
Wednesday | February 4, 2026

Nearest Neighbors & Logistic Regression k−
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Today’s Outline

• k-Nearest Neighbors

• Logistic Regression

k-Nearest Neighbors

• KNN is a non-parametric, instance-based (lazy) learning algorithm.

• It makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

• Key Idea:

• Similar instances have similar labels.

• To classify a new point, find the K training instances closest to it and let
them vote

k-Nearest Neighbors

x1

x2

3.6 1500 = 1

2.7 950 = 0

3.7 1300 = 1

3.2 1550 = 1

3.2 1000 = 0

3.2 1250 ?

x1 x2 y

High
School

GPA
SAT  

Scores Get Into
College?

x(1)

x(2)

x(3)

x(4)

x(5)

x(new)

k-Nearest Neighbors

x1

x2

Does this
student get
in or not?  

k-Nearest Neighbors

x1

x2

Let  
Find

nearest
neighbors

k = 3
k

k-Nearest Neighbors

x1

x2

Let  
Find

nearest
neighbors

k = 3
k

k-Nearest Neighbors

x1

x2

Let  
Find

nearest
neighbors

k = 3
k

Prediction for new student  
= majority()  

 
=

k-Nearest Neighbors

x1

x2

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

x(new)

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

3.6 1500 = 1

2.7 950 = 0

3.7 1300 = 1

3.2 1550 = 1

3.2 1000 = 0

3.2 1250 ?

x1 x2 y

High
School

GPA
SAT  

Scores Get Into
College?

x(1)

x(2)

x(3)

x(4)

x(5)

x(new)

It

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

The choice of the distance metric
fundamentally affects which points are being

considered “neighbors”Euclidean Distance (Norm):  
 

Manhattan Distance (Norm): 
 

Cosine Similarity:

  
 
()

L2

d(x(new), x(i)) =
n

∑
j=0

(x(new)
j − x(i)

j)2

L1

d(x(new), x(i)) =
n

∑
j=0

|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

T

• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

I

• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

• High bias, low variance

• Decision boundary is very
smooth

• Robust to noise, but may
miss local patterns

• At the extreme of ,
always predicts majority
class

k = m

0

• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

• High bias, low variance

• Decision boundary is very
smooth

• Robust to noise, but may
miss local patterns

• At the extreme of ,
always predicts majority
class

k = m

Practical Tips

• Start with

• Use cross-validation to
select optimal

• If is odd, it avoids ties in
binary classification

• should be smaller than
the smallest class size

k = m

k

k

k

k-Nearest Neighbors
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
• is the primary hyper-parameter controlling the bias-variance tradeoff k

do it

k-Nearest Neighbors
Choosing k - Cross-validation

• Why Not Just Use Training Error?

• A model that memorizes the training data achieves zero training error but
fails on new data.

• Training error is a biased (optimistic) estimate of true generalization
performance.

• We need to estimate how well our model will perform on unseen data.

to

k-Nearest Neighbors
Choosing k - Cross-validation

• Naive Solution - Train/Test Split

• Split data into training set (say 80%) and test set (20%).

• Train on training set, evaluate on test set.

• Issues:

• Wastes data - 20% of precious labeled data is never used for training

• High variance - Performance estimate depends heavily on which points land in the
test set

• No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors
Choosing k - Cross-validation

• Naive Solution - Train/Test Split

• Split data into training set (say 80%) and test set (20%).

• Train on training set, evaluate on test set.

• Issues:

• Wastes data - 20% of precious labeled data is never used for training

• High variance - Performance estimate depends heavily on which points land in the
test set

• No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors
Choosing k - Cross-validation

• Naive Solution - Train/Test Split

• Data Leakage Issue

• If we repeatedly evaluate on the test set while tuning hyperparameters,
information about the test set leaks into our model selection process.

• The test error becomes optimistically biased - no longer a valid estimate
of generalization

k-Nearest Neighbors
Choosing k - Cross-validation

• Solution!

