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Today’s Outline

• Metrics  

• k-Nearest Neighbors 



Updates

• Office hour timings


• Topic based office hours 


• Homework 2 is out - due Friday Feb 15th 11:59PM


• Homework 1 - answers on Wednesday 


• Final exam dates


• Functions that can be considered linear regression 
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Metrics

• An obvious metric is accuracy 

 

• Say you have a cat classifier with 1000 images. Your classifier gets 797 out of 
1000 images correct


Accuracy = Number of Correct Predictions
Total Number of Data Points

Accuracy = 797
1000 = 79 %



Metrics

• But, accuracy does not tell the whole picture 


• Especially when data is skewed


• For example, if your training data is of size 1000 images


• 900 of them are of dogs


• 100 of them are cats


• Question: Is accuracy a good metric in this case? 
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Actual Negative
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Metrics
Accuracy 

Accuracy = 
TP + TN

TP + TN + FP + FN

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

The proportion of correct predictions. 


Simple and intuitive, but misleading for imbalanced data. 


A classifier that always predicts the majority class achieves high accuracy 
on imbalanced datasets while being useless.
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Precision and Recall 
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Metrics
Precision and Recall 
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Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Of all instances predicted as positive, what fraction actually are positive?  
Precision measures the reliability of positive predictions. High precision means few 
false alarms. 

When to care about precision?  
When false positives are costly.  
 
Examples include spam filtering (users hate losing important emails), recommendation 
systems (irrelevant recommendations erode trust), and legal contexts (wrongful 
accusations).



Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Of all actual positive instances, what fraction did we correctly identify? Recall 
measures coverage of positive instances. High recall means few missed positives. 
 
When to care about recall?  
When false negatives are costly. 


Examples include disease screening (missing a diagnosis can be fatal), security 
threats (missing an attack is catastrophic), and search engines (users want all relevant 
results).



Metrics
Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Precision and recall are inherently in tension. 


Increasing the threshold for positive classification typically increases precision 
but decreases recall. 


Decreasing the threshold has the opposite effect. 


The optimal balance depends on the application's cost structure.



Metrics
Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

The harmonic mean of precision and recall


F1 score is high only when both precision and recall are high 
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Metrics
Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity = 
TN

TN + FP
False Positive Rate = 

FP
TN + FP

Same denominator 

FPR = 1 - Specificity
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Metrics
Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity = 
TN

TN + FP
False Positive Rate = 

FP
TN + FP

Recall is the True Positive Rate 
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Metrics
Why so many metrics?

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Assume your training data looks like this:


1000 rows 
10 rows are spam emails 
990 are legitimate emails


Scenario 1:


Classifier always outputs legit 
What is the accuracy?  

Scenario 2: 


Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision? 

Scenario 3: 


Classifier always outputs spam 
What is the recall?

Acc = 10 + 0
10 + 0 + 990 + 0 = 1 %

Accuracy = 
TP + TN

TP + TN + FP + FN

Precision = 10
10 + 990 = 1 %

Recall = 10
10 + 0 = 100 %
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Why so many metrics?

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative
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Assume your training data looks like this:


1000 rows 
10 rows are spam emails 
990 are legitimate emails


Scenario 1:


Classifier always outputs legit 
What is the accuracy?  
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Classifier predicts one spam email as spam, and rest as legitimate  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Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy = 
TP + TN

TP + TN + FP + FN

Precision = 1
1 + 0 = 100 %

Recall = 10
10 + 0 = 100 %
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Why so many metrics?

Precision = 
TP

TP + FP
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Recall = 
TP

TP + FN

Assume your training data looks like this:


1000 rows 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990 are legitimate emails


Scenario 1:
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What is the accuracy?  
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Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision? 

Scenario 3: 


Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy = 
TP + TN

TP + TN + FP + FN

Precision = 1
1 + 0 = 100 %

Recall = 10
10 + 0 = 100 %

3



Metrics
Why so many metrics?

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative
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Assume your training data looks like this:


1000 rows 
10 rows are spam emails 
990 are legitimate emails


Scenario 1:


Classifier always outputs legit 
What is the accuracy?  

Scenario 2: 


Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision? 

Scenario 3: 


Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy = 
TP + TN

TP + TN + FP + FN

Precision = 1
1 + 0 = 100 %

Recall = 10
10 + 0 = 100 %
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Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:  

How is this a tradeoff?  
How would you increase/decrease the true positives? 
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Question:  

How is this a tradeoff?  
How would you increase/decrease the true positives? 

