
Monday | February 2, 2026

Nearest Neighborsk−
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Today’s Outline

• Metrics

• k-Nearest Neighbors

Updates

• Office hour timings

• Topic based office hours

• Homework 2 is out - due Friday Feb 15th 11:59PM

• Homework 1 - answers on Wednesday

• Final exam dates

• Functions that can be considered linear regression

9 I

if 0 no 0 0 ni

Tinero em
n

Metrics

• An obvious metric is accuracy

 

• Say you have a cat classifier with 1000 images. Your classifier gets 797 out of
1000 images correct

Accuracy = Number of Correct Predictions
Total Number of Data Points

Accuracy = 797
1000 = 79 %

Metrics

• But, accuracy does not tell the whole picture

• Especially when data is skewed

• For example, if your training data is of size 1000 images

• 900 of them are of dogs

• 100 of them are cats

• Question: Is accuracy a good metric in this case?

Metrics
Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive

Actual Negative

True Positive false Negatie

False Positive True
Negative

Metrics
Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics
Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics
Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Accuracy

Metrics
Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

The proportion of correct predictions.

Simple and intuitive, but misleading for imbalanced data.

A classifier that always predicts the majority class achieves high accuracy
on imbalanced datasets while being useless.

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision IFIP
Recall FÉN

E

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Criminaltrials

expensive

D disease I

Metrics
Precision and Recall

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

At

Algae

Metrics
Precision and Recall

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Of all instances predicted as positive, what fraction actually are positive?  
Precision measures the reliability of positive predictions. High precision means few
false alarms.

When to care about precision?  
When false positives are costly.  
 
Examples include spam filtering (users hate losing important emails), recommendation
systems (irrelevant recommendations erode trust), and legal contexts (wrongful
accusations).

Metrics
Precision and Recall

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Of all actual positive instances, what fraction did we correctly identify? Recall
measures coverage of positive instances. High recall means few missed positives. 
 
When to care about recall?  
When false negatives are costly.

Examples include disease screening (missing a diagnosis can be fatal), security
threats (missing an attack is catastrophic), and search engines (users want all relevant
results).

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Precision and recall are inherently in tension.

Increasing the threshold for positive classification typically increases precision
but decreases recall.

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

The harmonic mean of precision and recall

F1 score is high only when both precision and recall are high

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP
False Positive Rate =

FP
TN + FP

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP
False Positive Rate =

FP
TN + FP

Same denominator

e

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP
False Positive Rate =

FP
TN + FP

Same denominator

FPR = 1 - Specificity

7

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

= 2TP
2TP + FP + FN

Specificity =
TN

TN + FP
False Positive Rate =

FP
TN + FP

Recall is the True Positive Rate

O
O
00

Metrics
Why so many metrics?

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Assume your training data looks like this:

1000 rows 
10 rows are spam emails 
990 are legitimate emails

Scenario 1:

Classifier always outputs legit 
What is the accuracy?

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision?

Scenario 3:

Classifier always outputs spam 
What is the recall?

Acc = 10 + 0
10 + 0 + 990 + 0 = 1 %

Accuracy =
TP + TN

TP + TN + FP + FN

Precision = 10
10 + 990 = 1 %

Recall = 10
10 + 0 = 100 %

Metrics
Why so many metrics?

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Assume your training data looks like this:

1000 rows 
10 rows are spam emails 
990 are legitimate emails

Scenario 1:

Classifier always outputs legit 
What is the accuracy?

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision?

Scenario 3:

Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy =
TP + TN

TP + TN + FP + FN

Precision = 10
10 + 990 = 1 %

Recall = 10
10 + 0 = 100 %

Metrics
Why so many metrics?

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Assume your training data looks like this:

1000 rows 
10 rows are spam emails 
990 are legitimate emails

Scenario 1:

Classifier always outputs legit 
What is the accuracy?

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision?

Scenario 3:

Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy =
TP + TN

TP + TN + FP + FN

Precision = 10
10 + 990 = 1 %

Recall = 10
10 + 0 = 100 %

Metrics
Why so many metrics?

