

# **$k$ —Nearest Neighbors**

**DS 4400 | Machine Learning and Data Mining I**

**Zohair Shafi**

**Spring 2026**

**Monday | February 2, 2026**

# Today's Outline

- **Metrics**
- k-Nearest Neighbors

# Updates

- Office hour timings
- Topic based office hours
- Homework 2 is out - due Friday Feb 15th 11:59PM
- Homework 1 - answers on Wednesday
- Final exam dates
- Functions that can be considered linear regression

# Metrics

- An obvious metric is **accuracy**

$$Accuracy = \frac{\text{Number of Correct Predictions}}{\text{Total Number of Data Points}}$$

- Say you have a cat classifier with 1000 images. Your classifier gets 797 out of 1000 images correct

$$Accuracy = \frac{797}{1000} = 79\%$$

# Metrics

- But, accuracy does not tell the whole picture
- Especially when data is skewed
  - For example, if your training data is of size 1000 images
    - 900 of them are of dogs
    - 100 of them are cats
  - **Question:** Is accuracy a good metric in this case?

# Metrics

## Confusion Matrix

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> |                           |                           |
| <b>Actual Negative</b> |                           |                           |

# Metrics

## Confusion Matrix

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Confusion Matrix

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Confusion Matrix

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Accuracy

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

The proportion of correct predictions.

Simple and intuitive, but misleading for imbalanced data.

A classifier that always predicts the majority class achieves high accuracy on imbalanced datasets while being useless.

# Metrics

## Precision and Recall

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

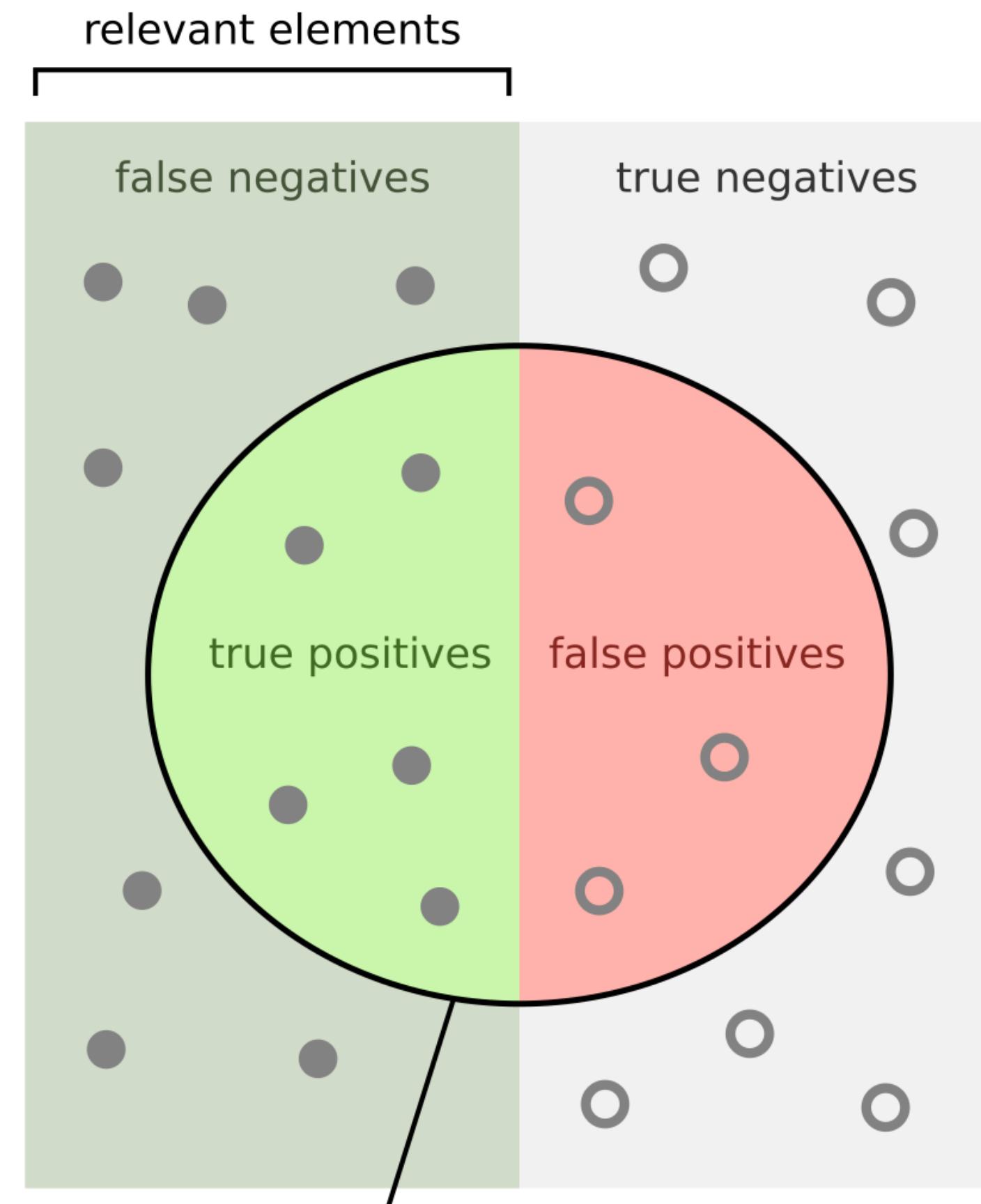
|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

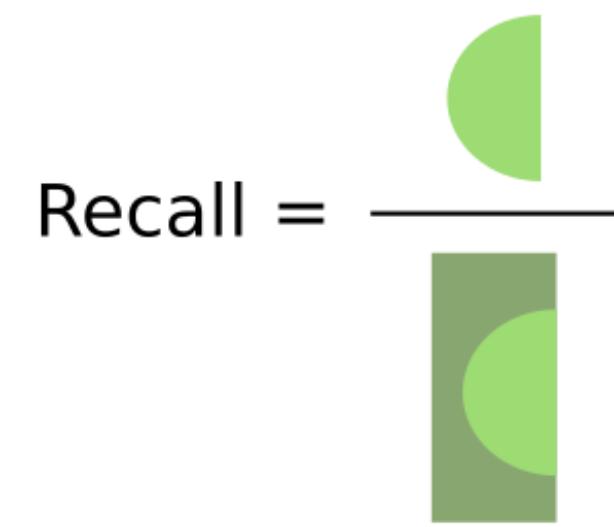


How many retrieved items are relevant?

$$\text{Precision} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$



How many relevant items are retrieved?



$$\text{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

Of all instances predicted as positive, what fraction actually are positive? Precision measures the **reliability of positive predictions**. High precision means **few false alarms**.

$$\text{Recall} = \frac{TP}{TP + FN}$$

**When to care about precision?**  
When false positives are costly.

Examples include spam filtering (users hate losing important emails), recommendation systems (irrelevant recommendations erode trust), and legal contexts (wrongful accusations).

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

# Metrics

## Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

Of all actual positive instances, **what fraction did we correctly identify?** Recall measures coverage of positive instances. High recall means **few missed positives**.

**When to care about recall?**

When false negatives are costly.

$$\text{Recall} = \frac{TP}{TP + FN}$$

Examples include disease screening (missing a diagnosis can be fatal), security threats (missing an attack is catastrophic), and search engines (users want all relevant results).

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

Precision and recall are **inherently in tension**.

$$\text{Recall} = \frac{TP}{TP + FN}$$

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

The harmonic mean of precision and recall

F1 score is high only when **both** precision and recall are high

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

$$\text{False Positive Rate} = \frac{FP}{TN + FP}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

$$\text{False Positive Rate} = \frac{FP}{TN + FP}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

Same denominator

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

$$\text{False Positive Rate} = \frac{FP}{TN + FP}$$

Same denominator

FPR = 1 - Specificity

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$F1 = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall} = \frac{2TP}{2TP + FP + FN}$$

$$\boxed{\text{Recall} = \frac{TP}{TP + FN}}$$

$$\text{Specificity} = \frac{TN}{TN + FP}$$

$$\text{False Positive Rate} = \frac{FP}{TN + FP}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

**Recall is the True Positive Rate**

# Metrics

## Why so many metrics?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

Assume your training data looks like this:

1000 rows  
10 rows are spam emails  
990 are legitimate emails

Scenario 1:

Classifier always outputs legit  
**What is the accuracy?**

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Why so many metrics?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

Assume your training data looks like this:

1000 rows  
10 rows are spam emails  
990 are legitimate emails

Scenario 1:

