Northeastern University
Khoury College of
Computer Sciences

k— Nearest Neighbors & Logistic Regression

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Wednesday | February 4, 2026

Today’s Outline

 k-Nearest Neighbors

» | ogistic Regression

k-Nearest Neighbors

 KNN is a non-parametric, instance-based (lazy) learning algorithm.

* |t makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

 Key ldea:
e Similar instances have similar labels.

* Jo classify a new point, find the K training instances closest to it and let
them vote

k-Nearest Neighbors

Slc_:"hgohol Sggzs Get Into
GPA College?
XL A2)
xXD| 3.6 1500 = 1
X 27 950 =0 | Xj
xO) | 37 1300 = 1
x| 30 1550 _ 1
x| 32 | 1000 € =0
xew) | 3.2 1250 ?

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3

Find &
nearest

neighbors *

o ¥
¢ ¢ ¢ * *
¢ o *) ¢

¢
¢ ¢

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3 Prediction for new student

Find k = majority(€ €)
neighbors * % -&
@
@@ ¢ * Y
® o *) ¢
¢
¢ ¢

k-Nearest Neighbors

Algorithm:

Training Phase:

Store all training instances (xtmm,)’tmin)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x**) to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

(D
@
3
e

+©)

x(new)

High

k-Nearest Neighbors

Algorithm:

Training Phase:

Store all training instances (xtmm, ytm,-n)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

S0l Scores G
XL A2)
3.6 | 1500 = 1
2.7 950 =0
3.7 | 1300 = 1
3.2 | 1550 = 1
32 | 1000 4 =0
3.2 | 1250 ?

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) ,.()\ — (new) _ .(1)\2

d(x > A) \Z ()6 xJ)
J=0

Manhattan Distance (L; Norm):

n
(new) (D)} — (new) _ 1.(0)
dx", x0) = 3 | — x|
j=0

Cosine Similarity:

cnew) . ()

x| @]

sim(x"") x) =

(distance = 1 — sim(x""), x(0))

The choice of the distance metric
fundamentally affects which points are being
considered “neighbors”

Algorithm:

Training Phase:

Store all training instances (xtmm, ytmm)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors J oted
Choosing k M

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1) Large & (e.g. kK = m)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

k-Nearest Neighbors
Choosing k

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

Large & (e.g. kK = m)

High bias, low variance

Decision boundary is very
smooth

Robust to noise, but may
miss local patterns

At the extreme of kK = m,
always predicts majority
class

k-Nearest Neighbors

Choosing k

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

Practical Tips

Start with k = \/m

Use cross-validation to
select optimal k

If k is odd, it avoids ties in
binary classification

k should be smaller than
the smallest class size

Large k (e.g. kK = m)

High bias, low variance

Decision boundary is very
smooth

Robust to noise, but may
miss local patterns

At the extreme of kK = m,
always predicts majority
class

k-Nearest Neighbors
Choosing k

 k is the primary hyper-parameter controlling the bias-variance tradeoff
k=1

o °*3
:000 ."0 .. o’

k-Nearest Neighbors

Choosing k

 k is the primary hyper-parameter controlling the bias-variance tradeoff

k=1

o °*3
:Qoo .!‘0 ‘. o’

k=73

& <

e oo ."0 .. o’

k-Nearest Neighbors

Choosing k

 k is the primary hyper-parameter controlling the bias-variance tradeoff

k=1

e
o °*3
:.OO ."0 .. o’

k=73

&

e oo .!‘0 .. c

k=3l

k-Nearest Neighbors

Choosing k - Cross-validation

 Why Not Just Use Training Error?

A model that memorizes the training data achieves zero training error but
falls on new data.

* Training error is a biased (optimistic) estimate of true generalization
performance.

* \We need to estimate how well our model will perform on unseen data.

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Spilit
» Split data into training set (say 80%) and test set (20%).

* [rain on training set, evaluate on test set.

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Spilit
» Split data into training set (say 80%) and test set (20%).
* [rain on training set, evaluate on test set.
* |ssues:
 Wastes data - 20% of precious labeled data is never used for training

* High variance - Performance estimate depends heavily on which points land in the
test set

* No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split
« Data Leakage Issue

* |f we repeatedly evaluate on the test set while tuning hyperparameters,
information about the test set leaks into our model selection process.