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Assume your training data looks like this:

1000 rows 
10 rows are spam emails 
990 are legitimate emails

Scenario 1:

Classifier always outputs legit 
What is the accuracy?

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision?

Scenario 3:

Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy =
TP + TN

TP + TN + FP + FN

Precision = 1
1 + 0 = 100 %

Recall = 10
10 + 0 = 100 %

Metrics
Why so many metrics?

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Assume your training data looks like this:

1000 rows 
10 rows are spam emails 
990 are legitimate emails

Scenario 1:

Classifier always outputs legit 
What is the accuracy?

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision?

Scenario 3:

Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy =
TP + TN

TP + TN + FP + FN

Precision = 1
1 + 0 = 100 %

Recall = 10
10 + 0 = 100 %

3

Metrics
Why so many metrics?

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Assume your training data looks like this:

1000 rows 
10 rows are spam emails 
990 are legitimate emails

Scenario 1:

Classifier always outputs legit 
What is the accuracy?

Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate  
What is the precision?

Scenario 3:

Classifier always outputs spam 
What is the recall?

Acc = 0 + 990
0 + 990 + 0 + 10 = 99 %

Accuracy =
TP + TN

TP + TN + FP + FN

Precision = 1
1 + 0 = 100 %

Recall = 10
10 + 0 = 100 %

0 to it

0
a

10
Foo

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

P spamemail 0 73 090
P spath othema 0.45

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes down, Recall goes up

ℙ(cat | imagei) ≥ 0

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Threshold

1 at

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes down, Recall goes up

ℙ(cat | imagei) ≥ 0

Precision =
TP

TP + FP
Recall =

TP
TP + FN

docats

90

E

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes up, Recall goes down

ℙ(cat | imagei) ≥ 0.999

Precision =
TP

TP + FP
Recall =

TP
TP + FN

threshod

fat poteat I

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes up, Recall goes down

ℙ(cat | imagei) ≥ 0.999

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Franta
0

0

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random Baseline

Random classifier:  
 
Horizontal line at the
proportion of positives
(25% here). 
 
AUC-PR equals the
class proportion. No
predictive power.

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Poor classifier

Random Baseline

Random classifier:  
 
Horizontal line at the
proportion of positives
(25% here). 
 
AUC-PR equals the
class proportion. No
predictive power.

Poor classifier:  
 
Precision drops steadily
as recall increases.  
 
Still better than random,
but significant tradeoff
between precision and
recall.

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

go

threshold

020

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Good classifier

Poor classifier

Random Baseline

Random classifier:  
 
Horizontal line at the
proportion of positives
(25% here). 
 
AUC-PR equals the
class proportion. No
predictive power.

Poor classifier:  
 
Precision drops steadily
as recall increases.  
 
Still better than random,
but significant tradeoff
between precision and
recall.

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Good classifier:  
 
High precision
maintained until high
recall.  
 
The curve hugs the top-
right corner.

P spamemail2 0 75 spam

spamemails 0.59 n Notspam
P span emails 0 63 Spam

threshold

754
ae

aff

P cancerbloodtest 035 75 joy 95

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Area Under Curve - 
Receiver Operating Characteristics

AUC-ROC plots TPR against FPR
at all classification thresholds

between 0 and 1.

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

T

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier
Even better classifier

Direction to
get better

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier
Even better classifier - TPR: 0.75, FPR: 0.23

u

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier - TPR: 0.75, FPR: 0.5
Even better classifier - TPR: 0.75, FPR: 0.23

0

11

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier 
TPR: 0.75, FPR: 0.75

Better classifier - TPR: 0.75, FPR: 0.5
Even better classifier - TPR: 0.75, FPR: 0.23

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve

Emmmm

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve
AUC = 1 - Perfect Classifier 
AUC = 0.5 - Random Classifier  
AUC < 0.5 - Worse Than Random Classifier

I

of

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve
AUC = 1 - Perfect Classifier 
AUC = 0.5 - Random Classifier  
AUC < 0.5 - Worse Than Random Classifier

threshold O 7we

is
smt

M

p

a r o
P 1IIdo.innp.am

o 1Ixycompute precision classthresh Recall

z compile recall class thrash

plot my

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve
AUC = 1 - Perfect Classifier 
AUC = 0.5 - Random Classifier  
AUC < 0.5 - Worse Than Random Classifier

Intuition:  
AUC equals the
probability that a
randomly chosen positive
instance is ranked
higher than a randomly
chosen negative instance
by the classifier's scores.

