Northeastern University
Khoury College of
Computer Sciences

k—Nearest Neighbors

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Monday | February 2, 2026

Today’s Outline

e Metrics

» k-Nearest Neighbors

/\
Updates N
Ld p

Office hour timings L (
. C e
Topic based office hours $n (%o)
Homework 2 is out - due Friday Feb 15th 11:59PM ¢ C’t)
eb Toth
Homework 1 - answers on Wednesday
Final exam dates —

Functions that can be considered linear regression

Metrics

* An obvious metric is accuracy

Number of Correct Predictions

Accuracy =
Total Number of Data Points

e Say you have a cat classifier with 1000 images. Your classifier gets 797 out of
1000 images correct

797
Accuracy = T000 79 %

Metrics

e But, accuracy does not tell the whole picture
» Especially when data is skewed

* For example, if your training data is of size 1000 images

e 900 of them are of dogs
100 of them are cats

* Question: Is accuracy a good metric in this case?

Metrics

Confusion Matrix

lbag

Predicted Positive

Predicted Negative

—

—_—
7 =500 | fage ,
Actual Positive]\NQ asikt "y (@ .
E{\\SQ PDSA(\-? . \'YUQ.
Actual Negative ~

\)\/08(61\& :

Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

—

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Confusion Matrix

ACCM% =

TP+ TN

Py,

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

—

Actual Negative

True Negative (TN)

—

Predicted Positive

Predicted Negative

Metrics

Actual Positive

True Positive (TP)

False Negative (FN)

Accuracy

Actual Negative

False Positive (FP)

True Negative (TN)

I'P+ TN

Accuracy =

IP+ TN+ FP+ FN

The proportion of correct predictions.

Simple and intuitive, but misleading for imbalanced data.

A classifier that always predicts the majority class achieves high accuracy
on imbalanced datasets while being useless.

Metrics

Precision and Recall
TP

?yqua\c\\ —t e

™+ o

/\'{Q(al\ T?

v T+ BN

4

Predicted Positive I Predicted Negative

Actual Positive Trfue Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

TP

Precision = TP+ FP
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

Precision =

TP

TP+ FP

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

TP

Precision =
TP+ FP
TP
Recall =
TP+ FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

ID Connal el |
TP

Precision = /o se(ersive .

TP
P ditae

Recall =

Predicted Positive Predicted Negative

Actual Negative False Positive (FP) True Negative (TN)

Metrics < -

Precision and Recall

TP

retrieved elements

Precision =
TP+ FP
Recall =
TP+ FN
Predicted Positive Predicted Negative
\ Actual Positive\ True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

L

Chigsths.

How many retrieved
items are relevant?

Precision = ———

D
\

How many relevant
items are retrieved?

~"

Recall = —

C

[

Metrics

Precision and Recall

TP Of all instances predicted as positive, what fraction actually are positive?
Precision = Precision measures the reliability of positive predictions. High precision means tcelv
- false alarms. *
TP+ FP "=
When to care about precision?
When false positives are costly.
TP
Recall = Examples include spam filtering (users hate losing important emails), recommendation
TP + FN systems (irrelevant recommendations erode trust), and legal contexts (wrongful
accusations).
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

TP Of all actual positive instances, what fraction did we correctly identify? Recall
Precision = measures coverage of positive instances. High recall means few missed positives.

TP + F P When to care about recall?
When false negatives are costly.

TP Examples include disease screening (missing a diagnosis can be fatal), security
Recall = threats (missing an attack is catastrophic), and search engines (users want all relevant

TP + FN results).

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

TP

Precision and recall are inherently in tension.

