Northeastern University
Khoury College of
Computer Sciences

k—Nearest Neighbors & Logistic Regression

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Wednesday | February 4, 2026

Today’s Outline

» k-Nearest Neighbors

» Logistic Regression

k-Nearest Neighbors

 KNN is a non-parametric, instance-based (lazy) learning algorithm.

It makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

e Key ldea:
 Similar instances have similar labels.

« To classify a new point, find the K training instances closest to it and let
them vote

k-Nearest Neighbors

High
School SSAT Get Into A
GPA COreS College?
X1 %% y
xD] 36 1500 = 1

x| 27 | 950 |@=0 X;

x| 37 1300 = 1

x® | 392 1550 = 1

x| 32 1000 |4 =0

xnew) | 39 1250 ?

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3

Find k
nearest

neighbors . |

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3 Prediction for new student
4 Find k = majority(€p €)
nearest ‘

k-Nearest Neighbors

A
Algorithm:
x(new) * * Training Phase:
* Store all training instances (X,,4i,> Yirain)

‘ ® No computation required. We are not learning any

‘ ‘ * * parameters
‘ ‘ * * Prediction/Testing Phase:

& 1. Compuite distance from new point x**) to every other
‘ ‘ point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
p 4. For regression, return mean or median of the values of

X, the k—neighbors

k-Nearest Neighbors

High

SAT
School Get Into
Gpa SC0reS (ojlege? Algorithm:
X1 X y . _
— e R —— Training Phgs.e. |
FOREEY: 1500 1 Store all training instances (X rgins Virain) |
: No computation required. We are not learning any

T— parameters

xX@ | |27 950 || @ =0
- | | Prediction/Testing Phase:

x® | |37 1300 _ 1 1. Compute distance from new point x*") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

x® | |32 1550 = 1

x| 3.2 1000 || €@ =0

f
xnew) |13 2 1250 ?

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) (1)) — (new) _ (D2

A, x0) = |) 6 = x0)
j=0

_

Manhattan Distance (L; Norm):

n
(new) ()Y — (new) _ ,.(i)
A, x0) = D 150 =)

Cosine Similarity:

new) . (D)

[l]| |

sim(x") x(0y =

(distance = 1 — sim(x""), xV))

The choice of the distance metric
fundamentally affects which points are being
considered “neighbors”

Algorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors i IR
Choosing k

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff

Small k (e.g. k = 1) Large k (e.gl k = m))

L

* High variance, low bias

» Decision boundary is highly
irregular

» Very sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

k-Nearest Neighbors J e tee
Choosing k

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff

Small k (e.g. k = 1) Large k (e.g. k = m)

* High variance, low bias * High bias, low variance

« Decision boundary is highly [Decision boundary is ver
ifregular smooth

. ry sensitive to noise and * Robust to noise, but may
outliers miss local patterns

* Prone to overfitting, but At the extreme of k = m,
can capture fine grained always predicts majority

structure class

k-Nearest Neighbors J e tee
Choosing k

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff

Small k (e.g. k = 1) Practical Tips Large & (e.g. k = m)
* High variance, low bias « Start withk = \/m * High bias, low variance
» Decision boundary is highly STlEs erose el cEiter e » Decision boundary is very
irregular : smooth
select optimal k
* Very sensitive to noise and ‘- v * Robust to noise, but may
outliers « If kis odd, it avoids ties in miss local patterns

binary classification

* Prone to overfitting, but
can capture fine grained .
structure

« At the extreme of k = m,
k should be smaller than always predicts majority
the smallest class size class

k-Nearest Neighbors i RS
Choosing k *% o

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff
k=1

3
f ..oo :!‘0 .. o’

k-Nearest Neighbors
Choosing k

X1

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff

** *
k-Nearest Neighbors | RSy
Choosing k *% o

X

« k is the primary hyper-parameter controlling the bias-variance ga,f%)ﬁ
k=1 k=3 k=31

* . : .o.. .‘;..‘ o. R X_

———

k-Nearest Neighbors > —+ | 5o

Choosing k - Cross-validation i
D 7w |
¥ Lese

 Why Not Just Use Training Error?