Answer: By changing the threshold
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Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative
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Question:  

How is this a tradeoff?  
How would you increase/decrease the true positives? 

Answer: By changing the threshold

• Cat in image if 


• Precision goes up, Recall goes down

ℙ(cat | imagei) ≥ 0.999

Precision = 
TP

TP + FP
Recall = 

TP
TP + FN
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Precision drops steadily 
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Random classifier:  
 
Horizontal line at the 
proportion of positives 
(25% here). 
 
AUC-PR equals the 
class proportion. No 
predictive power.

Poor classifier:  
 
Precision drops steadily 
as recall increases.  
 
Still better than random, 
but significant tradeoff 
between precision and 
recall.

Perfect classifier:  
 
Precision stays at 1.0 
across all recall values. 
AUC-PR = 1.0.  
 
Every positive 
prediction is correct, 
and all actual positives 
are found.

Good classifier:  
 
High precision 
maintained until high 
recall.  
 
The curve hugs the top-
right corner.
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AUC-ROC plots TPR against FPR 
at all classification thresholds 

between 0 and 1.
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by the classifier's scores.
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Perfect classifier

Area under the curve
AUC = 1    - Perfect Classifier 
AUC = 0.5 - Random Classifier  
AUC < 0.5 - Worse Than Random Classifier 

Intuition:  
AUC equals the 
probability that a 
randomly chosen positive 
instance is ranked 
higher than a randomly 
chosen negative instance 
by the classifier's scores.

Limitation:  
ROC curves can be 
overly optimistic for 
highly imbalanced 
datasets because the 
FPR denominator is 
dominated by the large 
TN count.



Today’s Outline

• Metrics 


• k-Nearest Neighbors 



k-Nearest Neighbors 

• KNN is a non-parametric, instance-based (lazy) learning algorithm. 


• It makes no assumptions about the underlying data distribution and stores all 
training instances rather than learning explicit parameters.

O



k-Nearest Neighbors 

• KNN is a non-parametric, instance-based (lazy) learning algorithm. 


• It makes no assumptions about the underlying data distribution and stores all 
training instances rather than learning explicit parameters.


• Key Idea: 


• Similar instances have similar labels.


• To classify a new point, find the K training instances closest to it and let 
them vote



k-Nearest Neighbors 

x1

x2

3.6 1500       = 1

2.7 950       = 0

3.7 1300       = 1

3.2 1550       = 1

3.2 1000       = 0

3.2 1250 ?

x1 x2 y

High 
School 

GPA
SAT  

Scores Get Into 
College?

x(1)

x(2)

x(3)

x(4)

x(5)

x(new)

2 22 2

student eighth
feature

22 student 2

x ̅



k-Nearest Neighbors 

x1

x2

Does this 
student get 
in or not?  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k-Nearest Neighbors 
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Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)

k−
k

k−
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k-Nearest Neighbors 

Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)
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k

k−
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k-Nearest Neighbors 

Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)

k−
k

k−

The choice of the distance metric 
fundamentally affects which points are being 

considered “neighbors”Euclidean Distance (  Norm):  
 




Manhattan Distance (  Norm): 
 




Cosine Similarity: 
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(x(new)
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j )2

L1

d(x(new), x(i)) =
n

∑
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|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))



Euclidean Distance (  Norm):  
 




Manhattan Distance (  Norm): 
 




Cosine Similarity: 
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∑
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j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

k-Nearest Neighbors 

Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)

k−
k

k−

Most common choice, but sensitive to feature 
scales 



Euclidean Distance (  Norm):  
 




Manhattan Distance (  Norm): 
 




Cosine Similarity: 
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∑
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∑
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j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

k-Nearest Neighbors 

Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)

k−
k

k−

Sum of absolute differences.  
More robust to outliers than Euclidean. 

Appropriate when features represent 
fundamentally different quantities.



Euclidean Distance (  Norm):  
 




Manhattan Distance (  Norm): 
 




Cosine Similarity: 
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d(x(new), x(i)) =
n

∑
j=0

(x(new)
j − x(i)

j )2

L1

d(x(new), x(i)) =
n

∑
j=0

|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

k-Nearest Neighbors 

Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)

k−
k

k−

Measures angle between vectors, ignoring 
magnitude.  

Useful for text data and high-dimensional 
sparse vectors.