• Use cross-validation

• Use all data for both training and validation

• Get reliable performance estimates with uncertainty quantification

• Select hyperparameters without contaminating the final test set

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4

Different from nearest neighborsk k−

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV1 = 1
D1 ∑

D1

ℓ(yD1
, fθ(D1))

Validation Set D1

Train

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV2 = 1
D2 ∑

D2

ℓ(yD2
, fθ(D2))

Validation Set D2

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV3 = 1
D3 ∑

D3

ℓ(yD3
, fθ(D3))

Validation Set D3

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV4 = 1
D4 ∑

D4

ℓ(yD4
, fθ(D4))

Validation Set D4

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV5 = 1
D5 ∑

D5

ℓ(yD5
, fθ(D5))

Validation Set D5

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

Mean CV Score:

C̄V = 1
k

k

∑
i=1

CVi E

k-Fold Cross Validation
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

Mean CV Score:

C̄V = 1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

0
OIoc

a

k-Fold Cross Validation
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

Mean CV Score:

C̄V = 1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

-fold CV requires  
training models.

If training is expensive,
smaller is preferred.

k
k

k

k-Fold Cross Validation
Variants

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4 Stratified Cross-Validation

• The Problem with Random Splits

• For imbalanced classification, random splits may create folds with different class
distributions.

• One fold might have 40% positives while another has 20%, leading to unreliable
estimates.

• Stratified sampling ensures each fold has approximately the same class distribution as
the full dataset.

• Algorithm:

• Separate samples by class

• For each class, distribute samples evenly across folds

• Combine to form final folds

k−

1000 images

to

10

• Feature Scaling

• Curse of Dimensionality

• Space and computational complexity

Back to k-Nearest Neighbors
Practical Issues

EGPA 00 430
IT 016601

distance É

• KNN is highly sensitive to feature scales because distance metrics are
dominated by features with larger ranges.

• Example:

• If feature A ranges from 0-1 and feature B ranges from 0-1000

• Euclidean distance is almost entirely determined by feature B.

• Solution: Always normalize or standardize features before applying kNN.

Back to k-Nearest Neighbors
Practical Issues - Feature Scaling

• KNN suffers severely in high-dimensional spaces:

• Distance concentration: As dimensionality increases, distances between
points become increasingly similar.

• The ratio of nearest to farthest neighbor approaches 1, making the
concept of “nearest” meaningless.

Back to k-Nearest Neighbors
Practical Issues - Curse of Dimensionality

r = ϵ

r = 1

APA SAT

I.EE
I

• KNN suffers severely in high-dimensional spaces:

• Distance concentration: As dimensionality increases, distances between points become increasingly
similar.

• The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.

• Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance
calculations.

• Mitigation strategies:

• Dimensionality reduction (PCA, feature selection)

• Feature weighting based on relevance

• Consider other algorithms for d > 20

Back to k-Nearest Neighbors
Practical Issues - Curse of Dimensionality

9PAs

• Training: - just store the data

• Prediction (naive):

• per query, where is training set size and is dimensionality.

• Must compute distance to all points.

• Prediction (optimized) - Data structures can accelerate nearest neighbor search:

• KD-trees: average case for low dimensions, but degrades to in high dimensions

• Ball trees: Better for high dimensions than KD-trees

• Locality-sensitive hashing (LSH): Approximate nearest neighbors in with preprocessing

• Space complexity: to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors
Practical Issues - Computational Complexity

• Training: - just store the data

• Prediction (naive):

• per query, where is training set size and is dimensionality.

• Must compute distance to all points.

• Prediction (optimized) - Data structures can accelerate nearest neighbor search:

• KD-trees: average case for low dimensions, but degrades to in high dimensions

• Ball trees: Better for high dimensions than KD-trees

• Locality-sensitive hashing (LSH): Approximate nearest neighbors in with preprocessing

• Space complexity: to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors
Practical Issues - Computational Complexity

• Training: - just store the data

• Prediction (naive):

• per query, where is training set size and is dimensionality.

• Must compute distance to all points.