Classifier always outputs legit  
**What is the accuracy?**

$$Acc = \frac{0 + 990}{0 + 990 + 0 + 10} = 99\%$$

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Why so many metrics?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

Assume your training data looks like this:

1000 rows  
10 rows are spam emails  
990 are legitimate emails

Scenario 1:

Classifier always outputs legit  
**What is the accuracy?**

$$Acc = \frac{0 + 990}{0 + 990 + 0 + 10} = 99\%$$

Scenario 2:

Classifier predicts **one** spam email as spam, and rest as legitimate  
**What is the precision?**

# Metrics

## Why so many metrics?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

Assume your training data looks like this:

1000 rows  
10 rows are spam emails  
990 are legitimate emails

Scenario 1:

Classifier always outputs legit  
**What is the accuracy?**

$$Acc = \frac{0 + 990}{0 + 990 + 0 + 10} = 99\%$$

Scenario 2:

Classifier predicts **one** spam email as spam, and rest as legitimate  
**What is the precision?**

$$Precision = \frac{1}{1 + 0} = 100\%$$

# Metrics

## Why so many metrics?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

Assume your training data looks like this:

1000 rows  
10 rows are spam emails  
990 are legitimate emails

Scenario 1:

Classifier always outputs legit  
**What is the accuracy?**

$$Acc = \frac{0 + 990}{0 + 990 + 0 + 10} = 99\%$$

Scenario 2:

Classifier predicts **one** spam email as spam, and rest as legitimate  
**What is the precision?**

$$Precision = \frac{1}{1 + 0} = 100\%$$

Scenario 3:

Classifier always outputs spam  
**What is the recall?**

# Metrics

## Why so many metrics?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

Assume your training data looks like this:

1000 rows  
10 rows are spam emails  
990 are legitimate emails

Scenario 1:

Classifier always outputs legit  
**What is the accuracy?**

$$Acc = \frac{0 + 990}{0 + 990 + 0 + 10} = 99\%$$

Scenario 2:

Classifier predicts **one** spam email as spam, and rest as legitimate  
**What is the precision?**

$$Precision = \frac{1}{1 + 0} = 100\%$$

Scenario 3:

Classifier always outputs spam  
**What is the recall?**

$$Recall = \frac{10}{10 + 0} = 100\%$$

# Metrics

## Precision vs Recall Tradeoff - F1 Score

**Question:**

How is this a tradeoff?  
How would you increase/decrease the true positives?

|                        | <b>Predicted Positive</b> | <b>Predicted Negative</b> |
|------------------------|---------------------------|---------------------------|
| <b>Actual Positive</b> | True Positive (TP)        | False Negative (FN)       |
| <b>Actual Negative</b> | False Positive (FP)       | True Negative (TN)        |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

### Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

### Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

### Answer: By changing the threshold

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

- Cat in image if  $\mathbb{P}(\text{cat} | \text{image}_i) \geq 0$
- Precision goes  , Recall goes 

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

### Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

### Answer: By changing the threshold

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

- Cat in image if  $\mathbb{P}(\text{cat} \mid \text{image}_i) \geq 0$
- Precision goes down, Recall goes up

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

### Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

### Answer: By changing the threshold

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

- Cat in image if  $\mathbb{P}(\text{cat} | \text{image}_i) \geq 0.999$
- Precision goes  Recall goes 

# Metrics

## Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

### Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

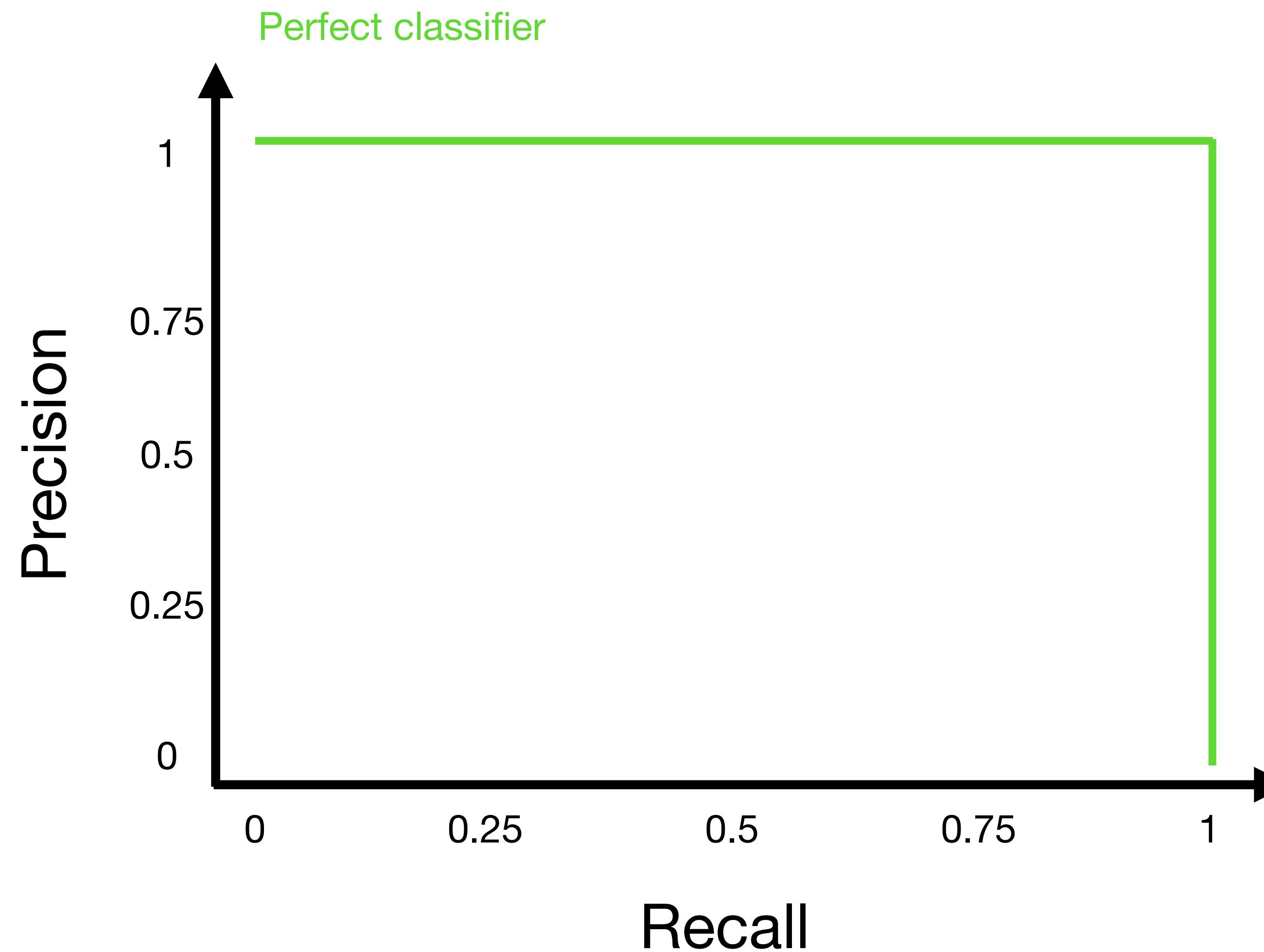
### Answer: By changing the threshold

|                 | Predicted Positive  | Predicted Negative  |
|-----------------|---------------------|---------------------|
| Actual Positive | True Positive (TP)  | False Negative (FN) |
| Actual Negative | False Positive (FP) | True Negative (TN)  |

- Cat in image if  $\mathbb{P}(\text{cat} \mid \text{image}_i) \geq 0.999$
- Precision goes up, Recall goes down

# Metrics

## Area Under Precision-Recall Curve (AUP)



Perfect classifier:

Precision stays at 1.0 across all recall values. AUC-PR = 1.0.

Every positive prediction is correct, and all actual positives are found.