Increasing the threshold for positive classification typically increases precision

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

Precision =

TP + FP

but decreases recall.
TP
Recall =
TP+ FN

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

TP

Precision =

TP + FP N

— Precision - Recall 2TP
TP Precision + Recall 2TP + FP+ FN
Recall = L Y
TP + FN The harmonic mean of precision and recall
F1 score is high only when both precision and recall are high

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

Precision =

Recall =

TP

TP+ FP

TP

I'P+ FN

- Precision - Recall 2TP
- Preczszon + Recall 2TP + FP+ FN
TN
Specificity =
TN + FP

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

Precision =

TP

TP+ FP

TP

Recall =
‘TP -+ FN\

- Precision - Recall 2TP
- Preczszon + Recall 2TP + FP+ FN
TN
Specificity =
TN + FP

Actual Positive

Actual Negative

Predicted Positive

True Positive (TP)

False Positive (FP)

Predicted Negative

False Negative (FN)

True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP
Precision =
TP + FP
TP
Recall =
TP+ FN

c . Precision - Recall 2TP
Precision + Recall 2TP + FP+ FN

I'N

Specificity =
DY = TN T FP

Predicted Positive

Predicted Negative

Actual Positive True Positive (TP)

False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

/

Metrics

Precision vs Recall Tradeoff - F1 Score

Precision =

Recall =

TP

TP+ FP

TP

I'P+ FN

- Precision - Recall 2TP
- Preczszon + Recall 2TP +FP+ FN
TN FP
Specificity = False Positive Rate =
TN + FP TN + FP

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP
Precision =
TP + FP
TP
Recall =
TP+ FN

F1

Specificity =

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

— p—
Actual Negative False Positive (FP) —True Negative (TN)

False Negative (FN)

Precision - Recall 2TP
Preczszon + Recall 2TP + FP+ FN
TN FP
False Positive Rate =
TN + FP TN + FP

Same denominator

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP
Precision = F1 =
TP+ FP
TP o
Recall = Specificity =
TP+ FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Precision - Recall 2TP
Preczszon + Recall 2TP + FP+ FN
TN FP
False Positive Rate =
TN + FP TN + FP

Same denominator

FPR = 1 - Specificity

Metrics

Precision =

—

Cat — O

Precision vs Recall Tradeoff - F1 Score
TP —— Precision - Recall B 2TP
TP + FP - Precision + Recall 2TP + FP + FN
TN FP
Specificity = False Positive Rate =
SRS IN + FP IN + FP

TP
Recall
{TP + FN,

~.

Predicted Positive

A BoS

Predicted Negative

Recall is the True Positive Rate

Actual Positive

@Dositive (TP)

—
Actual Negative

O —

False Positive (FP)

False Negative (FN)

ue Negative (TN)

o

Metrics

Why so many metrics?

I'P+ TN
I'P+ TN+ FP+ FN

Accuracy =
TP
Precision =
TP + FP
TP
Recall =

TP+ FN

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Assume your training data looks like this:

1000 rows f (1)

10 rows are spam emails
990 are legitimate emails —

Scenario 1:

Classifier always outputs legit
What is the accuracy?

Metrics

Why so many metrics?

I'P+ TN
I'P+ TN+ FP+ FN

Accuracy =
TP
Precision =
TP + FP
TP
Recall =

TP+ FN

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Assume your training data looks like this:

1000 rows
10 rows are spam emails
990 are legitimate emails

Scenario 1:

Classifier always outputs legit
What is the accuracy?

Acc =

0+ 990

0+990+0+ 10

=99 %

Metrics

Why so many metrics?

I'P+ TN
I'P+ TN+ FP+ FN

Accuracy =
TP
Precision =
TP + FP
TP
Recall =

TP+ FN

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Assume your training data looks like this:

1000 rows @
10 rows are spam emails =
990 are legitimate emails

Scenario 1: @

Classifier always outputs legit A, = 0+990 — 999,

What is the accuracy? 0+990+0+ 10

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate
What is the precision?

Metrics

Why so many metrics?

Assume your training data looks like this:

1000 rows

TP 4+ TN 10 rows are spam emails

990 are legitimate emails

Accuracy =
TP+ TN+ FP+FN Scenario 1:
o TP Classifier always outputs legit A, = 0+990 =999
Precision = What is the accuracy? 0+990 + 0+ 10
TP + FP
Scenario 2:
TP . | | N
Recall - Classifier predicts one spam email as spam, and rest as legitimate
- TP + FN What is the precision?
Precision = 130 = 100 %
Predicte;j‘:ositive Predicted Negative \—\)
W
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False itive (FP) True Negative (TN)

Metrics

Why so many metrics?

