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Today’s Outline

• k-Nearest Neighbors 


• Logistic Regression



k-Nearest Neighbors 

• KNN is a non-parametric, instance-based (lazy) learning algorithm. 


• It makes no assumptions about the underlying data distribution and stores all 
training instances rather than learning explicit parameters.


• Key Idea: 


• Similar instances have similar labels.


• To classify a new point, find the K training instances closest to it and let 
them vote
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Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 
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Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 
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The choice of the distance metric 
fundamentally affects which points are being 

considered “neighbors”Euclidean Distance (  Norm):  
 




Manhattan Distance (  Norm): 
 




Cosine Similarity: 
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•  is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors 
Choosing k
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k-Nearest Neighbors 
Choosing k

x1
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Small  (e.g. )k k = 1 Large  (e.g. )k k = m
• High variance, low bias 


• Decision boundary is highly 
irregular 


• Very sensitive to noise and 
outliers 


• Prone to overfitting, but 
can capture fine grained 
structure 

• High bias, low variance


• Decision boundary is very 
smooth 


• Robust to noise, but may 
miss local patterns 


• At the extreme of , 
always predicts majority 
class 

k = m

Practical Tips

• Start with 


• Use cross-validation to 
select optimal 


• If  is odd, it avoids ties in 
binary classification


•  should be smaller than 
the smallest class size

k = m
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k-Nearest Neighbors 
Choosing k - Cross-validation 

• Why Not Just Use Training Error?


• A model that memorizes the training data achieves zero training error but 
fails on new data. 


• Training error is a biased (optimistic) estimate of true generalization 
performance. 


• We need to estimate how well our model will perform on unseen data.

to



k-Nearest Neighbors 
Choosing k - Cross-validation 

• Naive Solution - Train/Test Split


• Split data into training set (say 80%) and test set (20%). 


• Train on training set, evaluate on test set.


• Issues: 


• Wastes data - 20% of precious labeled data is never used for training


• High variance - Performance estimate depends heavily on which points land in the 
test set


• No hyperparameter tuning: If we use the test set to select hyperparameters, we're 
overfitting to the test set - (using validation set is a possible fix for this issue)
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k-Nearest Neighbors 
Choosing k - Cross-validation 

• Naive Solution - Train/Test Split


• Data Leakage Issue 

• If we repeatedly evaluate on the test set while tuning hyperparameters, 
information about the test set leaks into our model selection process.


• The test error becomes optimistically biased - no longer a valid estimate 
of generalization



k-Nearest Neighbors 
Choosing k - Cross-validation 

• Solution! 

• Use cross-validation 


• Use all data for both training and validation


• Get reliable performance estimates with uncertainty quantification


• Select hyperparameters without contaminating the final test set



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates
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k-Fold Cross Validation 
Algorithm
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Algorithm
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-fold CV requires  
training  models. 


If training is expensive, 
smaller  is preferred.

k
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k-Fold Cross Validation 
Variants

x(1)
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x(8)
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x(10)

x1 x2 x3 x4 Stratified Cross-Validation 

• The Problem with Random Splits


• For imbalanced classification, random splits may create folds with different class 
distributions.


• One fold might have 40% positives while another has 20%, leading to unreliable 
estimates. 

• Stratified sampling ensures each fold has approximately the same class distribution as 
the full dataset.


• Algorithm:


• Separate samples by class


• For each class, distribute samples evenly across folds


• Combine to form final folds

k−
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• Feature Scaling 


• Curse of Dimensionality 


• Space and computational complexity 

Back to k-Nearest Neighbors 
Practical Issues 

EGPA 00 430
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• KNN is highly sensitive to feature scales because distance metrics are 
dominated by features with larger ranges.


• Example: 


• If feature A ranges from 0-1 and feature B ranges from 0-1000


• Euclidean distance is almost entirely determined by feature B.


• Solution: Always normalize or standardize features before applying kNN.

Back to k-Nearest Neighbors 
Practical Issues - Feature Scaling 



• KNN suffers severely in high-dimensional spaces:


• Distance concentration: As dimensionality increases, distances between 
points become increasingly similar.