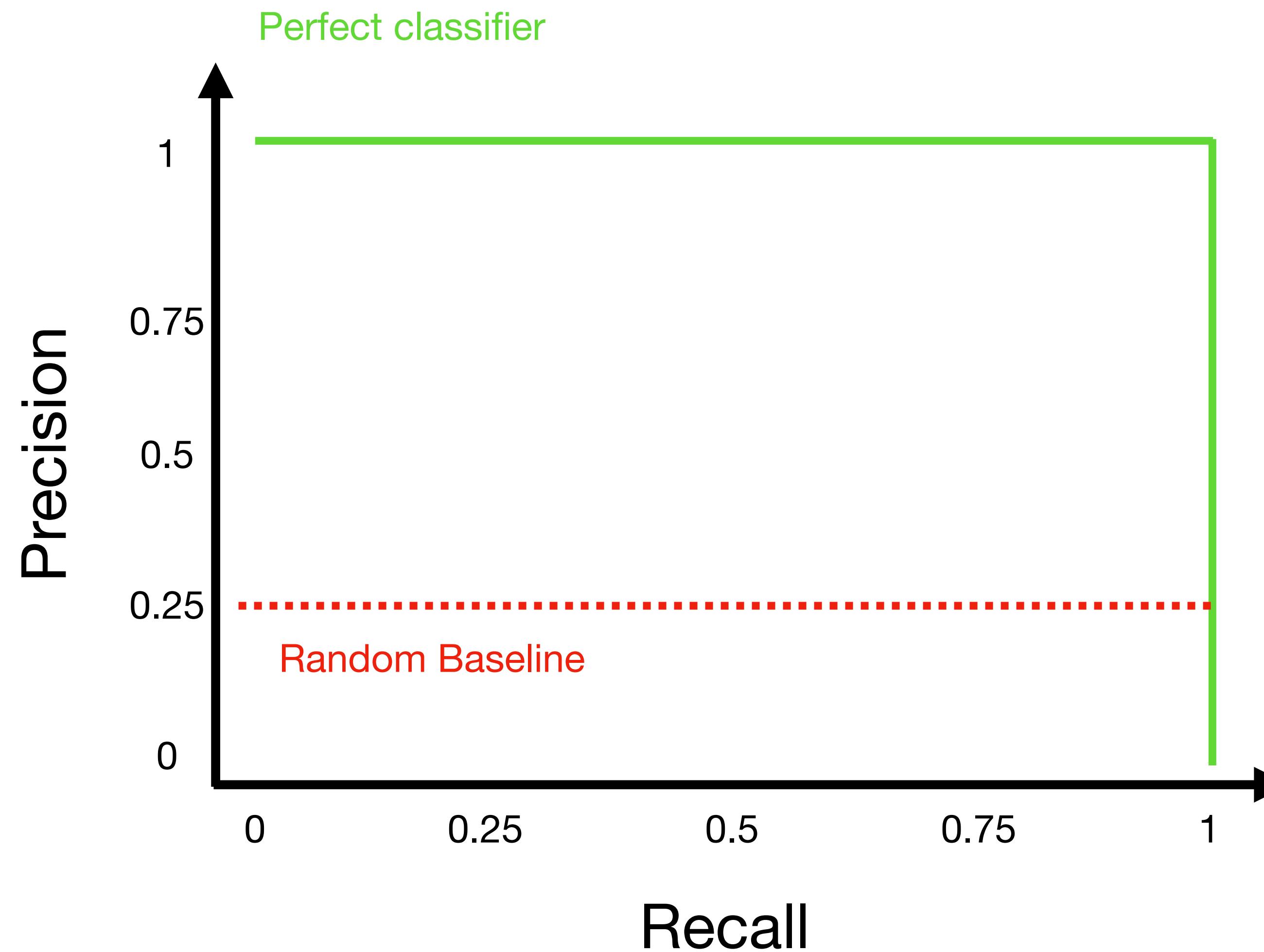
# Metrics

## Area Under Precision-Recall Curve (AUP)

**Random classifier:**

Horizontal line at the proportion of positives (25% here).

AUC-PR equals the class proportion. No predictive power.



**Perfect classifier:**

Precision stays at 1.0 across all recall values. AUC-PR = 1.0.

Every positive prediction is correct, and all actual positives are found.

# Metrics

## Area Under Precision-Recall Curve (AUP)

### Random classifier:

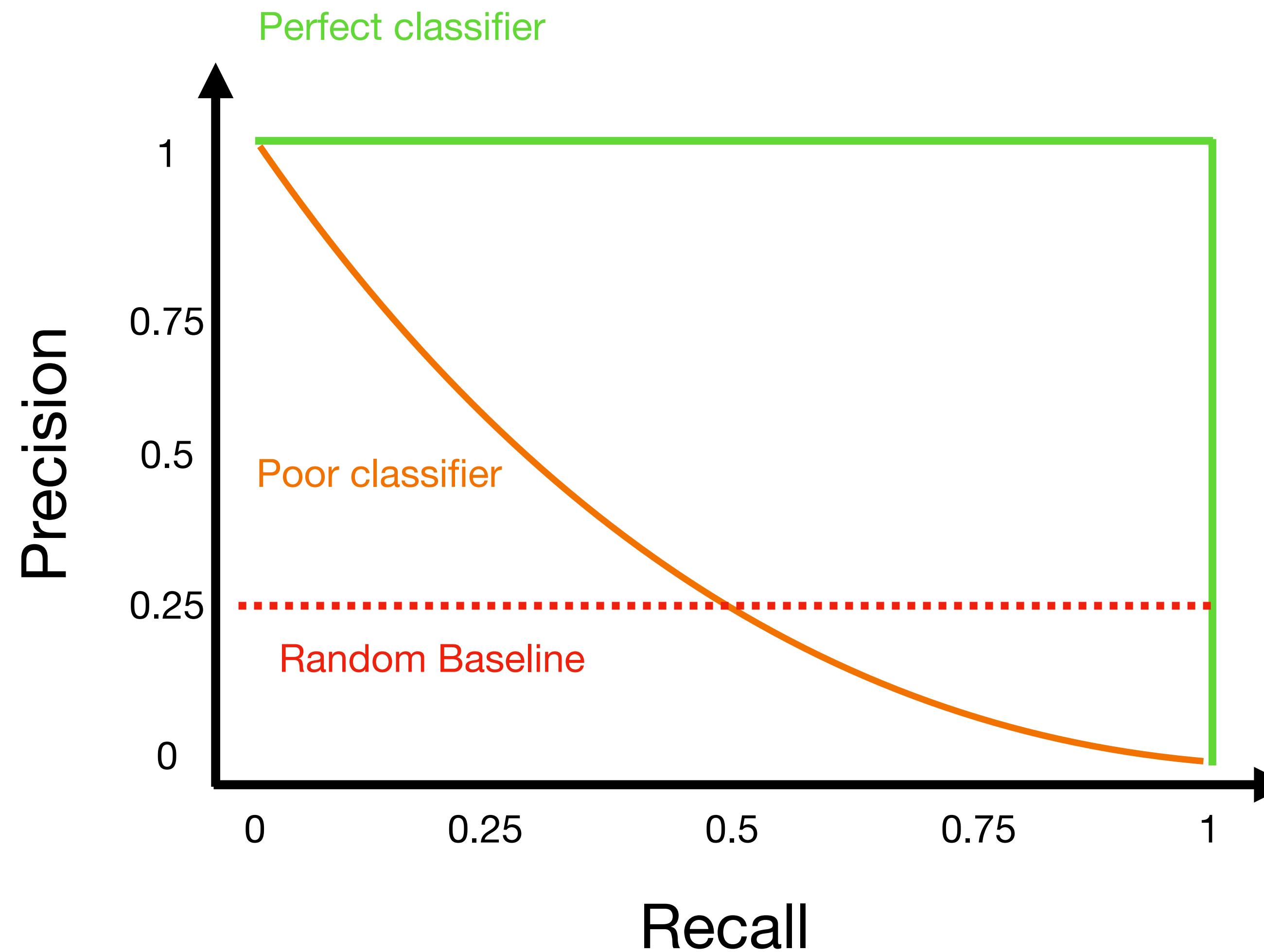
Horizontal line at the proportion of positives (25% here).

AUC-PR equals the class proportion. No predictive power.

### Poor classifier:

Precision drops steadily as recall increases.

Still better than random, but significant tradeoff between precision and recall.



### Perfect classifier:

Precision stays at 1.0 across all recall values. AUC-PR = 1.0.

Every positive prediction is correct, and all actual positives are found.