* A model that memorizes the training data achieves zero training error but
fails on new data.

e Training error is a biased (optimistic) estimate of true generalization
performance.

* We need to estimate how well our model will perform on unseen data.

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split
« Split data into training set (say 80%) and test set (20%).

e Train on training set, evaluate on test set.

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split
« Split data into training set (say 80%) and test set (20%).
* Train on training set, evaluate on test set.
* Issues:
* Wastes data - 20% of precious labeled data is never used for training

* High variance - Performance estimate depends heavily on which points land in the
test set

* No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split

 Data Leakage Issue

 If we repeatedly evaluate on the test set while tuning hyperparameters,
information about the test set leaks into our model selection process.

* The test error becomes optimistically biased - no longer a valid estimate
of generalization

k-Nearest Neighbors

Choosing k - Cross-validation

e Solution!
e Use cross-validation
« Use all data for both training and validation
* Get reliable performance estimates with uncertainty quantification

« Select hyperparameters without contaminating the final test set

Different k from k—nearest neighbors

k=Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

xl XZ .X3 X4 Algorlthm
(1) Let’s say we want to run
x® Trai test on 2
&y rg%:,n on > reston 2. Split data into k equally-sized folds (or partitions)
®) -
@) i y 3.foreachfoldi=1,2, ..., k:
X

1
— 2, {0, FAD)

lD1

x® L—

+©

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
(M
X

® 3c. Train the model on the training set
X

o)

3d. Evaluate on the validation set, record performance metric

x(10) 4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Algorithm
Let’s say we want to run
I;%:’n on , teston 2 2. Split data into k equally-sized folds (or partitions)

/1 3.foreachfoldi=1, 2, ..., k:
CVy=— D' £0ip, J D)
2 D, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

xl x2 .X3 X4 Algorlthm

) Let’s say we want to run

(@)
X .

I;%:’n on , teston 2 2. Split data into k equally-sized folds (or partitions)

PaC)

(4) 1 3.foreachfoldi=1, 2, ..., k:
! CVy=— D" £0ip, f D)
x® 3 D, 3a. Use fold i as the validation set

(6)
* 3b. Use the remaining k — i folds as the training set
D
® 3c. Train the model on the training set
X
+© 3d. Evaluate on the validation set, record performance metric
x10) 4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row

1
CV4 = F Z Lﬂ(yDy fé(D4))

Lo)

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

Algorithm

(1 Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
x® Trai test on 2

rain on , teston 2. Split data into k equally-sized folds (or partitions)

3) row
X

(4) 1 3.foreachfoldi=1, 2, ..., k:
* CVs = D- Z £(py fo(Ds))
x® > Dj 3a. Use fold i as the validation set
x©) .

3b. Use the remaining k — i folds as the training set

D

® 3c. Train the model on the training set
X
x® 3d. Evaluate on the validation set, record performance metric
x10) 4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row

Mean CV Score:

Algorithm

1. Shuffle the dataset randomly
 ——

2. Split data into k equally-sized folds (or partitions)

3.foreachfoldi=1, 2, ..., k:

—

3a. Use fold i as the validation set

—_—

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

—

k-Fold Cross Validation

Algorithm

D

JNG)

NE)

@

NE)

+©

NG

+®

o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row
Mean CV Score:
B L
V= Y v,
i=1

(0ol

k-value Training Size Properties
High Bias
k=2 50% Low Variance
— -W
@ 80% Good Balance
Commonly Used
k=10 90% Low Bias

Commonly Used

.l@)

m-1 samples

Low Bias
Highest Variance
low

A
\® Paaa—

k-Fold Cross Validation
Algorithm

) Let’s say we want to run

* k = 5-fold cross validation - . .
k-value Training Size Properties
x@ ,
Train on , teston 2
x® row High Bias
= 0 i