* The test error becomes optimistically biased - no longer a valid estimate
of generalization

k-Nearest Neighbors

Choosing k - Cross-validation

* Solution!
* Use cross-validation
» Use all data for both training and validation
* (Get reliable performance estimates with uncertainty quantification

o Select hyperparameters without contaminating the final test set

Different k from k— nearest neighbors

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

X1 X X3 X Algorithm
(1) Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
(2)
X .
Train on , teston 2 2. Split data into k equally-sized folds (or partitions)
(3) row
X
4) 1 3.foreachfoldi=1, 2, ..., k:
g CVy=—= 2, £ 0p, JfDy)
x® L' b, 3a. Use fold i as the validation set
(6)
& 3b. Use the remaining k — i folds as the training set
x
) 3c. Train the model on the training set
X

e 3d. Evaluate on the validation set, record performance metric

x(10) 4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi= 1, 2, ..., k:
CVy = — Z £(p,» fo D)
D, D, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
1 3.foreachfoldi=1, 2, ..., k:
CVy == D £ 0p, JyD3)
3 Dj 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
1 3.foreachfoldi=1, 2, ..., k:
CVy=—= 2 £0p, [y D)
* b, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

Algorithm

(1) Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
x(Trai test on 2

rain on , test on 2. Split data into k equally-sized folds (or partitions)

(3) row
X

4) 1 3.foreachfoldi=1, 2, ..., k:
g CVs=—= 2, £ 0p, JyD5)
x®) > D 3a. Use fold 7 as the validation set
x© .

3b. Use the remaining k — i folds as the training set

x(7)

) 3c. Train the model on the training set
X
e 3d. Evaluate on the validation set, record performance metric
x10) 4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Train on , test on 2
row

Mean CV Score:

N
CV=;Z:,CVZ-

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

(1) Let’s say we want to run
A k = S-fold cross validation . . .

2) k-value Training Size Properties
X Train on test on 2
X o High Bias

k=2 50% Low Variance

e Mean CV Score: Fast

&) k
X _ 1

CV = — Z CV, (=5 80% Good Balance
+(© k 4 1 Commonly Used
1=

(7

X .
k=10 90% Low Bias
+® Commonly Used
x® Low Bias
k=m-1 m-1 samples Highest Variance

(10)

X Slow

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©

D

+®)

+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Train on , test on 2
row

Mean CV Score:

1 ¢
CV=;Z:,CVZ-

k-fold CV requires
training £ models.

If training Is expensive,
smaller k is preferred.

k-value Training Size Properties
High Bias
k=2 50% Low Variance
Fast
Good Balance
— 0]
k=3 80% Commonly Used
Low Bias
— 0]
k=10 90% Commonly Used
Low Bias
k=m-1 m-1 samples Highest Variance
Slow

k-Fold Cross Validation

Variants
X X X3 X Stratified Cross-Validation
xh * The Problem with Random Splits
x? . e L . . .
 For imbalanced classification, random splits may create folds with different class
53 distributions.
x@ One fold might have 40% positives while another has 20%, leading to unreliable
5 estimates.
x©)
(6) e Stratified sampling ensures each fold has approximately the same class distribution as
X the full dataset.
x
* Algorithm:
x(3)
+©) Separate samples by class
x(10) « For each class, distribute samples evenly across k—folds

e (Combine to form final folds

Back to k-Nearest Neighbors

Practical Issues

* Feature Scaling
e Curse of Dimensionality

 Space and computational complexity

Back to k-Nearest Neighbors

Practical Issues - Feature Scaling

 KNN is highly sensitive to feature scales because distance metrics are
dominated by features with larger ranges.

 Example:
 |f feature A ranges from 0-1 and feature B ranges from 0-1000
 Euclidean distance is almost entirely determined by feature B.

» Solution: Always normalize or standardize features before applying KNN.

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

 KNN suffers severely in high-dimensional spaces:

* Distance concentration: As dimensionality increases, distances between
points become increasingly similar.

* The ratio of nearest to farthest neighbor approaches 1, making the
concept of “nearest” meaningless.