Assume your training data looks like this:

1000 rows

TP 4+ TN 10 rows are spam emails

990 are legitimate emails

Accuracy =
TP+ TN+ FP+FN Scenario 1:
o TP Classifier always outputs legit A, = 0+990 =999
Precision = What is the accuracy? 0+990+0+ 10

TP + FP |
Scenario 2:

Recall = Classifier predicts one spam email as spam, and rest as I@
- What is the precision?

IP+ FN

. I
_ Precision = —— = 100 %
Scenario 3: 1+

Predicted Positive Predicted Negative

Classifier always outputs spam

Actual Positive True Positive (TP) False Negative (FN) ‘ What is the recall?

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Why so many metrics?

Assume your training data looks like this:

1000 rows

TP 4+ TN 10 rows are spam emails —

990 are legitimate emails

TP + TN+ FP + FN Scenario 1:

4
TP Classifier always outputs legit ~ A, = 0+990 =999

Precision = What is the accuracy? — 0+990+0+ 10

TP + FP 1 - s
(owez) = i T T

— TP Classifier predicts one spam email as spam, and rest as legitimate
Recall = o What is the precision?
TP+ FN

Accuracy =

- 1
Precision = —— = 100 %
Scenario 3: 140 =
Predicted Positive Predicted Negative

Classifier always outputs spam

]) -
Actual Positive True Positive (TP) (False Negative (FN) What is the recall? L
—_— N~ L0 —,'(') Recall = =100 %
S — _ .) 10+0

Actual Negative False Positive (FP) True Negative (TN) q« o) _‘_\() (000

Metrics

Precision vs Recall Tradeoff - F1 Score

Question:

How is this a tradeoff?
How would you increase/decrease the true positives?

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

(9’\»\/“] eral) = 073

T (spn [Py = 0048

How is this a tradeoff?
How would you increase/decrease the true positives?

Question:

Answer: By changing the threshold

:\

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

TP TP
Precision = Recall =

Metrics TP + FP TP + FN

Precision vs Recall Tradeoff - F1 Score

Question:

How is this a tradeoff?
How would you increase/decrease the true positives?

Thweshe
d

Answer: By changing the threshold

Predicted Positive | Predicted Negative « Cat in image if P(Cdtl ima ge) >0 - (= §
VT e

Actual Positive

p

True Positive (TP) | False Negative (FN) * Precision goes , Recall 9093-

Actual Negative

False Positive (FP) True Negative (TN)

TP TP
Precision = Recall =

Metrics TP + FP TP + FN

Precision vs Recall Tradeoff - F1 Score

Qoce,
Question:
How is this a tradeoff?
How would you increase/decrease the true positives?
qdo Answer: By changing the threshold
g Predicted Positive Predicted Negative ° C I I I]
at in image if P(cat|image.}

Actual Positive ‘ True Positive (T P)/) False Negative (FN) ° PreCiSion goeS down

— _— — lﬁ
Actual Negative False Positive (Iﬂ True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

qut

Precision = Recall =

TP TP

TP+ FP TP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives?

Answer: By changing the threshold

{

Predicted Positive

Fhasted

ot G \
{

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

,‘ . I
« Catinimage if P(cat|image;) > 0.999

e Precision goes.RecaII goes

TP
- Precision = Recall =
Metrics TP + FP

TP + FN
Precision vs Recall Tradeoff - F1 Score

TP

Question:

How is this a tradeoff?
How would you increase/decrease the true positives?

o
— ’Answer: By changing the threshold

Predicted Positive Predicted Negative

» Cat in image if P(cat|image;) > 0.999

N
Actual Positive

True Positive (T False Negative (FN)

* Precision goes up, Recall goes down

Actual Negative

False Positive (FP)