EG

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve
AUC = 1 - Perfect Classifier 
AUC = 0.5 - Random Classifier  
AUC < 0.5 - Worse Than Random Classifier

Intuition:  
AUC equals the
probability that a
randomly chosen positive
instance is ranked
higher than a randomly
chosen negative instance
by the classifier's scores.

Limitation:  
ROC curves can be
overly optimistic for
highly imbalanced
datasets because the
FPR denominator is
dominated by the large
TN count.

Today’s Outline

• Metrics

• k-Nearest Neighbors

k-Nearest Neighbors

• KNN is a non-parametric, instance-based (lazy) learning algorithm.

• It makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

O

k-Nearest Neighbors

• KNN is a non-parametric, instance-based (lazy) learning algorithm.

• It makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

• Key Idea:

• Similar instances have similar labels.

• To classify a new point, find the K training instances closest to it and let
them vote

k-Nearest Neighbors

x1

x2

3.6 1500 = 1

2.7 950 = 0

3.7 1300 = 1

3.2 1550 = 1

3.2 1000 = 0

3.2 1250 ?

x1 x2 y

High
School

GPA
SAT  

Scores Get Into
College?

x(1)

x(2)

x(3)

x(4)

x(5)

x(new)

2 22 2

student eighth
feature

22 student 2

x ̅

k-Nearest Neighbors

x1

x2

Does this
student get
in or not?  

19 3

09
0

k-Nearest Neighbors

x1

x2

Let  
Find

nearest
neighbors

k = 3
k

k-Nearest Neighbors

x1

x2

Let  
Find

nearest
neighbors

k = 3
k

k-Nearest Neighbors

x1

x2

Let  
Find

nearest
neighbors

k = 3
k

Prediction for new student  
= majority()  

 
=

k-Nearest Neighbors

x1

x2

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

x(new)

d

FF

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

3.6 1500 = 1

2.7 950 = 0

3.7 1300 = 1

3.2 1550 = 1

3.2 1000 = 0

3.2 1250 ?

x1 x2 y

High
School

GPA
SAT  

Scores Get Into
College?

x(1)

x(2)

x(3)

x(4)

x(5)

x(new)

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

The choice of the distance metric
fundamentally affects which points are being

considered “neighbors”Euclidean Distance (Norm):  
 

Manhattan Distance (Norm): 
 

Cosine Similarity:

  
 
()

L2

d(x(new), x(i)) =
n

∑
j=0

(x(new)
j − x(i)

j)2

L1

d(x(new), x(i)) =
n

∑
j=0

|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

Euclidean Distance (Norm):  
 

Manhattan Distance (Norm): 
 

Cosine Similarity:

  
 
()

L2

d(x(new), x(i)) =
n

∑
j=0

(x(new)
j − x(i)

j)2

L1

d(x(new), x(i)) =
n

∑
j=0

|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

Most common choice, but sensitive to feature
scales

Euclidean Distance (Norm):  
 

Manhattan Distance (Norm): 
 

Cosine Similarity:

  
 
()

L2

d(x(new), x(i)) =
n

∑
j=0

(x(new)
j − x(i)

j)2

L1

d(x(new), x(i)) =
n

∑
j=0

|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

Sum of absolute differences.  
More robust to outliers than Euclidean.

Appropriate when features represent
fundamentally different quantities.