• The ratio of nearest to farthest neighbor approaches 1, making the 
concept of “nearest” meaningless.

Back to k-Nearest Neighbors 
Practical Issues - Curse of Dimensionality

r = ϵ

r = 1
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• KNN suffers severely in high-dimensional spaces:


• Distance concentration: As dimensionality increases, distances between points become increasingly 
similar.


• The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.


• Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance 
calculations.


• Mitigation strategies:


• Dimensionality reduction (PCA, feature selection)


• Feature weighting based on relevance


• Consider other algorithms for d > 20

Back to k-Nearest Neighbors 
Practical Issues - Curse of Dimensionality

9PAs



• Training:  - just store the data


• Prediction (naive): 


•  per query, where  is training set size and  is dimensionality.


• Must compute distance to all  points.


• Prediction (optimized) - Data structures can accelerate nearest neighbor search:


• KD-trees:  average case for low dimensions, but degrades to  in high dimensions


• Ball trees: Better for high dimensions than KD-trees


• Locality-sensitive hashing (LSH): Approximate nearest neighbors in  with preprocessing


• Space complexity:  to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors 
Practical Issues - Computational Complexity 
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Back to k-Nearest Neighbors 
Practical Issues

• Simple to understand and implement


• No training phase (fast to “train”)


• Naturally handles multi-class classification


• Non-parametric: makes no distributional 
assumptions


• Can capture arbitrarily complex decision boundaries


• Easily adapts to new training data (just add it)

• Slow prediction for large datasets


• High memory requirement (stores all training data)


• Sensitive to irrelevant features and feature scaling


• Struggles in high dimensions (curse of 
dimensionality)


• No interpretable model or feature importance


• Requires meaningful distance metric

Pros Cons
g a



Back to k-Nearest Neighbors 
When to use k-NN?

• Small to medium datasets


• Low to moderate dimensionality (  < 20)


• Non-linear decision boundaries expected


• Data arrives incrementally (online learning)


• Quick baseline model needed

n
• Large datasets with real-time prediction 

requirements


• Very high-dimensional data


• Features have varying relevance


• Interpretability is required

Use Don’t Use
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Logistic Regression

• Despite its name, logistic regression is a classification algorithm.


• It models the probability of class membership using a logistic (sigmoid) 
function.


σ(x) = 1
1 + e−xSigmoid
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Logistic Regression

• Despite its name, logistic regression is a classification algorithm.


• It models the probability of class membership using a logistic (sigmoid) 
function.


σ(x) = 1
1 + e−x

mid = 0.5



Logistic Regression

• Despite its name, logistic regression is a classification algorithm.


• It models the probability of class membership using a logistic (sigmoid) 
function.





• Linear regression predicts unbounded 
real values as 


• But we need probabilities in 

σ(x) = 1
1 + e−x

̂y = θ0 + θ1 ⋅ x

[0, 1]

O

C



Logistic Regression

• Wrap the linear regression equation in a Sigmoid function


• Logistics regression models the probability of the positive class 





The decision boundary is the hyperplane where , which 
occurs when 

ℙ(Y = 1 |X = x) = σ(θ0 + θ1 ⋅ x) = 1
1 + e−(θ0+θ1⋅x)

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

00 0,40

o 50
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Logistic Regression

The decision boundary is the hyperplane where , which 
occurs when  

If , classify as “positive class” 
Why?  

Because 


If , classify as “negative class” 
Why?  

Because 

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0

σ(k ≤ 0) ≤ 0.5

Assume that threshold = 0.5 
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Logistic Regression

The decision boundary is the hyperplane where , which 
occurs when  

If , classify as “positive class” 
Why?  

Because 


If , classify as “negative class” 
Why?  

Because 

ℙ(Y = 1 |X = x) = 0.5
θ0 + θ1 ⋅ x = 0

θ0 + θ1 ⋅ x ≥ 0

σ(k ≥ 0) ≥ 0.5
θ0 + θ1 ⋅ x ≤ 0
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Logistic Regression

Model: 
 


Loss: 
 

̂y = σ(θ0 + θ1 ⋅ x)

ℓ(θ) = 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))
It



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  

Maximum Likelihood Estimation (MLE) is a principled method for estimating the 
parameters of a statistical model.  