— 3

True Negative (TN)

Metrics

Area Under Precision-Recall Curve (AUP)

Precision

A o¥ o7
1 143 ~x <
Al 4= 099
0.75
0.5
0.25
* O
0
>
0 0.25 0.5 0.75 1

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier: 4
y
Horizontal line at the
proportion of positives
(25% here).
0.75
AUC-PR equals the -
class proportion. No QO
predictive power. L2 0.5
O .
()
S
al
D25 sesvsusuasusununanananananuananananananana aRE AR A A A AR AR A
Random Baseline
0

0 0.25 0.5 0.75 1

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier: A

Horizontal line at the
proportion of positives
(25% here).

0.75)-
AUC-PR equals the
class proportion. No

predictive power. 05

Precision

Poor classifier:

025 =eesrnsennnnpasmasnnsnannnnnnsngrnsnannnnnnnnnsnnannnnnnnnnnnn
Precision drops steadily Random(Baseline
as recall increases. '
(

Still better than random, 0 ¢

between precision and

but significant tradeoff 0 0.25 0.5 0.75 1
recall. L

0-30 Recall

?(Sﬁ(qm\@wtuu.) =0 - % —> T

- ® Csen)@Maild) = 0-57 —b ARl
Metrics P Coponl ew,?)) 063 —» T

Area Under Precision-Recall Curve (AUP) /..,

\P Perfect classifier ~
Random classifier: / m

Perfect classifier:

Precision stays at 1.0
across all recall values.
AUC-PR =1.0.

’ .
Horizontal line at the E;/eecg?/ci)igiltigiorrect
prog)ortlon of positives 807 and all actual positives
(25% here). _7(/’ s

0.75}
AUC-PR equals the -
class proportion. No QO
predictive power. L2 0.5 .

8 ' Poor classifier assifier

Poor classifier: DL_ High precision

.25 ~eeeennnnnnnnnnnnnnnnnnnnnnnaTngnnnnnnnnnnnnnnnnnnnnnnnnns o maintained until high
Precision drops steadily Random Baseline recall.
as recall increases. The curve hugs the top-
Still better than random, 0 right corner.

but significant tradeoff 0 0.25 0.5
between precision and

o (Y\)(cmﬁlblm); 0-X% Recall 75/ Ror A/
—

TP FP

Metrics TPR =
AUC-ROC Curve

FPR =
TP+ FN IN+ FP

>

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

TP FP

Metrics TPR =
AUC-ROC Curve

FPR =
TP+ FN IN+ FP

>

Area Under Curve -

Receiver Operating Characteristics
0.75

AUC-ROC plots TPR against FPR
at all classification thresholds

between 0 and 1.
0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

TP FP

Metrics TPR =
AUC-ROC Curve

FPR =
TP+ FN IN+ FP

>

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

TP FP

Metrics TPR =
AUC-ROC Curve

FPR =
TP+ FN IN+ FP

>

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

TP FP

Metrics TPR = FPR =
TP+ FN IN + FP
AUC-ROC Curve
A
"\
q) “"
+ R
(4y] R
c | -
o) orsy v
-2 """
o et o’
(D ~" o
o o Random classifier
a |
o |
E 025y |
=]
0 | >
0 0.25 0.5 0.75 1

False Positive Rate

TP FP

Metrics TPR = FPR =
TP+ FN IN + FP
AUC-ROC Curve
A
L
() “"
-+ o
(4] o
 {
® oy
= /-
= ¢“‘
(CI)) os\ | 7 Random classifier
a | ST
GJ ttt
E 023y | /.
F """
0 AS >
0 0.25 0.5 0.75 1