@ Mean CV Score: k=2 50% Low Variance
X Fast

& k
* 5 1 Good Balance

= —_ . — 0,
x(© v k Z} v k=5 80% Commonly Used
1=

(M

X :
Low Bias
— 0,
+® k-fold CV requires k=10 90% Commonly Used
training £ models.

x® Low Bias

(10) If training is expensive, k=m-1 m-1 samples Highest Variance
X smaller k is preferred. Slow

TT—

k-Fold Cross Validation

Variants

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

X4

006 — Wege § |
~

N\
Go. ° 0o

Stratified Cross-Validation pa =X N
- —]ib/b ‘e

* The Problem with Random Splits é

\o
For imbalanced classification, random splits may create folds with different class
distributions.

One fold might have 40% positives while another has 20%, leading to unreliable
estimates.

Stratified sampling ensures each fold has approximately the same class distribution as
the full dataset.

Algorithm:

* Separate samples by class

« For each class, distribute samples evenly across k—folds

—— —

e Combine to form final folds
(_/

Back to k-Nearest Neighbors

Practical Issues o) o o ~4%o
—OKT ™ o - lbeo
I_ ,

P

« Feature Scaling -

* Curse of Dimensionality e\cs?mm_

« Space and computational complexity

Back to k-Nearest Neighbors

Practical Issues - Feature Scaling

 KNN is highly sensitive to feature scales because distance metrics are
dominated by features with larger ranges.

« Example:
 |f feature A ranges from 0-1 and feature B ranges from 0-1000

- —
* Euclidean distance is almost entirely determined by feature B.

e Solution: Always normalize or standardize features before applying kNN.

G
Back to k-Nearest Neighbors =t

Practical Issues - Curse of Dimensionality

 KNN suffers severely in high-dimensional spaces:

e Distance concentration: As dimensionality increases, distances between
points become increasingly similar.

-6 he ratio of nearest to farthest neighbor approaches 1, making the

concept of ° nearest” mejnlngless
EYfC Q,QD U"b ~>

e o

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

* KNN suffers severely in high-dimensional spaces:

* Distance concentration: As dimensionality increases, distances between points become increasingly
similar.

* The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.

* Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance
calculations.

 Mitigation strategies: C\P/Dr W
« Dimensionality reduction (PCA, feature selection) '

* Feature weighting based on relevance ?
— =

« Consider other algorithms for d > 20

D —d

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

« Training: O(1) - just store the data

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

« Training: O(1) - just store the data

* Prediction (naive):

. er query, where m is training set size and n is dimensionality.

* Must compute distance to all m points.

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

« Training: O(1) - just store the data
* Prediction (naive):
« O(nm) per query, where m is training set size and » is dimensionality.
* Must compute distance to all m points.
» Prediction (optimized) - Data structures can accelerate nearest neighbor search:
+ KD-trees: O(IM average case for low dimensions, but degrades to O(nm) in high dimensions

« Ball trees: Better for high dimensions than KD-trees

« Locality-sensitive hashing (LSH): Approximate nearest neighbors in O(n) with preprocessing

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

(6 = @\J\" Q\\'}L

Training: O(1) - just store the data

Prediction (naive):
« O(nm) per query, where m is training set size and » is dimensionality.

* Must compute distance to all m points.

Prediction (optimized) - Data structures can accelerate nearest neighbor search:
« KD-trees: O(nlogm) average case for low dimensions, but degrades to O(nm) in high dimensions

« Ball trees: Better for high dimensions than KD-trees

« Locality-sensitive hashing (LSH): Approximate nearest neighbors in O(n) with preprocessing

Space complexity: Q(nm) to store the training data.