# Metrics

## Area Under Precision-Recall Curve (AUP)

**Random classifier:**

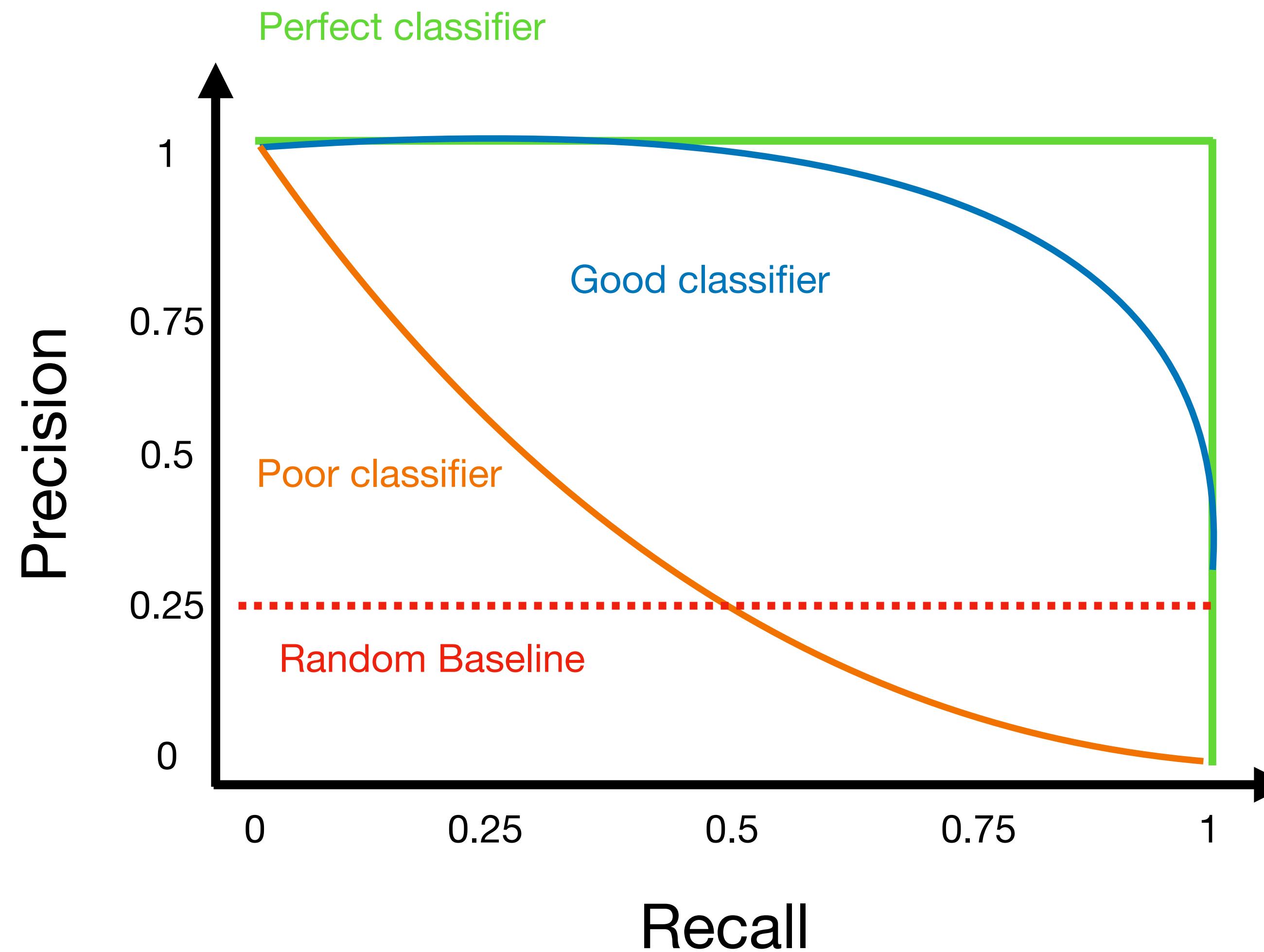
Horizontal line at the proportion of positives (25% here).

AUC-PR equals the class proportion. No predictive power.

**Poor classifier:**

Precision drops steadily as recall increases.

Still better than random, but significant tradeoff between precision and recall.



**Perfect classifier:**

Precision stays at 1.0 across all recall values. AUC-PR = 1.0.

Every positive prediction is correct, and all actual positives are found.

**Good classifier:**

High precision maintained until high recall.

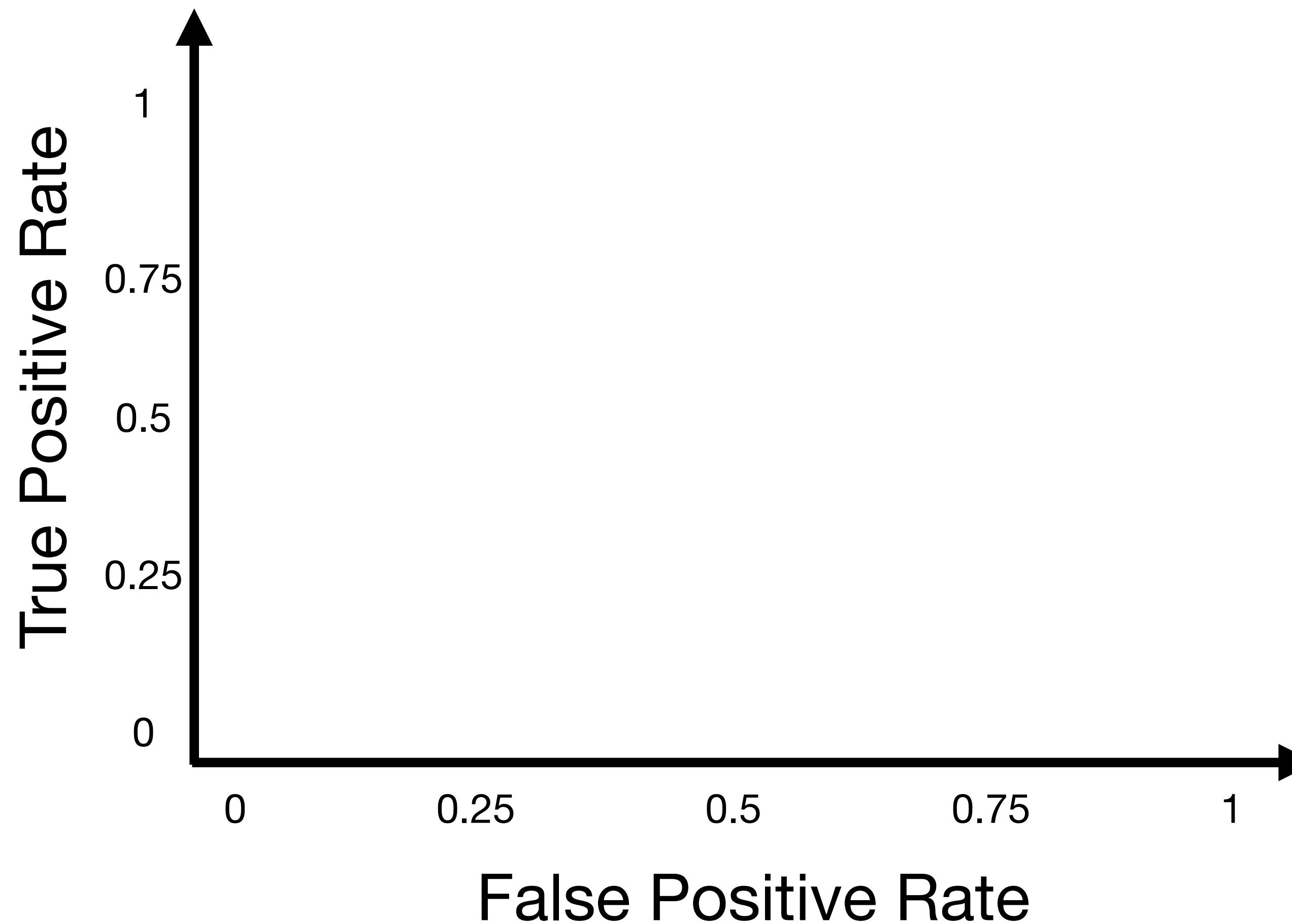
The curve hugs the top-right corner.