False Positive Rate

Metrics
AUC-ROC Curve

True Positive Rate

0.75

o
o

0.25

TP FP

TPR = FPR =
I'N + FP

IP+ FN

‘$
*
"
*

Direction to
get better

Random classifier

Better classifier
+* Even better classifier

*
*
*
*
*
*
*
*
"
*

0.25 0.5 0.75 1

False Positive Rate

TP FP

i TPR = FPR =
Metrics TP+ FN I'N+ FP
AUC-ROC Curve

>

—_—

‘$
*
"
*

0.75)-F ===~

l

Random classifier

. Better classifier
Even better classifier - TPR: 0.75, FPR: 0.23

0.25

True Positive Rate

.
-

*
*
*
*
*
"
*

0 l 0.25> 0.5 0.75 1

False Positive Rate

>

TP FP

i TPR = FPR =
Metrics TP+ FN I'N + FP
AUC-ROC Curve

Random classifier

Better classifier - TPR: 0.75, FPR: 0.5

Even better classifier - TPR: 0.75, FPR: 0.23
L —

True Positive Rate

>
0 0.25 0.5 0.75 1

False Positive Rate

TP FP

i TPR = FPR =
Metrics TP+ FN I'N + FP
AUC-ROC Curve %@

Random classifier
TPR: 0.75, FPR: 0.75

0.25

True Positive Rate

False Positive Rate

TP FP

Metrics TPR =
AUC-ROC Curve

FPR =
TP+ FN I'N + FP

Perfect classifier

A

—

Q
e
©
oc
% o 075
2
=
75
8 05
o
v g 0.25
b"dam 0
0 0.25 0.5 0.75 1
L

False Positive Rate

TP FP

Metrics TPR = FPR =
TP+ FN IN + FP
éUC-ROC Curve
A
]
?‘(Gcrs\lm -—RQ“‘" .%
o
? A o 075
>
\ D os Area under the curve
D? AUC =1 - Perfect Classifier
(0)) 0.05 AUC = 0.5 - Random Classifier
?\ |§ ' AUC < 0.5 - Worse Than Random Classifier
0 >
0 0.25 0.5 0.75 1

False Positive Rate
Pl

Metrics

AUC-ROC Curve
— ‘ \Yee ..

?’(Gcrsm —Rec
P

/)

ffé\l\n\é ;n (\p- 0“‘0\36 CD, I/.O-i : J'>
% - Cof"\?"lie — FVe(gm LC. \°\55/ "]‘kvpd\‘) &e&d(
o= Comide o ~ecll Q\es&/ «H\m\9

ol (%,)

£3

Vs

TP FP

Metrics TPR =
AUC-ROC Curve

FPR =
TP+ FN IN+ FP

>

Intuition:

AUC equals the
probability that a
randomly chosen positive
instance is ranked
higher than a randomly
chosen negative instance
by the classifier's scores.

—_—

0.75

Area under the curve

AUC =1 - Perfect Classifier
0.05 AUC = 0.5 - Random Classifier
' AUC < 0.5 - Worse Than Random Classifier

True Positive Rate

>

0 0.25 0.5 0.75 1

False Positive Rate

Metrics

AUC-ROC Curve

Intuition:

AUC equals the
probability that a
randomly chosen positive
instance is ranked
higher than a randomly
chosen negative instance
by the classifier's scores.

Limitation:

ROC curves can be
overly optimistic for
highly imbalanced
datasets because the
FPR denominator is
dominated by the large
TN count.

True Positive Rate

0.75

o
o

0.25

TP FP

TPR =

FPR =
TP+ FN I'N + FP

Area under the curve

AUC =1 - Perfect Classifier
AUC = 0.5 - Random Classifier
AUC < 0.5 - Worse Than Random Classifier

>

0.25 0.5 0.75 1

False Positive Rate

Today’s Outline

» Metrics

* k-Nearest Neighbors

k-Nearest Neighbors

 KNN is a non-parametric, instance-based (lazy) learning algorithm.

It makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

k-Nearest Neighbors

 KNN is a non-parametric, instance-based (lazy) learning algorithm.

It makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

e Key ldea:
 Similar instances have similar labels.