• Prediction (optimized) - Data structures can accelerate nearest neighbor search:

• KD-trees: average case for low dimensions, but degrades to in high dimensions

• Ball trees: Better for high dimensions than KD-trees

• Locality-sensitive hashing (LSH): Approximate nearest neighbors in with preprocessing

• Space complexity: to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors
Practical Issues - Computational Complexity

• Training: - just store the data

• Prediction (naive):

• per query, where is training set size and is dimensionality.

• Must compute distance to all points.

• Prediction (optimized) - Data structures can accelerate nearest neighbor search:

• KD-trees: average case for low dimensions, but degrades to in high dimensions

• Ball trees: Better for high dimensions than KD-trees

• Locality-sensitive hashing (LSH): Approximate nearest neighbors in with preprocessing

• Space complexity: to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors
Practical Issues - Computational Complexity

y OpQ2

Back to k-Nearest Neighbors
Practical Issues

• Simple to understand and implement

• No training phase (fast to “train”)

• Naturally handles multi-class classification

• Non-parametric: makes no distributional
assumptions

• Can capture arbitrarily complex decision boundaries

• Easily adapts to new training data (just add it)

• Slow prediction for large datasets

• High memory requirement (stores all training data)

• Sensitive to irrelevant features and feature scaling

• Struggles in high dimensions (curse of
dimensionality)

• No interpretable model or feature importance

• Requires meaningful distance metric

Pros Cons
g a

Back to k-Nearest Neighbors
When to use k-NN?

• Small to medium datasets

• Low to moderate dimensionality (< 20)

• Non-linear decision boundaries expected

• Data arrives incrementally (online learning)

• Quick baseline model needed

n
• Large datasets with real-time prediction

requirements

• Very high-dimensional data

• Features have varying relevance

• Interpretability is required

Use Don’t Use

Today’s Outline

• k-Nearest Neighbors

• Logistic Regression

Logistic Regression
Model y Do 012 predicted

Loss MeansquaredError If 5
Differentiate Loss b set 0 closedform

Gradient descent

Model

Logistic Regression

• Despite its name, logistic regression is a classification algorithm.

• It models the probability of class membership using a logistic (sigmoid)
function.

σ(x) = 1
1 + e−xSigmoid

Oo tain f
o

Logistic Regression

• Despite its name, logistic regression is a classification algorithm.

• It models the probability of class membership using a logistic (sigmoid)
function.

σ(x) = 1
1 + e−x

max

w

Logistic Regression

• Despite its name, logistic regression is a classification algorithm.

• It models the probability of class membership using a logistic (sigmoid)
function.

σ(x) = 1
1 + e−x

max

min

Logistic Regression

• Despite its name, logistic regression is a classification algorithm.

• It models the probability of class membership using a logistic (sigmoid)
function.

σ(x) = 1
1 + e−x

mid = 0.5

Logistic Regression

• Despite its name, logistic regression is a classification algorithm.

• It models the probability of class membership using a logistic (sigmoid)
function.

• Linear regression predicts unbounded 
real values as

• But we need probabilities in

σ(x) = 1
1 + e−x

̂y = θ0 + θ1 ⋅ x

[0, 1]

O

C

Logistic Regression

• Wrap the linear regression equation in a Sigmoid function

• Logistics regression models the probability of the positive class

The decision boundary is the hyperplane where , which
occurs when

ℙ(Y = 1 |X = x) = σ(θ0 + θ1 ⋅ x) = 1
1 + e−(θ0+θ1⋅x)

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

00 0,40

o 50

6 0
40

Logistic Regression

The decision boundary is the hyperplane where , which
occurs when  

If , classify as “positive class” 
Why?  

Because

If , classify as “negative class” 
Why?  

Because

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5

Logistic Regression

The decision boundary is the hyperplane where , which
occurs when  

If , classify as “positive class” 
Why?  

Because

If , classify as “negative class” 
Why?  

Because

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5

IT

Logistic Regression

The decision boundary is the hyperplane where , which
occurs when  

If , classify as “positive class” 
Why?  

Because

If , classify as “negative class” 
Why?  

Because

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5

Logistic Regression

The decision boundary is the hyperplane where , which
occurs when  

If , classify as “positive class” 
Why?  