# Metrics

## AUC-ROC Curve

$$\text{TPR} = \frac{TP}{TP + FN}$$

$$\text{FPR} = \frac{FP}{TN + FP}$$

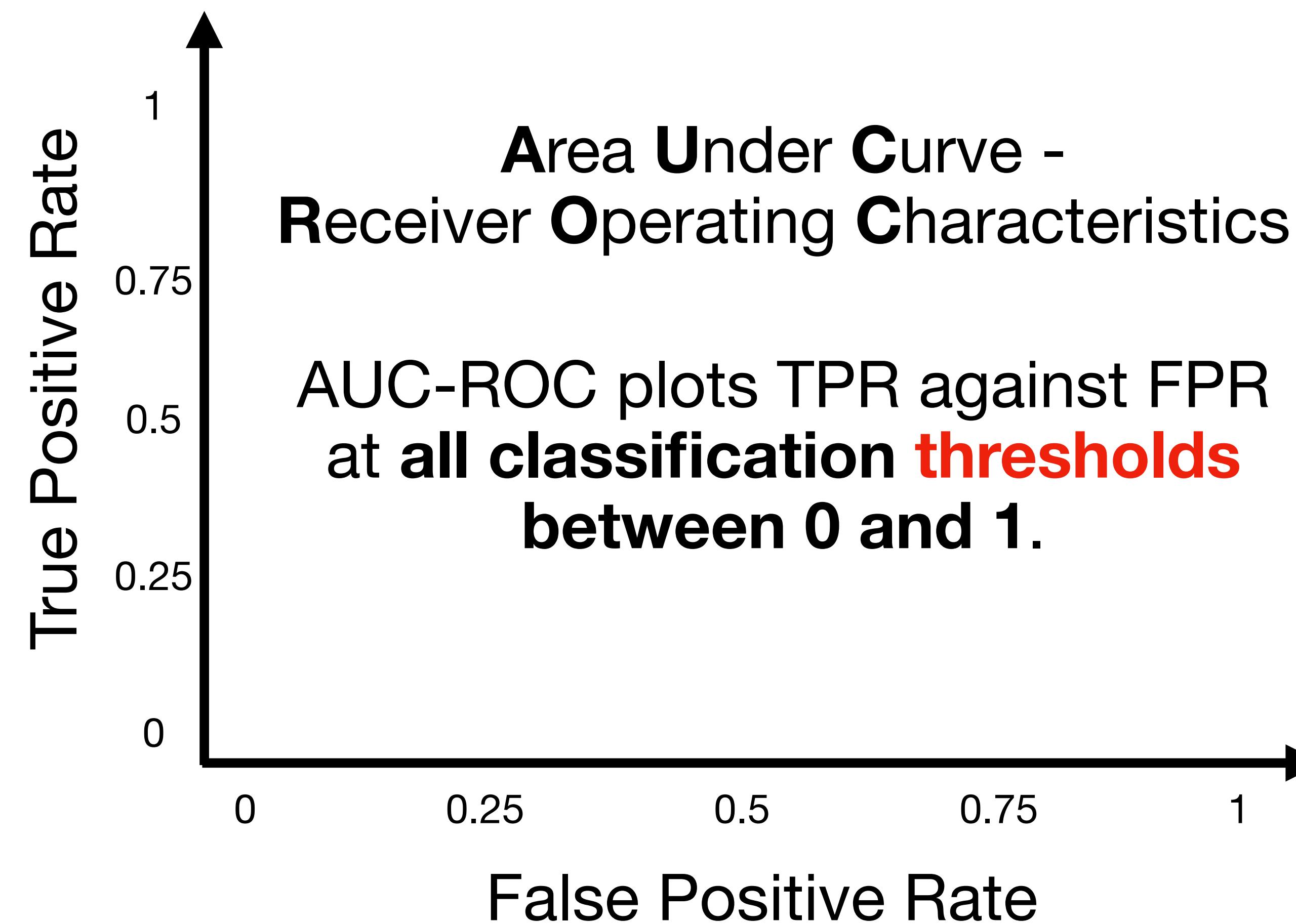


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

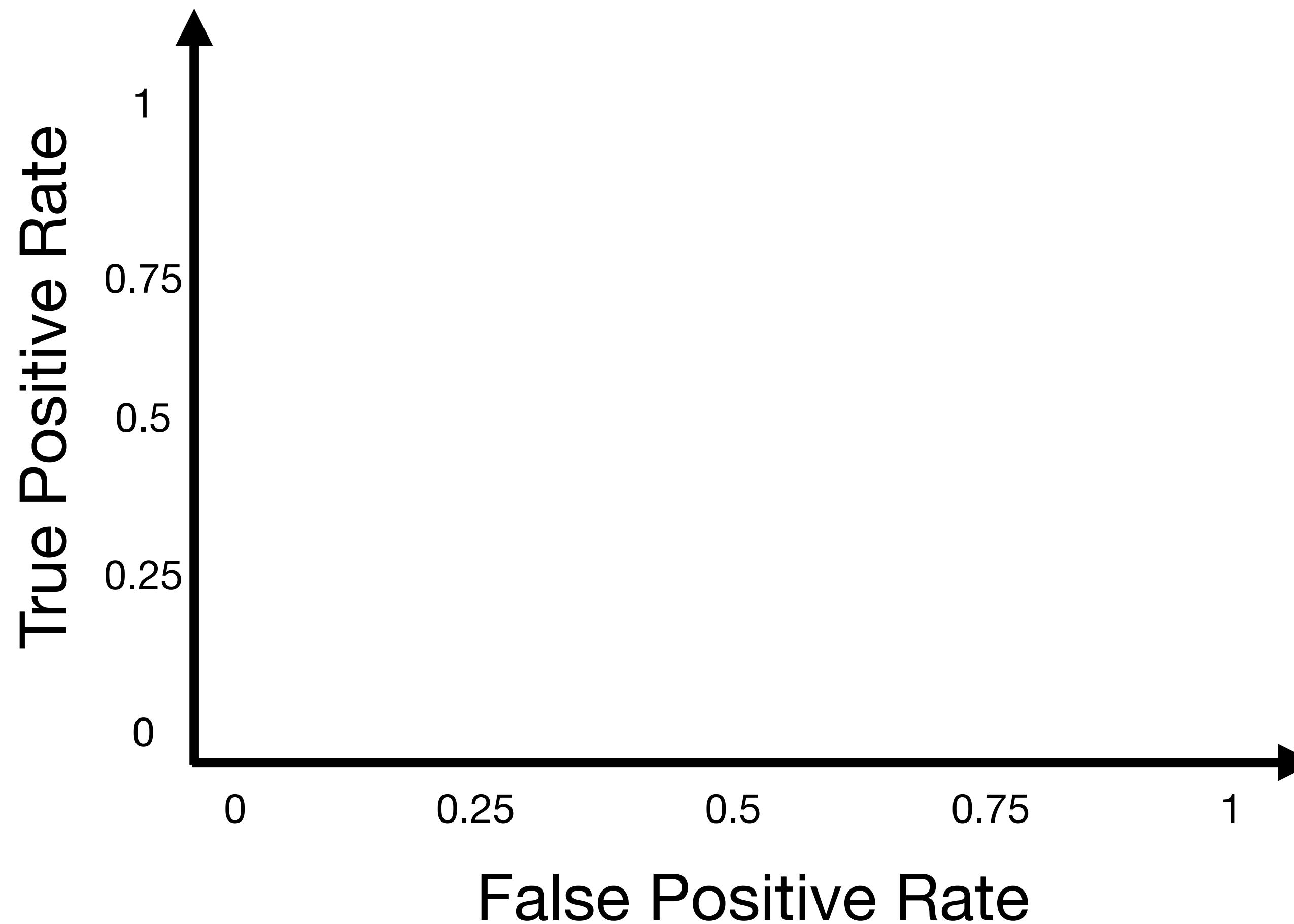


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

