Assuming observations are independent

Likelihood is the product of all individual probabilities

m l l m () —y
L@|D) = 112 Py |xV;0) =TI p> (1 — p)' ™

We want to maximize likelihood

A\



Logistic Regression

L(O|D) = Hm_lpiy(i)(l _pi)l—y(i)

=



Logistic Regression

L@O|D) =11 p>"(1 — py' ="

log(L(0)) = log(IT" ,p*" (1 — p)' ")

Using properties of log:

N () )
jog(a") = b - log(a) log(L(0)) = " log(p)" (1 — p)'™")

log(ab) = log(a) + log(b))

log(L(0)) = ), yVlog(p,) + (1 — yD)log(1 - p))
=1



Logistic Regression

L(O|D) = Hm_lpiy(i)(l _pi)l—y(i)

=

log(L(0)) = log(T p*"(1 — p)' ="

Using properties of log:

. - (1) 1—y®
et = b~ lonta) log(L()) = ) log(p)" (1 — p)'™")
=1

log(ab) = log(a) + log(b))

log(L(0)) = ) yVlog(p) + (1 — yP)log(1 - p)
=1

This is called the log-likelihood function for logistic regression



Logistic Regression

log(L(©)) = ), yVlog(p,) + (1 — yD)log(1 - p))
=1

This is called the log-likelihood function for logistic regression

Remember we want to maximize likelihood

But when we deal with “loss” functions and gradient descent, we want to
Mminimize the loss



Logistic Regression

£0) = - ) yPlog(p) + (1 — yDlog(1 — p))
=1

Solution: Minimize negative likelihood



Logistic Regression

£0) = - ) yPlog(p) + (1 — yDlog(1 — p))
=1

Solution: Minimize negative likelihood

Remember that p; is the predicted output where

p; =o0(0,+ 0, - x)



Logistic Regression
£0) = —— D y0log(3?) + (1 — yD)log(1 — 50
i =1

Binary Cross Entropy Loss



Logistic Regression

] — . » . .
£0) = —— ) yPlog(3) + (1 = ylog(1 - 3)
Mmoo
When y(i) = 1, i.e., actual positive
£(0) = — log(3")

When y(i) = (), i.e., actual negative

£(0) = —log(1 - 3)



Logistic Regression

& . | »
£0) = —— ), yPlog3?) + (1 = yD)log(1 - 3)
e =1

When y(i) = 1, i.e., actual positive

A\

i (i) _ -
£(0) = — lOg(y(l)) f 9 =1, Loss =0
if $) = 0, Loss = 4+ 0

When y(i) = (, i.e., actual negative
1f$Y =0, Loss =0
£(0) = — log(1 — )

A\

If $) = 1, Loss = + o0



Logistic Regression
Finding @

1 & . ] »
£0) = —— ) yPlog(3) + (1 = ylog(1 - 3)
i =1

Find partial derivative

To simplify, lets find the derivative for a single sample



Logistic Regression
Finding @

£(0) = ylog(y) + (1 —y)log(l — )
y = o(z2)
7=0,+0x

ot
Want to find —

00
Using Chain Rule




Logistic Regression
Finding @

Summing over all samples
o 1 « . .
_ (D . (30 ()
— = — Y x50 -y
00 m 1221 Y Y
In matrix form

_ Lo
Vol£(0) = —X'(Y = )



Logistic Regression

Summary

Model:
5\7 — 0(9() + HIX)

[ Loss:
£0) = —— ) yVlog3?) + (1 — yD)log(1 — 5¥)
& =1

Gradient;

1 A
Vo(£(0) = —X"(Y - Y)

m



Logistic Regression

Summary

Why not MSE?
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Summary




Logistic Regression
Summary y =0y,+ 0,x, + 6,x,



Logistic Regression

Summary

o o
o

S
o o
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Logistic Regression

2 1 42 —
Summary Xy +x; =r

07 (xi +x7) = O
\ 07 +x3) =1/63
1\/ (x{ + x3) = 6,




Next Class

* More classification algorithms