 
Key Idea - Choose parameters that make the observed data most probable.



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  

Maximum Likelihood Estimation (MLE) is a principled method for estimating the 
parameters of a statistical model.  

 
Key Idea - Choose parameters that make the observed data most probable.


Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)
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Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most 
probable. 

Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)

Probability that we observe training dataset , given 
that the model has parameters 

D
θ



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most 
probable. 

Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)

Find  such that this probability is maximizedθ



Logistic Regression
How do we train this? 

Maximum Likelihood Estimation  
 

Key Idea - Choose parameters that make the observed data most 
probable. 

Given some dataset  and a model with parameters 
D θ
̂θMLE = arg maxθℙ(D |θ)

Under what parameter values would we have been most 
likely to observe exactly the data we did observe?



Maximum Likelihood Estimation  

What we want to find:  



Probability:  
 - Given fixed parameters , 

what is the probability of observing data ? 
 This is a function of  with  fixed.

̂θMLE = arg maxθℙ(D |θ)

ℙ(D |θ) θ
D

D θ

Logistic Regression
How do we train this? 
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Maximum Likelihood Estimation  

What we want to find:  



Probability:  
 - Given fixed parameters , 

what is the probability of observing data ? 
 This is a function of  with  fixed. 

 
Likelihood: 

 - Given fixed observed data , how likely are different parameter values ? 
 This is a function of  with  fixed. 

̂θMLE = arg maxθℙ(D |θ)

ℙ(D |θ) θ
D

D θ

L(θ |D) = ℙ(D |θ) D θ
θ D

Logistic Regression
How do we train this? 



For independent observations (rows of data) , 
the likelihood is the product of individual probabilities


D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

Logistic Regression
Likelihood Function
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For independent observations (rows of data) , 
the likelihood is the product of individual probabilities


D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

Logistic Regression
Likelihood Function

But, products are numerically unstable and difficult to differentiate 
So, we take  on both sides to convert products to sums  log

a b

logcablogatlogb.IRPlo
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For independent observations (rows of data) , 
the likelihood is the product of individual probabilities





D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

log(L(θ |D)) =
m

∑
i=1

log(ℙ(x(i)) |θ)

Logistic Regression
Likelihood Function

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))1



For independent observations (rows of data) , 
the likelihood is the product of individual probabilities








For logistic regression  
Input Features:  

Binary Labels:  
Training Data: 

D = {x(1), x(2), x(3), . . . , x(m)}

L(θ |D) = ℙ(D |θ) = Πm
i=1 ℙ(x(i) |θ)

log(L(θ |D)) =
m

∑
i=1

log(ℙ(x(i)) |θ)

x ∈ ℝm

y ∈ {0,1}
{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . , (x(m), y(m))}

Logistic Regression
Likelihood Function






Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression 6
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression r c
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression
y c11 911ogctpcg.IT
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression

a
hottie
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Each label  follows a Bernoulli Distribution with parameter  

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)

Logistic Regression



Bernoulli Distribution models a single binary outcome


Is  and 



Then probability mass function  is 


ℙ(X = success) = p
ℙ(X = failure) = q = (1 − p)

P

P(X = x) = px ⋅ (1 − p)1−x

Logistic Regression
Quick Aside: Bernoulli Distribution






Each label  follows a Bernoulli Distribution with parameter  






ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

Logistic Regression






Each label  follows a Bernoulli Distribution with parameter  






When 


When 

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

y = 1 → p1(1 − p)0 = p

y = 0 → p0(1 − p)1 = (1 − p)

Logistic Regression






Each label  follows a Bernoulli Distribution with parameter  






When 


When 

ℙ(Y = 1 |X = x; θ) = σ(θ0 + θ1 ⋅ x)
yi

pi = ℙ(Y = 1 |xi)
ℙ(Y = y |X = x) = py(1 − p)1−y

y = 1 → p1(1 − p)0 = p

y = 0 → p0(1 − p)1 = (1 − p)

Logistic Regression



For a single observation  
 

Probability of observing  given you have seen input data  and 





Where 

(x(i), y(i))

y(i) x(i) θ

ℙ(y(i) |x(i); θ) = py(i)

i (1 − pi)1−y(i)

pi = σ(θ0 + θ1 ⋅ x)