Euclidean Distance (Norm):  
 

Manhattan Distance (Norm): 
 

Cosine Similarity:

  
 
()

L2

d(x(new), x(i)) =
n

∑
j=0

(x(new)
j − x(i)

j)2

L1

d(x(new), x(i)) =
n

∑
j=0

|x(new)
j − x(i)

j |

sim(x(new), x(i)) = x(new) ⋅ x(i)

∥x(new)∥∥x(i)∥
distance = 1 − sim(x(new), x(i))

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

Measures angle between vectors, ignoring
magnitude.  

Useful for text data and high-dimensional
sparse vectors.

Hamming Distance:  
 

Hamming distance is a metric for comparing sequences
of equal length - it counts the number of positions
where corresponding elements differ.

Example:  

 

Use Cases: 
Categorical features: When features are categorical (say
state a person lives in), Euclidean distance is
meaningless.  
Hamming distance treats each feature as equal - either it
matches or it doesn’t.

d(x(new), x(i)) =
n

∑
j=0

1 ⋅ (x(new)
j ≠ x(i)

j)

d([red, small, round], [red, large, round]) = 1
d([cat, young, male], [dog, old, female]) = 3
d(ACGT, ACTT) = 1

k-Nearest Neighbors

Algorithm:

Training Phase:  
Store all training instances  
No computation required. We are not learning any
parameters

Prediction/Testing Phase: 
1. Compute distance from new point to every other
point in the training data  
2. Select the top nearest neighbors  
3. For classification, return majority class amongst top  
4. For regression, return mean or median of the values of
the neighbors

(xtrain, ytrain)

x(new)

k−
k

k−

2 State

012 Gender

n MA F
227 MAM

• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

• High bias, low variance

• Decision boundary is very
smooth

• Robust to noise, but may
miss local patterns

• At the extreme of ,
always predicts majority
class

k = m

ELEE

• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

• High bias, low variance

• Decision boundary is very
smooth

• Robust to noise, but may
miss local patterns

• At the extreme of ,
always predicts majority
class

k = m

Practical Tips

• Start with

• Use cross-validation to
select optimal

• If is odd, it avoids ties in
binary classification

• should be smaller than
the smallest class size

k = m

k

k

k

k-Nearest Neighbors
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
• is the primary hyper-parameter controlling the bias-variance tradeoff k

k-Nearest Neighbors
Choosing k

x1

x2

\x1 x1 x1

x2x2x2

k = 1 k = 3 k = 31
• is the primary hyper-parameter controlling the bias-variance tradeoff k

f

0 I
Iverfitting

k-Nearest Neighbors
Choosing k - Cross-validation

• Why Not Just Use Training Error?

• A model that memorizes the training data achieves zero training error but
fails on new data.

• Training error is a biased (optimistic) estimate of true generalization
performance.

• We need to estimate how well our model will perform on unseen data.

k-Nearest Neighbors
Choosing k - Cross-validation

• Naive Solution - Train/Test Split

• Split data into training set (say 80%) and test set (20%).

• Train on training set, evaluate on test set.

• Issues:

• Wastes data - 20% of precious labeled data is never used for training

• High variance - Performance estimate depends heavily on which points land in the
test set

• No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors
Choosing k - Cross-validation

• Naive Solution - Train/Test Split

• Data Leakage Issue

• If we repeatedly evaluate on the test set while tuning hyperparameters,
information about the test set leaks into our model selection process.

• The test error becomes optimistically biased - no longer a valid estimate
of generalization

k-Nearest Neighbors
Choosing k - Cross-validation

• Solution!

• Use cross-validation

• Use all data for both training and validation

• Get reliable performance estimates with uncertainty quantification

• Select hyperparameters without contaminating the final test set

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV1 = 1
D1 ∑

D1

ℓ(yD1
, fθ(D1))

Validation Set D1

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV2 = 1
D2 ∑

D2

ℓ(yD2
, fθ(D2))

Validation Set D2

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV3 = 1
D3 ∑

D3

ℓ(yD3
, fθ(D3))

Validation Set D3

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV4 = 1
D4 ∑

D4

ℓ(yD4
, fθ(D4))

Validation Set D4

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

CV5 = 1
D5 ∑

D5

ℓ(yD5
, fθ(D5))

Validation Set D5

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

Mean CV Score:

C̄V = 1
k

k

∑
i=1

CVi

k-Fold Cross Validation
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

Mean CV Score:

C̄V = 1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

k-Fold Cross Validation
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5
Train on 8 rows, test on 2
row

Mean CV Score:

C̄V = 1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

-fold CV requires  
training models.