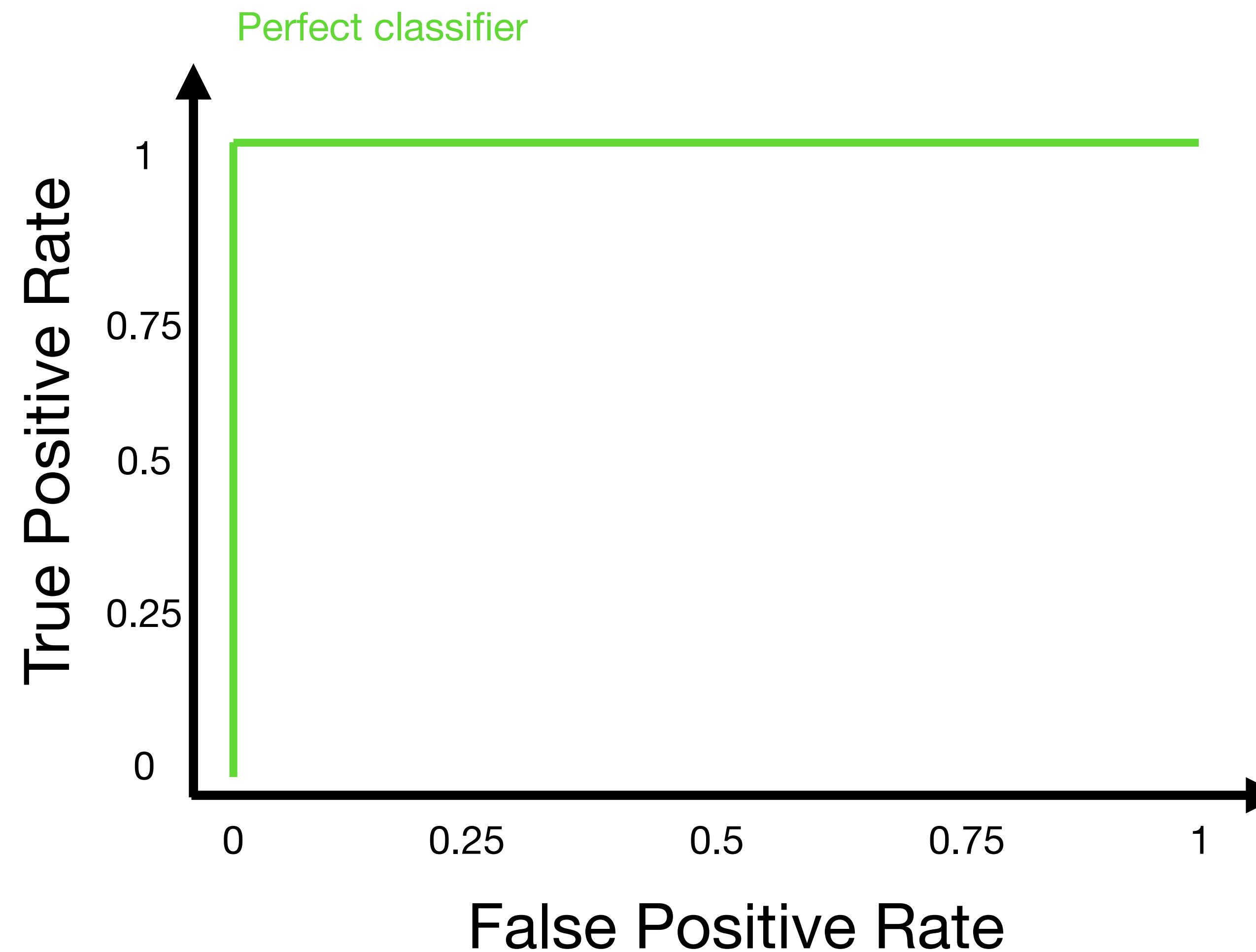


# Metrics

## AUC-ROC Curve

$$\text{TPR} = \frac{TP}{TP + FN}$$

$$\text{FPR} = \frac{FP}{TN + FP}$$

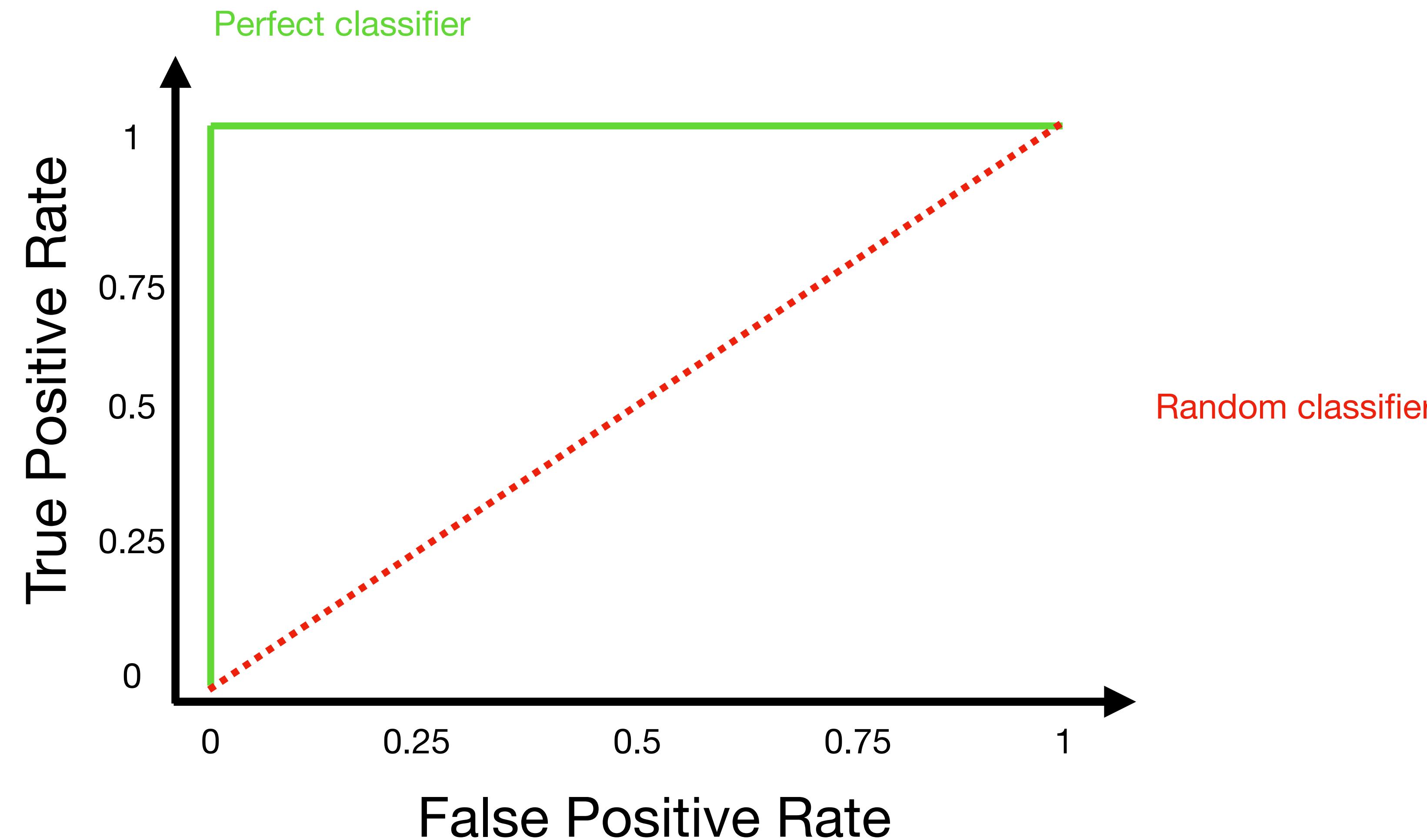


# Metrics

## AUC-ROC Curve

$$\text{TPR} = \frac{TP}{TP + FN}$$