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

 KNN suffers severely in high-dimensional spaces:

* Distance concentration: As dimensionality increases, distances between points become increasingly
similar.

* The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.

* |rrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance
calculations.

* Mitigation strategies:
* Dimensionality reduction (PCA, feature selection)
* Feature weighting based on relevance

* Consider other algorithms for d > 20

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

 Training: O(1) - just store the data

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

 Training: O(1) - just store the data
* Prediction (naive):
« O(nm) per query, where m is training set size and n is dimensionality.

 Must compute distance to all m points.

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

 Training: O(1) - just store the data
* Prediction (naive):
« O(nm) per query, where m is training set size and n is dimensionality.

 Must compute distance to all m points.

* Prediction (optimized) - Data structures can accelerate nearest neighbor search:

« KD-trees: O(nlogm) average case for low dimensions, but degrades to O(nm) in high dimensions

 Ball trees: Better for high dimensions than KD-trees

 Locality-sensitive hashing (LSH): Approximate nearest neighbors in O(n) with preprocessing

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

 Training: O(1) - just store the data
* Prediction (naive):
« O(nm) per query, where m is training set size and n is dimensionality.

 Must compute distance to all m points.

* Prediction (optimized) - Data structures can accelerate nearest neighbor search:

« KD-trees: O(nlogm) average case for low dimensions, but degrades to O(nm) in high dimensions

 Ball trees: Better for high dimensions than KD-trees
 Locality-sensitive hashing (LSH): Approximate nearest neighbors in O(n) with preprocessing

« Space complexity: O(nm) to store the training data.

Back to k-Nearest Neighbors

Practical Issues

Pros

e Simple to understand and implement
* No training phase (fast to “train”)
* Naturally handles multi-class classification

 Non-parametric: makes no distributional
assumptions

» Can capture arbitrarily complex decision boundaries

» Easily adapts to new training data (just add it)

cons

Slow prediction for large datasets
High memory requirement (stores all training data)
Sensitive to irrelevant features and feature scaling

Struggles in high dimensions (curse of
dimensionality)

No interpretable model or feature importance

Requires meaningful distance metric

Back to k-Nearest Neighbors
When to use k-NN?

Use Don’t Use

* Small to medium datasets | | -
* Large datasets with real-time prediction

| | | requirements
* Low to moderate dimensionality (n < 20)

* Very high-dimensional data
* Non-linear decision boundaries expected

, , _ , * Features have varying relevance
* Data arrives incrementally (online learning)

 Interpretability is required
 Quick baseline model needed

Today’s Outline

 k-Nearest Neighbors

 Logistic Regression

Logistic Regression

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

1.0 -

o(x) =

o
o0

l +e*

Sigmoid Output
o
(@)

o
S
1

o
N

o
(o)

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0

7.5

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

max 1.0 A

o(x) = ——
|l +e—* |

Sigmoid Output
©
(@)

o
S
1

o
N

o
(o)

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0

7.5

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

max 1.0 A

o(x) = ——
|l +e—* |

Sigmoid Output
©
(@)

o
S
1

o
N

Min ...

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)

function.

o(x)

1 +

e—x

Sigmoid Function

3 0.6 -
- 3
mid = 0.5 :
L% 0.4 -

Logistic Regression

* Despite its name, logistic regression is a classification algorithm.

* |t models the probability of class membership using a logistic (sigmoid)
function.

Sigmoid Function

o(x) = ——
|l +e—*

* Linear regression predicts unbounded
real valuesasy = 6, + 0, - x

-
o
4
=
o
S
Ry

« But we need probabilities in [0, 1]

Logistic Regression

 Wrap the linear regression equation in a Sigmoid function

* | ogistics regression models the probability of the positive class

1
] + ¢—(6+0;-x)

PY=1|X=x)=0(0,+0, - x) =

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 6, + 0, - x = 0

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 0y + 0, - x = 0

If 6, + 0, - x > 0, classify as “positive class”
Why?

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 0y + 0, - x = 0

If 6, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 0y + 0, - x = 0

If 0, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

If 6, + 0, - x < 0, classify as “negative class”
Why?