Back to k-Nearest Neighbors

Q»z D

J

Practical Issues % C9o9t +0, O 7 e ﬂiﬂ

Pros

» Simple to understand and implement
* No training phase (fast to “train”)
* Naturally handles multi-class classification

* Non-parametric: makes no distributional
assumptions

» Can capture arbitrarily complex decision boundaries

a——

» Easily adapts to new training data (just add it)

wr“’

cehA © Cons

Slow prediction for large datasets
S —

High memory requirement (stores all training data)

Sensitive to irrelevant features and feature scaling

Struggles in high dimensions (curse of
dimensionality)—

No interpretable model or ;eature importance

Requires meaningful distance metric

cm—

Back to k-Nearest Neighbors
When to use k-NN?

Use Don’t Use

Large datasets with real-time predict@
requirements

Very high-dimensional data

Small to medium datasets

Low to moderate dimensionality (n < 20)

Non-linear decision boundaries expected

. . . . Features have varying relevance
» Data arrives incrementally (online learning)

_ . Interpretability is required
* Quick baseline model needed ———

Today’s Outline

» k-Nearest Neighbors

* Logistic Regression

Logistic Regression

D Mol \32 Ob + O\ ! pved icfed .
v /1

@) Aos : Meon Sqeared Enver - 1@3 j

@ Oforenrte hoss £ k0 = C\"SeA SY)"' A
117 Cadiont dodents

O Mo,

S

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

1 <
Sigmes o= + e

Sigmoid Output

C,\(®o’“®\m) - 8

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

1 max 1.0 1

o(x) =
l+e~*

o
o
L

Sigmoid Output

0.2 4

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

1 max 1.0 1

o(x) =
l+e~*

o
o
L

Sigmoid Output

0.2 4

min ..

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

1
l+e~*

(mid = O.gf

o(x) =

d Outp

m

9

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

It models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

i
l+e~*

e Linear regression predicts unbounded

real values as y {90 +0,-x
(s
« But we need probabilities in [0, 1]

o(x) =

o
o
L

Sigmoid Output

0.2 4

Logistic Regression (O, +0,>< o

* Wrap the linear regression equation in a Sigmoid function

» Logistics regression models the probability of the positive class

: 1
[FD(YZ 1 |X = X) =. 0'(90 + 91 . X) — 1+ e—(90+(91’x)

The decision boundary is the hyperplane where P(Y = 1| X = x) = 0.5, which
occurs when 6, + 6, - x = 0 -

—

() = Sov.
wgo;)ob = @ (<o) —@

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 6y + 60, - x =0

If 6, + 0, - x > 0, classify as “positive class”
Why?

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when @+ 0, - x =0

If EO +0,-x 2> Ol classify as “positive class”
Why?

Because o(k > 0) > 0.5

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when @+ 0, - x =0

If 6, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

)0, + 0, - x < O‘ classify as “negative class”
Why?

Logistic Regress ols
poar O o o T
~C2) <oy —Ve

The decision boundary is the hyperplane where P(Y = 1| X = x) = 0.5, which

(Q,+ O 7t Cre=) occurs when 0y + 0, - x =0

If 6, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

If 0, + 0, - x < 0, classify as “negative class”
Why?
> Because o(k < 0) < 0.5

Logistic Regression

Model:
= 0(90 + 91 .X)

I_Ubs

£(0) =— Zy(”log(y(”)ﬂl— yMlog(1 — y) /
L ")

Logistic Regression l @(

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.

) (M (3) ¢2)
Logistic Regression v+ %C Ly P §
How do we train this? (0 . [@o J ,,M oiayvi

(v} S
Maximum Likelihood Estimation A [N

Maximum Likelihood Estimation (MLE) is a principled method for estima@the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.

@ (9'\0’5—— Given some dataset D and a model with parameters 6

®A~l
\ [Opgs | — Oy = arg maxyP(D | (9)7
[@Bl —

Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters &

éMLE = arg max,P(D |0)

Probability that we observe training dataset D, given
——
that the model has parameters 60

Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters &

éMLE = arg max,P(D | 0)

Find 6 such that this probability is maximized

Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters &

éMLE = arg max,P(D |0)

Under what parameter values would we have been most
likely to observe exactly the data we did observe?

Logistic Regression
How do we train this?