$$\text{FPR} = \frac{FP}{TN + FP}$$

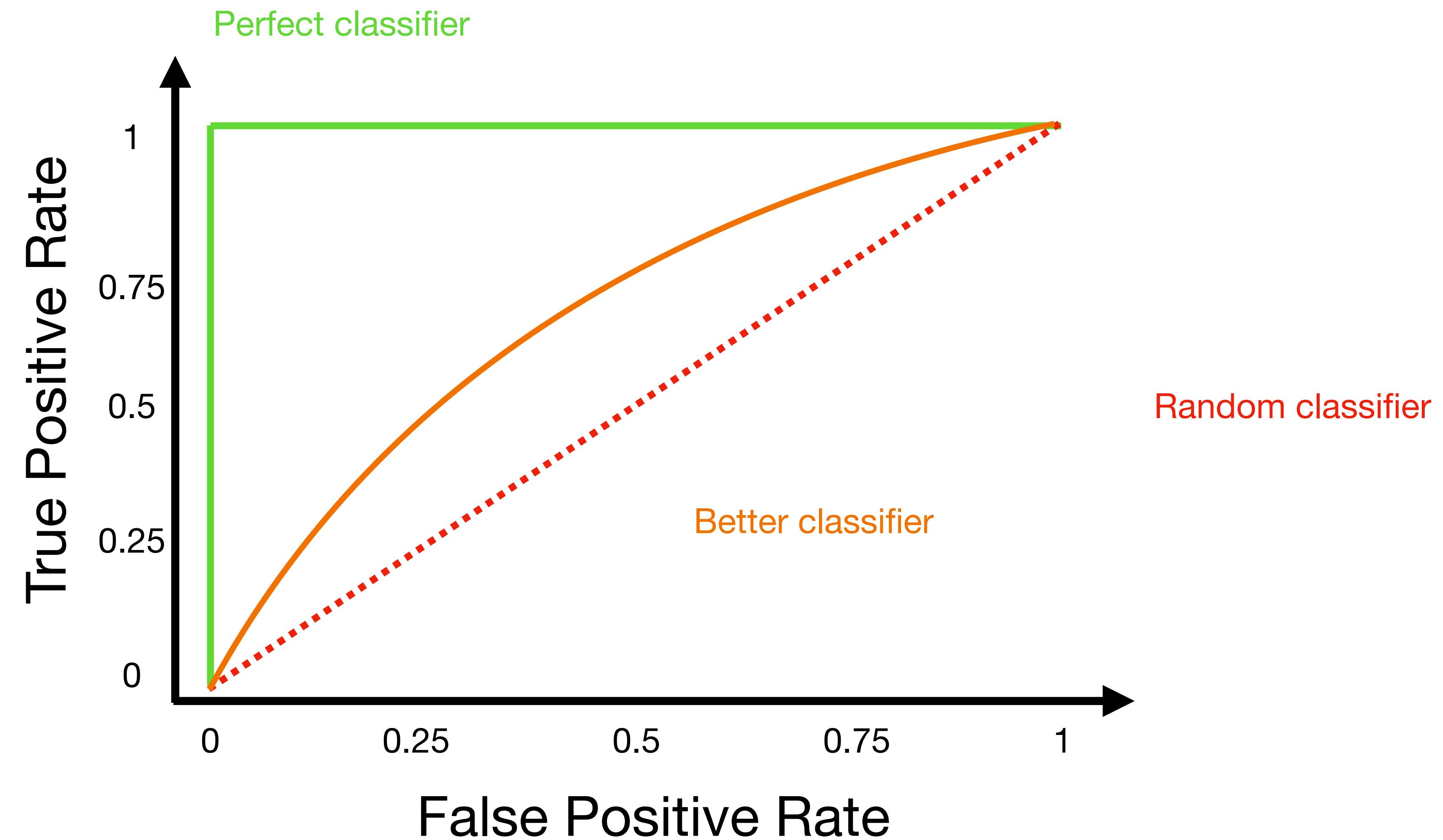


# Metrics

## AUC-ROC Curve

$$\text{TPR} = \frac{TP}{TP + FN}$$

$$\text{FPR} = \frac{FP}{TN + FP}$$

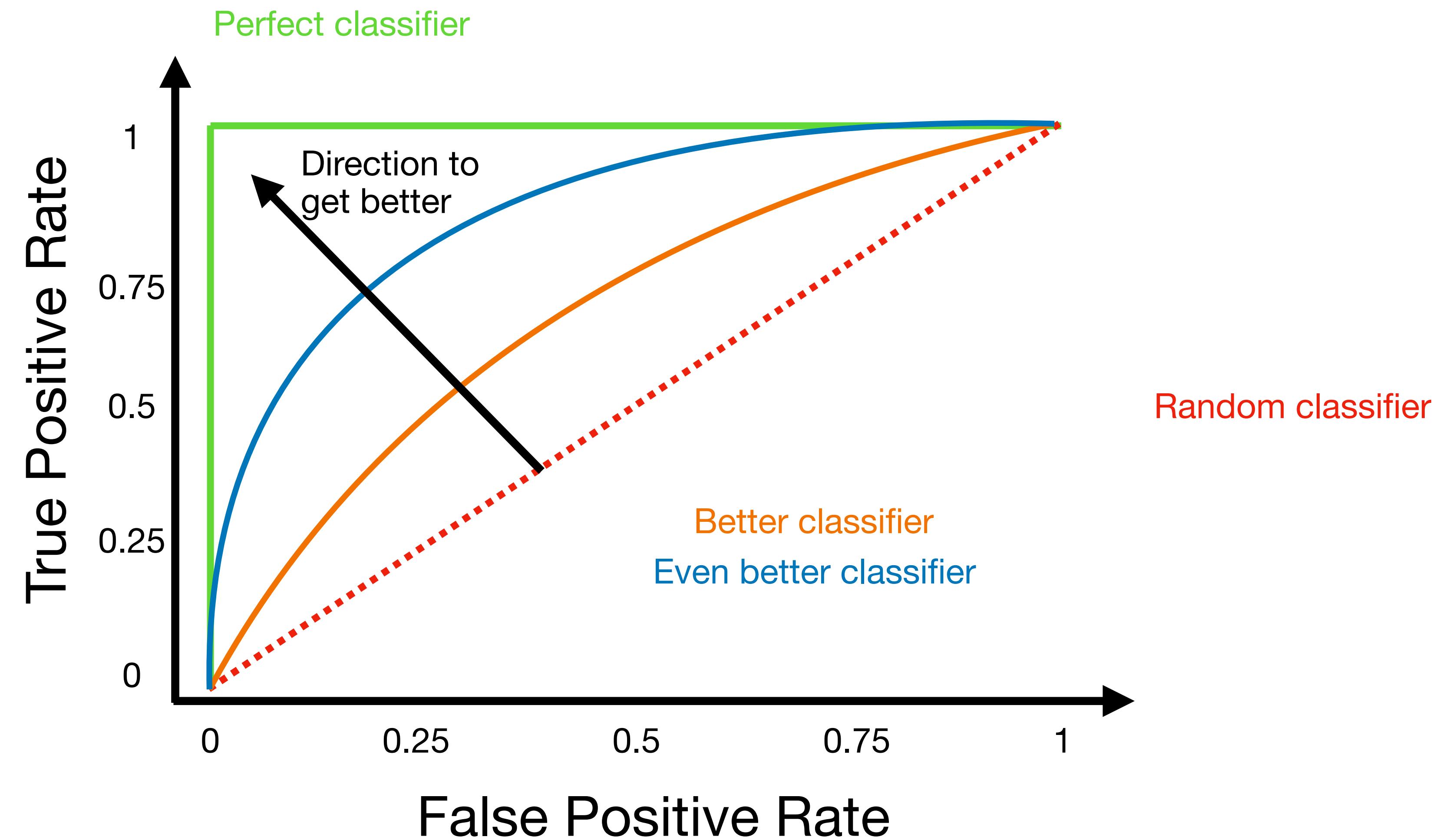


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