« To classify a new point, find the K training instances closest to it and let
them vote

k-Nearest Neighbors
> s 2‘3 #@Qj —%‘&Qﬁr@

P é .
igh SAT ~ Ve
B g H(Dohaer e

xl x2 y Cl’)
T 2
x| 36 1500 =1 ‘SW .
x| 27 950 =0 | X C’“‘")
X n
x® | 37 1300 — 1
x® | 32 1550 _ 1
x® | 32 1000 -0 >
X2
xnew) | 39 1250 ?

k-Nearest Neighbors 1 .

k-Nearest Neighbors

Letk =3

Find k
nearest

neighbors . |

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3 Prediction for new student
4 Find k = majority(€p €)

nearest —
neighbors . | =T

o
o X
M o@o * **
o o

k-Nearest Neighbors
d

Algorithm:

x(new) * * Training Phase:

Store all training instances (X,,4i,> Yirain)

No computation required. We are not learning any
* * parameters
* * Prediction/Testing Phase:
ompute distance from new point/x ") §o every other
‘ ‘ oint in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
p 4. For regression, return mean or median of the values of

X, the k—neighbors

)
@
3
@
®

x(new)

A

k-Nearest Neighbors

score | Gotens
Y)Y

36 | 1500 = 1
2.7 950 @ =0
3.7 | 1300 = 1
3.2 | 1550 = 1
3.2 1000 | @ =0
o | 299 ?
0 SO0

Algorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n
(new) (1)) — (new) _ (D2
dex”, x0) = | 3 (" —)
=0
/ —

Manhattan Distance (L; Norm):
n
(new) (i) — (new) _ ,.(D)
d(x”, x0) = Y) — x|
j=0
Cosine Similarity:

new) . (D)

[l]| |

sim(x") x(0y =

(distance = 1 — sim(x""), xV))

The choice of the distance metric
fundamentally affects which points are being
considered “neighbors”

Algorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n
(new) (1)) — (new) __ .(D)\2
A, x0) = |) 6" = x0)
j=0

Manhattan Distance (L; Norm):
n
(new) (i) — (new) _ ,.(D)
dx, x0) = 3) — x|
j=0
Cosine Similarity:

new) . (D)

[l]| |

sim(x""), xV) =

(distance = 1 — sim(x""), xV))

Most common choice, but sensitive to feature
scales

Algorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) (1)) — (new) _ (D2

A, x0) = |) 6 = x0)
j=0

Manhattan Distance (L; Norm):
n
(new) () — (new) _ ()
dx", xV) = Z |, x50
j=0
Cosine Similarity:

new) . (D)

[l]| |

sim(x""), xV) =

(distance = 1 — sim(x""), xV))

Sum of absolute differences.
More robust to outliers than Euclidean.
Appropriate when features represent
fundamentally different quantities.

Algorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) (1)) — (new) _ (D2

A, x0) = |) 6 = x0)
j=0

Manhattan Distance (L; Norm):
n
(new) (i) — (new) _ ,.(D)
dx, x0) = 3) — x|
j=0
Cosine Similarity:

new) . (D)

e[|

sim(x"e) x0y =

(distance = 1 — sim(x""), xV))

Measures angle between vectors, ignoring
magnitude.
Useful for text data and high-dimensional
sparse vectors.

Algorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Nelghbors

Hamming Distance:

dx, x0) = Y 1 (e 2 x0) 2?

j=0

Hamming distance is a metric for comparing sequences
of equal length - it counts the number of positions
where corresponding elements differ.

Example:
d([red, @mund] [red, l@ round]) = 1
d([cat young, male] [dog, old, female}) = 3
dACGT,ACTT)=1 —

Use Cases:

Categorical features: When features are categorical (say
state a person lives in), Euclidean distance is
meaningless.