—

Maximum\ Likelihood ‘Estimation 2 A

What we want to find:

A O
Ovy = arg max&P(D | (9), (9@
C

Probability:
P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with @ fixed.

Logistic Regression Iol

How do we train this?

Maximum Likelihood Estimation

_ What we want to find:
Ovip = arg maxe[lﬂ’(e‘ |1 0)

Probability: —
P(D|0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with @ fixed.

—_— Likelihood: —
L(0| D) = P(D| 0)[- Given fixed observed data D, how likely are different parameter values 6?
= = " This is a TuncwoOmoT® with D fixed.

- - i < ¢ Cm) Cm)
Logistic Regression D %%y D .. &7

Likelihood Function

For independent observations (rows of data) D = {x(l) x(z) x(3) ..,x(m)},
the likelihood is the product of individual probabllltles -~

L(0|D) = IP(D | 9) = n;” {PED10)

P(ADp) P(xDig) - P (™ o)

Logistic Regression

Likelihood Function

jos(a'b) = uQjSc\ 3= M
?(o010) N

For independent observations (rows of data) D = {x(l) x(z) x(3) x(m)}
the likelihood is the product of individual probabilities

— s (we1py=poio <fiz] Jrefeeofd <=

But, products are numerically unstable and difficult to differentiate
So, we take log on both sides to convert products to sums

Jn oD = & JoyPe19))
L

Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z), x(3), - ,x(m)},
the likelihood is the product of individual probabilities

L@|D) = P(D|6) =T, |P(x""|6)

(loglL(0| D)) =<P<x<”>> 16)

Using properties of log:

log(a®) = b - log(a
log(ab) = log(a) + log(b))

Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z), x(3), - ,x(m)},
the likelihood is the product of individual probabilities

L@O|D)=P(D|0) =", P(x\"|0)

m
log(L(@ D)) =), log(P(x")]6)
i=1
For logistic regression
Input Features: x € R
Binary Labels: y € {0,1}
Training Data: {(x", yV), (x'?, y®), (@, y), ..., (x™, y™)}

Logistic Regression

JlojCLC93 %_ Jlj (ﬂ >

Logistic Regression

Logistic Regression

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)

Logistic Regression
Quick Aside: Bernoulli Distribution
Bernoulli Distribution models a single binary outcome

Is P(X = success) = p and
P(X = failure) = g = (1 — p)

Then probability mass function P is

PX=x)=p*-(1-p)'™

Logistic Regression

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)

P(Y=y|X=x)=p'(1-p)'~

Logistic Regression

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)

PY=y|X=x)=p'1-p)'~
Wheny =1- p'(1-p)° =p
Wheny =0 — p’(1 —p)! = (1 —p)

Logistic Regression

P(Y=1|X=x;0) = o6+ 6, - x)

Each label y; follows a Bernoulli Distribution with parameter
pi=PF=1|x)

PY=y|X=x)=p'1-p)'~
Wheny =1 - p!(1-p)’=p
Wheny =0 — p’(1 —p)! = (1 —p)

Logistic Regression

For a single observation (x, y®)
Probability of observing y(i) given you have seen input data x%W and 4
(i)

i) | (i @ —
Py®[xY;0) =p” (1 —pp)'~

Where p; = 6(0, + 0, - x)

Logistic Regression

For the entire dataset {(x1), y(1)), (x®®),y@), (x®,), ... (x™, ym)}
Assuming observations are independent
Likelihood is the product of all individual probabilities

()

. . m @) _
L(O| D) =11, PV | x; 0) = I p> (1 — pp' ™

Logistic Regression

For the entire dataset {(x1), y(1)), (x®®),y@), (x®,), ... (x™, ym)}
Assuming observations are independent
Likelihood is the product of all individual probabilities

()

. . (i) _
L@|D) = 11, PV | x;0) = I p* (1 — p)' ™

We want to maximize likelihood

éMLE = arg maxyP(D | 0)

Logistic Regression

L@|D) =117 p"(1 — p)' ="