Because

If , classify as “negative class” 
Why?  

Because

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5

2 0 05

Model j Debt a 705 tve

25 0.5 ve

to n'new

Xie

Logistic Regression

Model: 

Loss: 

̂y = σ(θ0 + θ1 ⋅ x)

ℓ(θ) = 1
m

m

∑
i=1

y(i)log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))
It

Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.  

 
Key Idea - Choose parameters that make the observed data most probable.

Logistic Regression
How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.  

 
Key Idea - Choose parameters that make the observed data most probable.

Given some dataset and a model with parameters
D θ
̂θMLE = arg maxθℙ(D |θ)

D a y n y
0 18 take

18

18

Logistic Regression
How do we train this?

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset and a model with parameters
D θ
̂θMLE = arg maxθℙ(D |θ)

Probability that we observe training dataset , given
that the model has parameters

D
θ

Logistic Regression
How do we train this?

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset and a model with parameters
D θ
̂θMLE = arg maxθℙ(D |θ)

Find such that this probability is maximizedθ

Logistic Regression
How do we train this?

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most
probable.

Given some dataset and a model with parameters
D θ
̂θMLE = arg maxθℙ(D |θ)

Under what parameter values would we have been most
likely to observe exactly the data we did observe?

Maximum Likelihood Estimation

What we want to find:  

Probability:  
 - Given fixed parameters , 

what is the probability of observing data ? 
 This is a function of with fixed.

̂θMLE = arg maxθℙ(D |θ)

ℙ(D |θ) θ
D

D θ

Logistic Regression
How do we train this?

I A

OB
Oc

Maximum Likelihood Estimation

What we want to find:  

Probability:  
 - Given fixed parameters , 

what is the probability of observing data ? 
 This is a function of with fixed. 

 
Likelihood: 

 - Given fixed observed data , how likely are different parameter values ? 
 This is a function of with fixed. 

̂θMLE = arg maxθℙ(D |θ)

ℙ(D |θ) θ
D

D θ

L(θ |D) = ℙ(D |θ) D θ
θ D

Logistic Regression
How do we train this?

For independent observations (rows of data) ,
the likelihood is the product of individual probabilities

D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

Logistic Regression
Likelihood Function

D y x y

o
P apa P x 10 P arm 16

For independent observations (rows of data) ,
the likelihood is the product of individual probabilities

D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

Logistic Regression
Likelihood Function

But, products are numerically unstable and difficult to differentiate 
So, we take on both sides to convert products to sums log

a b

logcablogatlogb.IRPlo

1 6 0

dog 2
0111 log Pcr a

For independent observations (rows of data) ,
the likelihood is the product of individual probabilities

D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

log(L(θ |D)) =
m

∑
i=1

log(ℙ(x(i)) |θ)

Logistic Regression
Likelihood Function

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))1

For independent observations (rows of data) ,
the likelihood is the product of individual probabilities

For logistic regression  
Input Features:  

Binary Labels:  
Training Data:

D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

log(L(θ |D)) =
m

∑
i=1

log(ℙ(x(i)) |θ)

x ∈ ℝm

y ∈ {0,1}
{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . , (x(m), y(m))}

Logistic Regression
Likelihood Function

Each label follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression 6

man if FEED.IE i
Bernoulli Distributions P 19 o PKCI.PT

p i p PD
POC1 P HI

LCO P Plo I p y 12
log LO log Rest

Each label follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression r c

log LO Egly PETE log ab logatlogb

log Lca dog pisi t p
9 tgas bl.ge

In predicted

log LCD p yilogpitc yidegci piJH.fift
yi l 1 loge 0 Yi o 1 log If1 0 0

0

Each label follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression
y c11 911ogctpcg.IT

maximize a p olo
maximizefminimizeff

log aco j Itam

p 3

Each label follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression

a
hottie

0999

Each label follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression

Bernoulli Distribution models a single binary outcome

Is and 

Then probability mass function is

ℙ(X = success) = p
ℙ(X = failure) = q = (1 − p)