Hamming distance treats each feature as equal - either it
matches or it doesn’t.

ke
5. - Cendy, .

quMAF]é@

gorithm:

Training Phase:

Store all training instances (Xy,qin> Yirain)
No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compuite distance from new point x**") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors A e
Choosing k

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff

Small k (e.g. k = 1) Large k (e.g.@)

—

-(High variance?iow bias

» Decision boundary is highly
irregular

» Very sensitive to noise and
outliers—

—

* Prone to overfitting, but
can capture fine grained
structure

k-Nearest Neighbors |, _
Choosing k L%{

« kis the primary hyper-parameter controlling the bias-variance tradeoff

Small k (e.g. k = 1) Large k (e.g. k = m)
* High variance, low bias * High bias, low variance
_—

« Decision boundary is highly « Decision boundary is very
irregular smooth

» Very sensitive to noise and * Robust to noise, but may
outliers miss local patterns

* Prone to overfitting, but At the extreme of k = m,
can capture fine grained always predicts majority

structure class

k-Nearest Neighbors

Choosing k

X L 2 ‘.

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff

Small k (e.g. k = 1)

* High variance, low bias

» Decision boundary is highly
irregular

» Very sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

Practical Tips

 Start withk =+4/m

* Use cross-validation to
select optimal k

f k is odd, it avoids ties i
binary classification

» k should be smaller than
the smallest class size

Large & (e.g. k = m)
High bias, low variance

Decision boundary is very
smooth

Robust to noise, but may
miss local patterns

At the extreme of k = m,
always predicts majority
class

k-Nearest Neighbors i RS
Choosing k *% o

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff
k=1

3
f ..oo :!‘0 .. o’

** *
k-Nearest Neighbors | RSy
Choosing k *% o

X

« kis the primary hyper-parameter controlling the bias-variance tradeoff
k=1 k=3

k-Nearest Neighbors
Choosing k

47(,/_/ -) =

A

*
A
¢ ¢
X 0‘0* **
L 2
_) o o

« kis the primary hyper-parameter controlling the bias-variance tradeoff

k=1

k=3

k=31

L
: ..Oo ."0‘ .. o.

k-Nearest Neighbors

Choosing k - Cross-validation

 Why Not Just Use Training Error?

* A model that memorizes the training data achieves zero training error but
fails on new data.

e Training error is a biased (optimistic) estimate of true generalization
performance.

* We need to estimate how well our model will perform on unseen data.

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split

« Split data into training set (say 80%) and test set (20%).
* Train on training set, evaluate on test set.
* Issues:
» Wastes data - 20% of precious labeled data is never used for training

» High variance - Performance estimate depends heavily on which points land in the
test set

* No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split

 Data Leakage Issue

 If we repeatedly evaluate on the test set while tuning hyperparameters,
information about the test set leaks into our model selection process.

* The test error becomes optimistically biased - no longer a valid estimate
of generalization

k-Nearest Neighbors

Choosing k - Cross-validation

e Solution!
e Use cross-validation
« Use all data for both training and validation
* Get reliable performance estimates with uncertainty quantification

« Select hyperparameters without contaminating the final test set

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®

o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

, teston 2

1
CVy=—= D £0ip, J D)

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row

1
=1 Y 0, FoD)
DZ

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row

1
V=g Y £, fADy)
D

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row

1
CV4 = 34 Z Lﬂ(yDy fé(D4))
D,

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

Algorithm

(1 Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
x® Trai test on 2

rain on , teston 2. Split data into k equally-sized folds (or partitions)

3) row
X

(4) 1 3.foreachfoldi=1, 2, ..., k:
* CVs = D- Z £(py fo(Ds))
x® > Dj 3a. Use fold i as the validation set
x©) .

3b. Use the remaining k — i folds as the training set

D

® 3c. Train the model on the training set
X
x® 3d. Evaluate on the validation set, record performance metric
x10) 4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row

Mean CV Score:

1S
CVZZZ'CVZ'

Algorithm
1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi=1, 2, ..., k:
3a. Use fold i as the validation set
3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

ey Let’s say we want to run
@) k = 5-fold cross validation k-value Training Size Properties
X Train on , teston 2
x® o High Bias
k=2 50% Low Variance
@ Mean CV Score: Fast
&) X
X - 1
x(© k= Commonly Used
1=
@)
x .
x® Commonly Used
x® Low Bias
10) k=m-1 m-1 samples Highest Variance
* Slow

k-Fold Cross Validation

Algorithm

D
JNG)
NE)
@
NE)
+©
D
+®
o)

5 (10)

Let’s say we want to run
k = 5-fold cross validation

Train on , teston 2
row
Mean CV Score:
B L
V= Y v,

i=1

k-fold CV requires
training £ models.