Hamming Distance:  
 




Hamming distance is a metric for comparing sequences 
of equal length - it counts the number of positions 
where corresponding elements differ.


Example:  

 



Use Cases: 
Categorical features: When features are categorical (say 
state a person lives in), Euclidean distance is 
meaningless.  
Hamming distance treats each feature as equal - either it 
matches or it doesn’t.

d(x(new), x(i)) =
n

∑
j=0

1 ⋅ (x(new)
j ≠ x(i)

j )

d([red, small, round], [red, large, round]) = 1
d([cat, young, male], [dog, old, female]) = 3
d(ACGT, ACTT) = 1

k-Nearest Neighbors 

Algorithm: 

Training Phase:  
Store all training instances  
No computation required. We are not learning any 
parameters 


Prediction/Testing Phase: 
1. Compute distance from new point  to every other 
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of 
the neighbors 

(xtrain, ytrain)

x(new)

k−
k

k−

2 State

012 Gender

n MA F
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•  is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors 
Choosing k

x1

x2

Small  (e.g. )k k = 1 Large  (e.g. )k k = m
• High variance, low bias 


• Decision boundary is highly 
irregular 


• Very sensitive to noise and 
outliers 


• Prone to overfitting, but 
can capture fine grained 
structure 



•  is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors 
Choosing k

x1

x2

Small  (e.g. )k k = 1 Large  (e.g. )k k = m
• High variance, low bias 


• Decision boundary is highly 
irregular 


• Very sensitive to noise and 
outliers 


• Prone to overfitting, but 
can capture fine grained 
structure 

• High bias, low variance


• Decision boundary is very 
smooth 


• Robust to noise, but may 
miss local patterns 


• At the extreme of , 
always predicts majority 
class 

k = m

ELEE



•  is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors 
Choosing k

x1

x2

Small  (e.g. )k k = 1 Large  (e.g. )k k = m
• High variance, low bias 


• Decision boundary is highly 
irregular 


• Very sensitive to noise and 
outliers 


• Prone to overfitting, but 
can capture fine grained 
structure 

• High bias, low variance


• Decision boundary is very 
smooth 


• Robust to noise, but may 
miss local patterns 


• At the extreme of , 
always predicts majority 
class 

k = m

Practical Tips

• Start with 


• Use cross-validation to 
select optimal 


• If  is odd, it avoids ties in 
binary classification


•  should be smaller than 
the smallest class size

k = m

k

k

k
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•  is the primary hyper-parameter controlling the bias-variance tradeoff k



k-Nearest Neighbors 
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
•  is the primary hyper-parameter controlling the bias-variance tradeoff k



k-Nearest Neighbors 
Choosing k

x1
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\x1 x1 x1
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k = 1 k = 3 k = 31
•  is the primary hyper-parameter controlling the bias-variance tradeoff k

f

0 I
Iverfitting



k-Nearest Neighbors 
Choosing k - Cross-validation 

• Why Not Just Use Training Error?


• A model that memorizes the training data achieves zero training error but 
fails on new data. 


• Training error is a biased (optimistic) estimate of true generalization 
performance. 


• We need to estimate how well our model will perform on unseen data.



k-Nearest Neighbors 
Choosing k - Cross-validation 

• Naive Solution - Train/Test Split


• Split data into training set (say 80%) and test set (20%). 


• Train on training set, evaluate on test set.


• Issues: 


• Wastes data - 20% of precious labeled data is never used for training


• High variance - Performance estimate depends heavily on which points land in the 
test set


• No hyperparameter tuning: If we use the test set to select hyperparameters, we're 
overfitting to the test set - (using validation set is a possible fix for this issue)



k-Nearest Neighbors 
Choosing k - Cross-validation 

• Naive Solution - Train/Test Split


• Data Leakage Issue 

• If we repeatedly evaluate on the test set while tuning hyperparameters, 
information about the test set leaks into our model selection process.


• The test error becomes optimistically biased - no longer a valid estimate 
of generalization



k-Nearest Neighbors 
Choosing k - Cross-validation 

• Solution! 