Logistic Regression

The decision boundary is the hyperplane where P(Y = 1 | X = x) = 0.5, which
occurs when 0y + 0, - x = 0

If 0, + 0, - x > 0, classify as “positive class”
Why?
Because o(k > 0) > 0.5

If 6, + 0, - x < 0, classify as “negative class”
Why?
Because o(k < 0) < 0.5

Logistic Regression

Model:
j\}: 0(90"‘91 ‘X)

L osS:

1 — . A . ¢
£0) =— D, ylog(y?) + (1 = y)log(1 = y)
=1

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a principled method for estimating the
parameters of a statistical model.

Key Idea - Choose parameters that make the observed data most probable.

Given some dataset D and a model with parameters @

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key ldea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters @

Probability that we observe training dataset D, given
that the model has parameters @

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key ldea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters @

Find 0 such that this probability is maximized

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

Key ldea - Choose parameters that make the observed data most
probable.

Given some dataset D and a model with parameters @

Under what parameter values would we have been most
likely to observe exactly the data we did observe?

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

A What we want to find:

Probability:

(D]06)

P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with & fixed.

Logistic Regression

How do we train this?

Maximum Likelihood Estimation

A What we want to find:

Probability:
P(D | 0) - Given fixed parameters 0,
what is the probability of observing data D?
This is a function of D with & fixed.

Likelihood:
L(@| D) = P(D|0) - Given fixed observed data D, how likely are different parameter values 6?
This is a function of @ with D fixed.

Likelihood Function

For independent observations (rows of data) D = {x(l),x(z),x(

Logistic Regression

the likelihood is the product of individual probabillities

L(O|D) = I

(D|6) =117, |

(x”6)

3)

’ [] []

.,x(m)},

Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x'V, x® x9 xm},
the likelihood is the product of individual probabilities

LO|D)=PD|0) =11", P(x"|0)

But, products are numerically unstable and difficult to differentiate
So, we take [og on both sides to convert products to sums

Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x'V, x® x9 xm},
the likelihood is the product of individual probabilities

LO|D)=PD|0) =11", P(x"|0)

log(L(0] D)) =) log(P(x")] 6)
=1

Using properties of log:

log(a®) = b - log(a)
log(ab) = log(a) + log(b))

Logistic Regression

Likelihood Function

For independent observations (rows of data) D = {x'V, x® x9 xm},
the likelihood is the product of individual probabilities

LO|D)=PD|0) =11", P(x"|0)

log(L(0] D)) =) log(P(x")] 6)
=1

For logistic regression
Input Features: x € R"
Binary Labels: y € {0,1}
Training Data: {(x™", y(D), (x@, y@)), (x®, y3) ... (x, y(m))

Logistic Regression

Logistic Regression

Logistic Regression

Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

Logistic Regression

Quick Aside: Bernoulli Distribution

Bernoulli Distribution models a single binary outcome

Is P(X = success) = p and
P(X = failure) = g = (1 — p)

Then probability mass function P is

PX=x)=p*-(1-p)'~*

Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

P(Y=y|X=x)=p'(1-p)~

Logistic Regression

P(Y=1|X=x:0) =00, +0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

PY=y|X=x)=p'(1-p)~
Wheny=1-pl(1-=p)Y=p
Wheny =0 — p°(1 = p)l = (1 - p)

Logistic Regression

P(Y=1|X=x,0) =060+ 0, - x)

Each label y: follows a Bernoulli Distribution with parameter
p;=PX =1|x)

PY=y|X=x)=p'(1-p)~
Wheny=1-pl(1-p)Y =p
Wheny =0 — p%1 —p)! = (1 - p)

Logistic Regression

For a single observation (x”, y)
Probability of observing y*) given you have seen input data x*) and @
POO1x;0) = (1 = p)' "

Where p; = o(0, + 0, - x)

Logistic Regression

For the entire dataset {(x1), y()), (x?), y2) (x©) y©O)) . (x™)]
Assuming observations are independent

Likelihood is the product of all individual probabilities

m l l m 1) —y®)
L D) = L, Py | x®;0) = T p*"(1 = pp'=

Logistic Regression

For the entire dataset {(x1), y()), (x?), y2) (x©) y©O)) . (x™)]
Assuming observations are independent