If training is expensive,

W

-

k-value Training Size Properties
High Bias
k=2 50% Low Variance
Fast
Good Balance
— 0]
k=5 80% Commonly Used
Low Bias
— (0]
k=10 90% Commonly Used
Low Bias
k=m-1 m-1 samples Highest Variance
Slow

k-Fold Cross Validation

Variants
X, X X3 X Stratified Cross-Validation
x * The Problem with Random Splits
x@ , S . o
* For imbalanced classification, random splits may create folds with different class
3) distributions.
X
x@ * One fold might have 40% positives while another has 20%, leading to unreliable
5 estimates.
x©
(6) « Stratified sampling ensures each fold has approximately the same class distribution as
* the full dataset.
D
e Algorithm:
x®
o) » Separate samples by class
x10) For each class, distribute samples evenly across k—folds

e Combine to form final folds

Back to k-Nearest Neighbors

Practical Issues

» Feature Scaling
» Curse of Dimensionality

« Space and computational complexity

Back to k-Nearest Neighbors

Practical Issues - Feature Scaling

 KNN is highly sensitive to feature scales because distance metrics are
dominated by features with larger ranges.

« Example:
« |f feature A ranges from 0-1 and feature B ranges from 0-1000
* Euclidean distance is almost entirely determined by feature B.

e Solution: Always normalize or standardize features before applying kNN.

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

 KNN suffers severely in high-dimensional spaces:

e Distance concentration: As dimensionality increases, distances between
points become increasingly similar.

* The ratio of nearest to farthest neighbor approaches 1, making the
concept of “nearest” meaningless.

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

KNN suffers severely in high-dimensional spaces:
» Distance concentration: As dimensionality increases, distances between points become increasingly similar.

* The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.

Sparsity: The volume of space grows exponentially with dimension. To maintain the same density of points, training
set size must grow exponentially.

Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance calculations.

Mitigation strategies:
» Dimensionality reduction (PCA, feature selection)
* Feature weighting based on relevance

» Consider other algorithms for d > 20

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

Training: O(1) - just store the data

Prediction (naive):
« O(nm) per query, where m is training set size and » is dimensionality.

* Must compute distance to all m points.

Prediction (optimized) - Data structures can accelerate nearest neighbor search:

» KD-trees: O(nlogm) average case for low dimensions, but degrades to O(nm) in high dimensions

» Ball trees: Better for high dimensions than KD-trees
—

« Locality-sensitive hashing (LSH): Approximate nearest neighbors in O(n) with preprocessing

Space complexity: O(nm) to store the training data.

Back to k-Nearest Neighbors

Practical Issues

Pros

» Simple to understand and implement
* No training phase (fast to “train”)
* Naturally handles multi-class classification

* Non-parametric: makes no distributional
assumptions

» Can capture arbitrarily complex decision boundaries

» Easily adapts to new training data (just add it)

Cons

Slow prediction for large datasets
High memory requirement (stores all training data)
Sensitive to irrelevant features and feature scaling

Struggles in high dimensions (curse of
dimensionality)

No interpretable model or feature importance

Requires meaningful distance metric

Back to k-Nearest Neighbors
When to use k-NN?

Use Don’t Use

Small to medium datasets

Large datasets with real-time prediction
requirements

Low to moderate dimensionality (n < 20)

Very high-dimensional data

Non-linear decision boundaries expected

. . . . Features have varying relevance
» Data arrives incrementally (online learning)

. . Interpretability is required
* Quick baseline model needed

Next Class

* Logistic Regression

* Brush up on conditional probability, Bayes’ Theorem and Bernoulli
Distribution