If training is expensive,
smaller is preferred.

k
k

k

k-Fold Cross Validation
Variants

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4 Stratified Cross-Validation

• The Problem with Random Splits

• For imbalanced classification, random splits may create folds with different class
distributions.

• One fold might have 40% positives while another has 20%, leading to unreliable
estimates.

• Stratified sampling ensures each fold has approximately the same class distribution as
the full dataset.

• Algorithm:

• Separate samples by class

• For each class, distribute samples evenly across folds

• Combine to form final folds

k−

• Feature Scaling

• Curse of Dimensionality

• Space and computational complexity

Back to k-Nearest Neighbors
Practical Issues

• KNN is highly sensitive to feature scales because distance metrics are
dominated by features with larger ranges.

• Example:

• If feature A ranges from 0-1 and feature B ranges from 0-1000

• Euclidean distance is almost entirely determined by feature B.

• Solution: Always normalize or standardize features before applying kNN.

Back to k-Nearest Neighbors
Practical Issues - Feature Scaling

• KNN suffers severely in high-dimensional spaces:

• Distance concentration: As dimensionality increases, distances between
points become increasingly similar.

• The ratio of nearest to farthest neighbor approaches 1, making the
concept of “nearest” meaningless.

Back to k-Nearest Neighbors
Practical Issues - Curse of Dimensionality

r = ϵ

r = 1

• KNN suffers severely in high-dimensional spaces:

• Distance concentration: As dimensionality increases, distances between points become increasingly similar.

• The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.

• Sparsity: The volume of space grows exponentially with dimension. To maintain the same density of points, training
set size must grow exponentially.

• Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance calculations.

• Mitigation strategies:

• Dimensionality reduction (PCA, feature selection)

• Feature weighting based on relevance

• Consider other algorithms for d > 20

Back to k-Nearest Neighbors
Practical Issues - Curse of Dimensionality

• Training: - just store the data

• Prediction (naive):

• per query, where is training set size and is dimensionality.

• Must compute distance to all points.

• Prediction (optimized) - Data structures can accelerate nearest neighbor search:

• KD-trees: average case for low dimensions, but degrades to in high dimensions

• Ball trees: Better for high dimensions than KD-trees

• Locality-sensitive hashing (LSH): Approximate nearest neighbors in with preprocessing

• Space complexity: to store the training data.

O(1)

O(nm) m n

m

O(nlogm) O(nm)

O(n)
O(nm)

Back to k-Nearest Neighbors
Practical Issues - Computational Complexity

Back to k-Nearest Neighbors
Practical Issues

• Simple to understand and implement

• No training phase (fast to “train”)

• Naturally handles multi-class classification

• Non-parametric: makes no distributional
assumptions

• Can capture arbitrarily complex decision boundaries

• Easily adapts to new training data (just add it)

• Slow prediction for large datasets

• High memory requirement (stores all training data)

• Sensitive to irrelevant features and feature scaling

• Struggles in high dimensions (curse of
dimensionality)

• No interpretable model or feature importance

• Requires meaningful distance metric

Pros Cons

Back to k-Nearest Neighbors
When to use k-NN?

• Small to medium datasets

• Low to moderate dimensionality (< 20)

• Non-linear decision boundaries expected

• Data arrives incrementally (online learning)

• Quick baseline model needed

n
• Large datasets with real-time prediction

requirements

• Very high-dimensional data

• Features have varying relevance

• Interpretability is required

Use Don’t Use

Next Class

• Logistic Regression

• Brush up on conditional probability, Bayes’ Theorem and Bernoulli
Distribution