• Use cross-validation 


• Use all data for both training and validation


• Get reliable performance estimates with uncertainty quantification


• Select hyperparameters without contaminating the final test set



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

CV1 = 1
D1 ∑

D1

ℓ(yD1
, fθ(D1))

Validation Set D1



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)
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x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

CV2 = 1
D2 ∑

D2

ℓ(yD2
, fθ(D2))

Validation Set D2



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)
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x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

CV3 = 1
D3 ∑

D3

ℓ(yD3
, fθ(D3))

Validation Set D3



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)
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x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

CV4 = 1
D4 ∑

D4

ℓ(yD4
, fθ(D4))

Validation Set D4



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates
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i
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Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

CV5 = 1
D5 ∑

D5

ℓ(yD5
, fθ(D5))

Validation Set D5



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)
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x(10)

x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

Mean CV Score:


C̄V = 1
k

k

∑
i=1

CVi



k-Fold Cross Validation 
Algorithm

x(1)
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x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

Mean CV Score:


C̄V = 1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow



k-Fold Cross Validation 
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run 

-fold cross validation k = 5
Train on 8 rows, test on 2 
row

Mean CV Score:


C̄V = 1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

-fold CV requires  
training  models. 


If training is expensive, 
smaller  is preferred.

k
k

k



k-Fold Cross Validation 
Variants

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4 Stratified Cross-Validation 

• The Problem with Random Splits


• For imbalanced classification, random splits may create folds with different class 
distributions.


• One fold might have 40% positives while another has 20%, leading to unreliable 
estimates. 

• Stratified sampling ensures each fold has approximately the same class distribution as 
the full dataset.


• Algorithm:


• Separate samples by class


• For each class, distribute samples evenly across folds


• Combine to form final folds

k−



• Feature Scaling 


• Curse of Dimensionality 


• Space and computational complexity 

Back to k-Nearest Neighbors 
Practical Issues 



• KNN is highly sensitive to feature scales because distance metrics are 
dominated by features with larger ranges.


• Example: 


• If feature A ranges from 0-1 and feature B ranges from 0-1000


• Euclidean distance is almost entirely determined by feature B.


• Solution: Always normalize or standardize features before applying kNN.

Back to k-Nearest Neighbors 
Practical Issues - Feature Scaling 



• KNN suffers severely in high-dimensional spaces:


• Distance concentration: As dimensionality increases, distances between 
points become increasingly similar.


• The ratio of nearest to farthest neighbor approaches 1, making the 
concept of “nearest” meaningless.

Back to k-Nearest Neighbors 
Practical Issues - Curse of Dimensionality

r = ϵ

r = 1



• KNN suffers severely in high-dimensional spaces:


• Distance concentration: As dimensionality increases, distances between points become increasingly similar.


• The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.


• Sparsity: The volume of space grows exponentially with dimension. To maintain the same density of points, training 
set size must grow exponentially.


• Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance calculations.


• Mitigation strategies:


• Dimensionality reduction (PCA, feature selection)


• Feature weighting based on relevance


• Consider other algorithms for d > 20

Back to k-Nearest Neighbors 
Practical Issues - Curse of Dimensionality



• Training:  - just store the data


• Prediction (naive): 


•  per query, where  is training set size and  is dimensionality.


• Must compute distance to all  points.


• Prediction (optimized) - Data structures can accelerate nearest neighbor search:


• KD-trees:  average case for low dimensions, but degrades to  in high dimensions


• Ball trees: Better for high dimensions than KD-trees


• Locality-sensitive hashing (LSH): Approximate nearest neighbors in  with preprocessing


• Space complexity:  to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors 
Practical Issues - Computational Complexity 



Back to k-Nearest Neighbors 
Practical Issues

• Simple to understand and implement


• No training phase (fast to “train”)


• Naturally handles multi-class classification


• Non-parametric: makes no distributional 
assumptions


• Can capture arbitrarily complex decision boundaries


• Easily adapts to new training data (just add it)

• Slow prediction for large datasets


• High memory requirement (stores all training data)


• Sensitive to irrelevant features and feature scaling


• Struggles in high dimensions (curse of 
dimensionality)


• No interpretable model or feature importance


• Requires meaningful distance metric

Pros Cons



Back to k-Nearest Neighbors 
When to use k-NN?

• Small to medium datasets


• Low to moderate dimensionality (  < 20)


• Non-linear decision boundaries expected


• Data arrives incrementally (online learning)


• Quick baseline model needed

n
• Large datasets with real-time prediction 

requirements


• Very high-dimensional data


• Features have varying relevance


• Interpretability is required

Use Don’t Use



Next Class

• Logistic Regression 


• Brush up on conditional probability, Bayes’ Theorem and Bernoulli 
Distribution 