Logistic Regression

L@|D) =1 p> (1 — pp)' ="

(@)

log(L(®)) = log(TT p>" (1 — p)' ")

Using properties of log:

(l) _
et b - logle log(L(0)) = Z log(p?" (1 — p)'=")

log(ab) = log(a) + log(b))

log(L(6)) = Z yPlog(p) + (1 — yMlog(1 - p)
i=1

Logistic Regression

L@|D) =1 p> (1 — pp)' ="

(@)

log(L(®)) = log(TT p>" (1 — p)' ")

Using properties of log:

(l) _
et b - logle log(L(0)) = Z log(p?" (1 — p)'=")

log(ab) = log(a) + log(b))

log(L(6)) = Z yPlog(p) + (1 — yMlog(1 - p)
i=1

This is called the log-likelihood function for logistic regression

Logistic Regression

log(L(0)) = Y yVlog(py) + (1 — yD)log(1 — p)
i=1

This is called the log-likelihood function for logistic regression
Remember we want to maximize likelihood

But when we deal with “loss” functions and gradient descent, we want to
minimize the loss

Logistic Regression

£6) = —), yPlog(p) + (1 — yMlog(1 - p))
i=1

Solution: Minimize negative likelihood

Logistic Regression

£6) = —), yPlog(p) + (1 — yMlog(1 - p))
i=1

Solution: Minimize negative likelihood
Remember that p, is the predicted output where

pi = 6(90"‘91 ’X)

Logistic Regression

13 . »
£0) = —— 2, yPlog(3) + (1 = yM)log(1 —3)
mn i=1

Binary Cross Entropy Loss

Logistic Regression

13 . »
£0) = —— 2, yPlog(3) + (1 = yM)log(1 —3)
mn i=1

When y¥) = 1, i.e., actual positive

£(0) = — log(3")

When y(i) = (), i.e., actual negative

£0) = —log(1 =)

Logistic Regression

13 . »
£0) = —— 2, yPlog(3) + (1 = yM)log(1 —3)
mn i=1

When y¥) = 1, i.e., actual positive
Ne S0 — _
£(0) = — lOg(y(l)) If y I,Loss=0
If ¥ = 0, Loss = + 0

When y(i) = (), i.e., actual negative

(D) Iff/(i)zO, Loss =0
£(0) = —log(1-y"¥)
If ¥ = 1, Loss = + 0

Logistic Regression
Finding 6

1 & . o . N
£6) = —— D yVlog3") + (1 = yD)log(1 ~ 3)
S
Find partial derivative

To simplify, lets find the derivative for a single sample

Logistic Regression
Finding 6

2(0) = ylog(y) + (1 —y)log(1l —)
y = o(2)
2=0,+0x

ot
Want to find —
00

Using Chain Rule
ot _ of 0y 0z
00 0y oz 00

Logistic Regression
Finding 6

Logistic Regression
Finding 6

Summing over all samples

of 13 . | |
_ () . (o0 _ @)

—— — — x [] —

v Rl Z} oY =y"Y)

In matrix form

1 A
Vo(£(0) = —X"(¥ - 1)

m

Logistic Regression

Summary

Model:
5\7 = 6(90 -+ 91X)

| Loss:
£0) = —— 2, yPlog(3) + (1 = yM)log(1 —3)
m i=1
Gradient:
1 A
Vo(£(0) = —X"(Y - 1)

m

Logistic Regression

Summary

Logistic Regression
Summary y =0y+ 0,x; + 0,x,

Logistic Regression

Summary

Logistic Regression

Summary

Logistic Regression

2 4 42—
Summary xpt+xy=r

Logistic Regression

2 4 42—
Summary xpt+xy=r

07 (xi +x3) = 6

Logistic Regression

2 4 42—
Summary xpt+xy=r

02(x2 + x2) = 62

:'(‘\:: VO +3) =1 /63

@ \-{ @

Logistic Regression

Summary

Logistic Regression

Summary

Next Class

* Homework Discussion

* More classification algorithms