Logistic Regression



For the entire dataset  
 

Assuming observations are independent 


Likelihood is the product of all individual probabilities 


 

{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . (x(m), y(m))}

L(θ |D) = Πm
i=1ℙ(y(i) |x(i); θ) = Πm

i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression



For the entire dataset  
 

Assuming observations are independent 


Likelihood is the product of all individual probabilities 


 

{(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . (x(m), y(m))}

L(θ |D) = Πm
i=1ℙ(y(i) |x(i); θ) = Πm

i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression

We want to maximize likelihood
̂θMLE = arg maxθℙ(D |θ)



 L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

Logistic Regression



 








L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

log(L(θ)) = log(Πm
i=1py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

log(py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))



 








L(θ |D) = Πm
i=1py(i)

i (1 − pi)1−y(i)

log(L(θ)) = log(Πm
i=1py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

log(py(i)

i (1 − pi)1−y(i))

log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Using properties of log: 
 

 log(ab) = b ⋅ log(a)
log(ab) = log(a) + log(b))

This is called the log-likelihood function for logistic regression



log(L(θ)) =
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

This is called the log-likelihood function for logistic regression


Remember we want to maximize likelihood


But when we deal with “loss” functions and gradient descent, we want to 
minimize the loss



ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Solution: Minimize negative likelihood 



ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Logistic Regression

Solution: Minimize negative likelihood 


Remember that  is the predicted output where 
pi

pi = σ(θ0 + θ1 ⋅ x)



ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

Binary Cross Entropy Loss



ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

When , i.e., actual positive





 
When , i.e., actual negative


y(i) = 1
ℓ(θ) = − log( ̂y(i))

y(i) = 0
ℓ(θ) = − log(1 − ̂y(i))



ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression

When , i.e., actual positive





 
When , i.e., actual negative


y(i) = 1
ℓ(θ) = − log( ̂y(i))

y(i) = 0
ℓ(θ) = − log(1 − ̂y(i))

If , Loss = 0


If , Loss = 

̂y(i) = 1

̂y(i) = 0 +∞

If , Loss = 0


If , Loss = 

̂y(i) = 0

̂y(i) = 1 +∞






Find partial derivative


To simplify, lets find the derivative for a single sample

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

Logistic Regression
Finding θ












Want to find 


Using Chain Rule





ℓ(θ) = ylog( ̂y) + (1 − y)log(1 − ̂y)
̂y = σ(z)

z = θ0 + θ1x
∂ℓ
∂θ

∂ℓ
∂θ

= ∂ℓ
∂ ̂y

⋅ ∂ ̂y
∂z

⋅ ∂z
∂θ

Logistic Regression
Finding θ



Logistic Regression
Finding θ



Summing over all samples 





In matrix form 


∂ℓ
∂θ

= 1
m

m

∑
i=1

x(i) ⋅ ( ̂y(i) − y(i))

∇θ(ℓ(θ)) = 1
m

XT( ̂Y − Y)

Logistic Regression
Finding θ



Model: 
  

Loss:  
 

 
Gradient: 


̂y = σ(θ0 + θ1x)

ℓ(θ) = − 1
m

m

∑
i=1

y(i)log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))

∇θ(ℓ(θ)) = 1
m

XT( ̂Y − Y)

Logistic Regression
Summary



Logistic Regression
Summary

x1

x2



Logistic Regression
Summary ̂y = θ0 + θ1x1 + θ2x2

x1

x2



Logistic Regression
Summary



Logistic Regression
Summary



Logistic Regression
Summary 











x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0



Logistic Regression
Summary 











x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0



Logistic Regression
Summary 
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1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0



Logistic Regression
Summary 











x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0



Logistic Regression
Summary 











x2
1 + x2

2 = r2

θ2
1(x2

1 + x2
2) = θ2

0

θ2
1(x2

1 + x2
2) = θ2

0

θ1 (x2
1 + x2

2) = θ0

̂y = θ1 (x2
1 + x2

2) − θ0



Next Class

• Homework Discussion 


• More classification algorithms