P

P(X = x) = px ⋅ (1 − p)1−x

Logistic Regression
Quick Aside: Bernoulli Distribution

Each label follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

Logistic Regression

Each label follows a Bernoulli Distribution with parameter  

When

When

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

y = 1 → p1(1 − p)0 = p

y = 0 → p0(1 − p)1 = (1 − p)

Logistic Regression

Each label follows a Bernoulli Distribution with parameter  

When

When

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

y = 1 → p1(1 − p)0 = p

y = 0 → p0(1 − p)1 = (1 − p)

Logistic Regression

For a single observation  
 

Probability of observing given you have seen input data and

Where

(x(i), y(i))

y(i) x(i) θ

ℙ(y(i) |x(i); θ) = py(i)

i (1 − pi)1−y(i)

pi = σ(θ0 + θ1 ⋅ x)

Logistic Regression

For the entire dataset  
 

Assuming observations are independent

Likelihood is the product of all individual probabilities

{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . (x(m), y(m))}

L(θ |D) = Πm
i=1ℙ(y(i) |x(i); θ) = Πm

i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression

For the entire dataset  
 

Assuming observations are independent

Likelihood is the product of all individual probabilities

{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . (x(m), y(m))}

L(θ |D) = Πm
i=1ℙ(y(i) |x(i); θ) = Πm

i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression

We want to maximize likelihood
̂θMLE = arg maxθℙ(D |θ)

 L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression

L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

log(L(θ)) = log(Πm
i=1py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

log(py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))

L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

log(L(θ)) = log(Πm
i=1py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

log(py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))

This is called the log-likelihood function for logistic regression

log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

This is called the log-likelihood function for logistic regression

Remember we want to maximize likelihood

But when we deal with “loss” functions and gradient descent, we want to
minimize the loss

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Solution: Minimize negative likelihood

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Solution: Minimize negative likelihood

Remember that is the predicted output where
pi

pi = σ(θ0 + θ1 ⋅ x)

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

Binary Cross Entropy Loss

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

When , i.e., actual positive

 
When , i.e., actual negative

y(i) = 1
ℓ(θ) = − log(̂y(i))

y(i) = 0
ℓ(θ) = − log(1 − ̂y(i))

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

When , i.e., actual positive

 
When , i.e., actual negative

y(i) = 1
ℓ(θ) = − log(̂y(i))

y(i) = 0
ℓ(θ) = − log(1 − ̂y(i))

If , Loss = 0

If , Loss =

̂y(i) = 1

̂y(i) = 0 +∞

If , Loss = 0

If , Loss =

̂y(i) = 0

̂y(i) = 1 +∞

Find partial derivative

To simplify, lets find the derivative for a single sample

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression
Finding θ

Want to find

Using Chain Rule

ℓ(θ) = ylog(̂y) + (1 − y)log(1 − ̂y)
̂y = σ(z)

z = θ0 + θ1x
∂ℓ
∂θ

∂ℓ
∂θ

= ∂ℓ
∂ ̂y

⋅ ∂ ̂y
∂z

⋅ ∂z
∂θ

Logistic Regression
Finding θ

Logistic Regression
Finding θ

Summing over all samples

In matrix form

∂ℓ
∂θ

= 1
m

m

∑
i=1

x(i) ⋅ (̂y(i) − y(i))

∇θ(ℓ(θ)) = 1
m

XT(̂Y − Y)

Logistic Regression
Finding θ

Model: 
  

Loss:  
 

 
Gradient:

̂y = σ(θ0 + θ1x)

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))

∇θ(ℓ(θ)) = 1
m

XT(̂Y − Y)

Logistic Regression
Summary

Logistic Regression
Summary

x1

x2

Logistic Regression
Summary ̂y = θ0 + θ1x1 + θ2x2

x1

x2

Logistic Regression
Summary

Logistic Regression
Summary

Logistic Regression
Summary

x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0

Logistic Regression
Summary

x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0

Logistic Regression
Summary

x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0

Logistic Regression
Summary

x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0

Logistic Regression
Summary

x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0

Next Class

• Homework Discussion

• More classification algorithms