Likelihood is the product of all individual probabilities

m l l m () —y
L@|D) = 112 Py |xV;0) =TI p> (1 — p)' ™

We want to maximize likelihood

A\

Logistic Regression

L(O|D) = Hm_lpiy(i)(l _pi)l—y(i)

=

Logistic Regression

L@O|D) =11 p>"(1 — py' ="

log(L(0)) = log(IT" ,p*" (1 — p)' ")

Using properties of log:

N ())
jog(a") = b - log(a) log(L(0)) = " log(p)" (1 — p)'™")

log(ab) = log(a) + log(b))

log(L(0)) =), yVlog(p,) + (1 — yD)log(1 - p))
=1

Logistic Regression

L(O|D) = Hm_lpiy(i)(l _pi)l—y(i)

=

log(L(0)) = log(T p*"(1 — p)' ="

Using properties of log:

. - (1) 1—y®
et = b~ lonta) log(L()) =) log(p)" (1 — p)'™")
=1

log(ab) = log(a) + log(b))

log(L(0)) =) yVlog(p) + (1 — yP)log(1 - p)
=1

This is called the log-likelihood function for logistic regression

Logistic Regression

log(L(©)) =), yVlog(p,) + (1 — yD)log(1 - p))
=1

This is called the log-likelihood function for logistic regression

Remember we want to maximize likelihood

But when we deal with “loss” functions and gradient descent, we want to
Mminimize the loss

Logistic Regression

£0) = -) yPlog(p) + (1 — yDlog(1 — p))
=1

Solution: Minimize negative likelihood

Logistic Regression

£0) = -) yPlog(p) + (1 — yDlog(1 — p))
=1

Solution: Minimize negative likelihood

Remember that p; is the predicted output where

p; =o0(0,+ 0, - x)

Logistic Regression
£0) = —— D y0log(3?) + (1 — yD)log(1 — 50
i =1

Binary Cross Entropy Loss

Logistic Regression

] — . » . .
£0) = ——) yPlog(3) + (1 = ylog(1 - 3)
Mmoo
When y(i) = 1, i.e., actual positive
£(0) = — log(3")

When y(i) = (), i.e., actual negative

£(0) = —log(1 - 3)

Logistic Regression

& . | »
£0) = ——), yPlog3?) + (1 = yD)log(1 - 3)
e =1

When y(i) = 1, i.e., actual positive

A\

i (i) _ -
£(0) = — lOg(y(l)) f 9 =1, Loss =0
if $) = 0, Loss = 4+ 0

When y(i) = (, i.e., actual negative
1f$Y =0, Loss =0
£(0) = — log(1 —)

A\

If $) = 1, Loss = + o0

Logistic Regression
Finding @

1 & .] »
£0) = ——) yPlog(3) + (1 = ylog(1 - 3)
i =1

Find partial derivative

To simplify, lets find the derivative for a single sample

Logistic Regression
Finding @

£(0) = ylog(y) + (1 —y)log(l —)
y = o(z2)
7=0,+0x

ot
Want to find —

00
Using Chain Rule

Logistic Regression
Finding @

Logistic Regression
Finding @

Summing over all samples
o 1 « . .
_ (D . (30 ()
— = — Y x50 -y
00 m 1221 Y Y
In matrix form

_ Lo
Vol£(0) = —X'(Y =)

Logistic Regression

Summary

Model:
5\7 — 0(9() + HIX)

[Loss:
£0) = ——) yVlog3?) + (1 — yD)log(1 — 5¥)
& =1

Gradient;

1 A
Vo(£(0) = —X"(Y - Y)

m

Logistic Regression

Summary

Logistic Regression
Summary y =0y,+ 0,x, + 6,x,

Logistic Regression

Summary

o o
o

S
o o

Logistic Regression

Summary

Logistic Regression

Summary

Logistic Regression

Summary

Logistic Regression

Summary

Logistic Regression

Summary

Logistic Regression

2 1 42 —
Summary Xy +x; =r

07 (xi +x7) = O
\ 07 +x3) =1/63
1\/ (x{ + x3) = 6,

Next Class

e Homework Discussion

* More classification algorithms