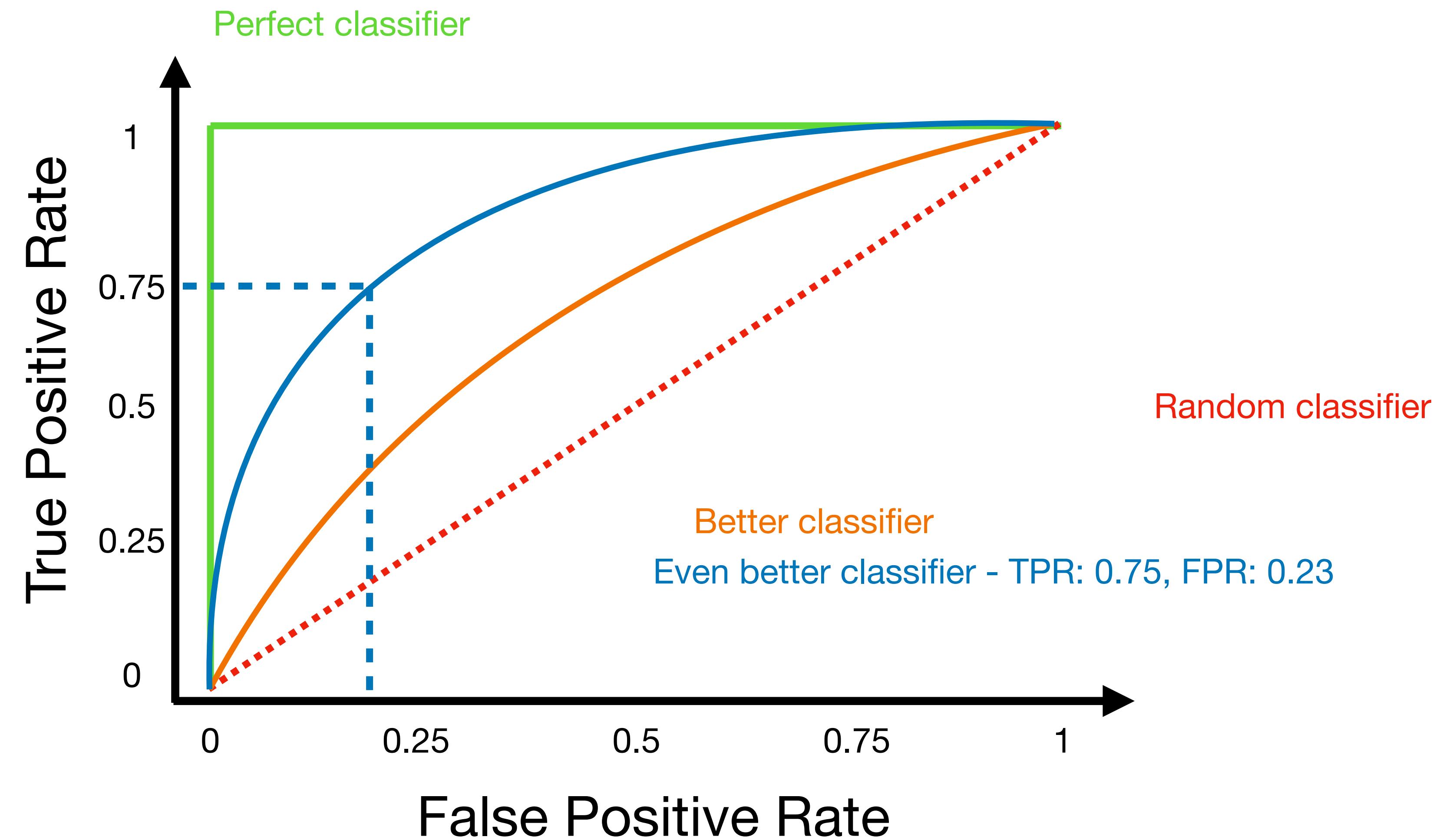


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

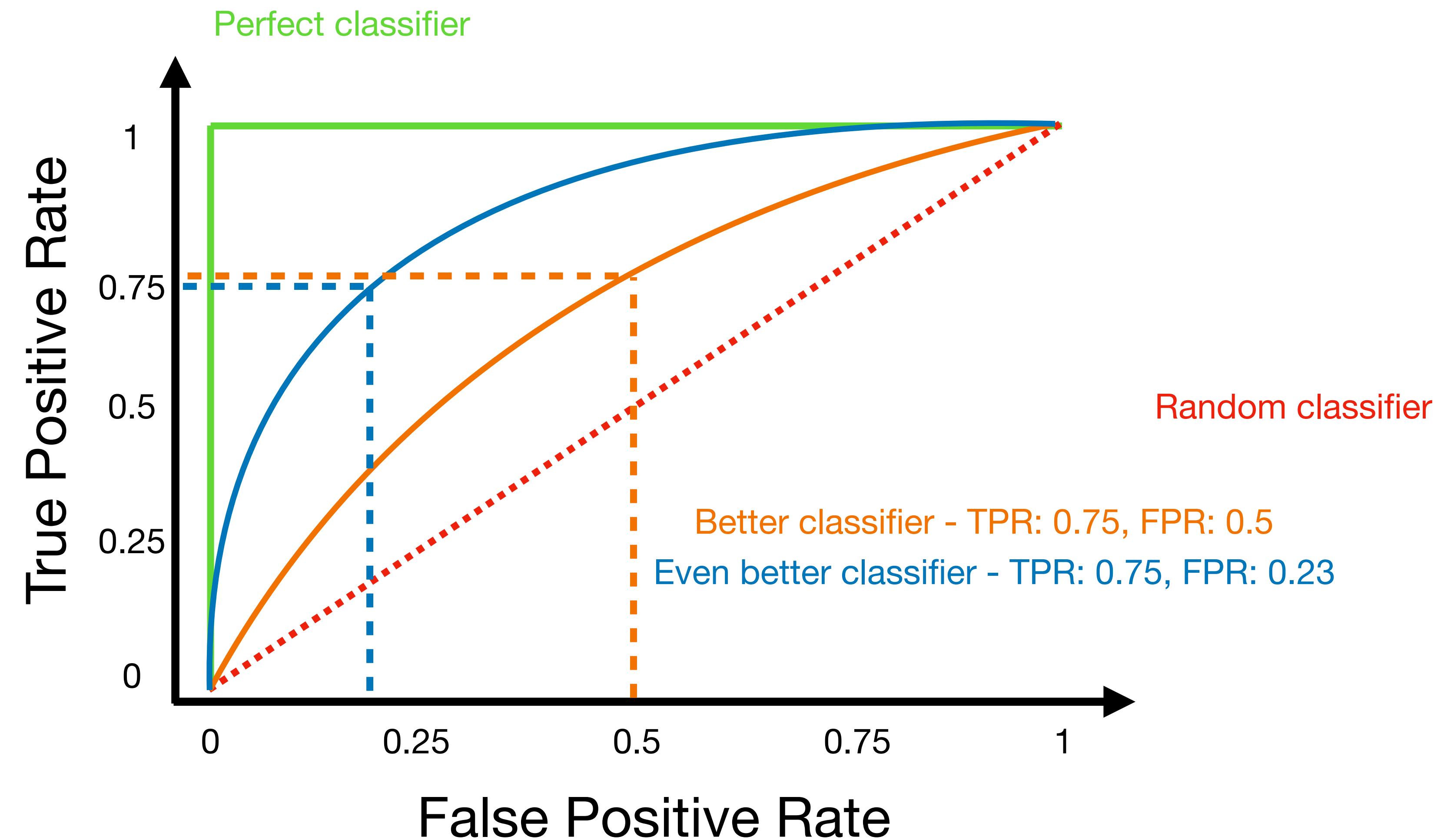


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

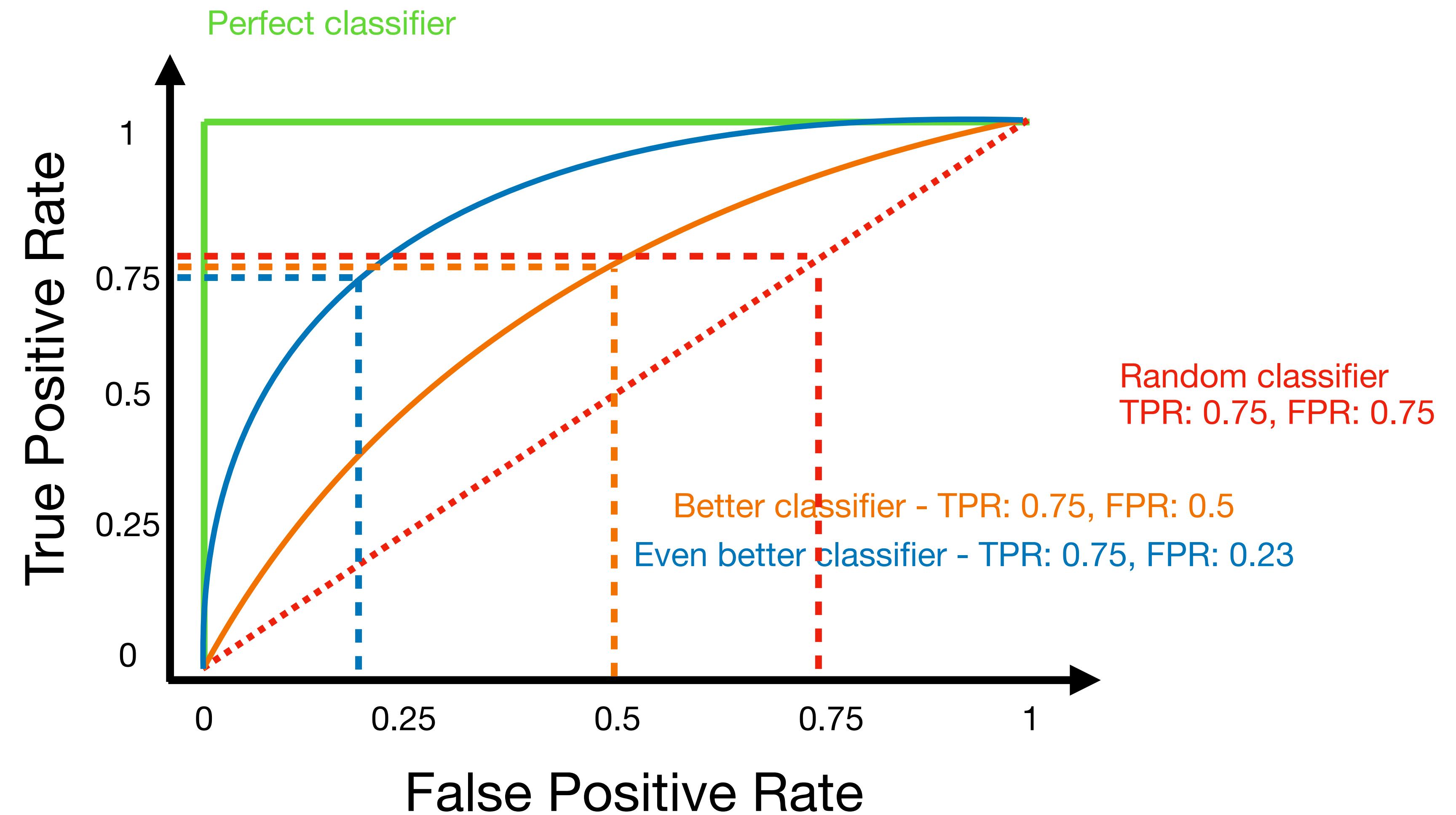


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

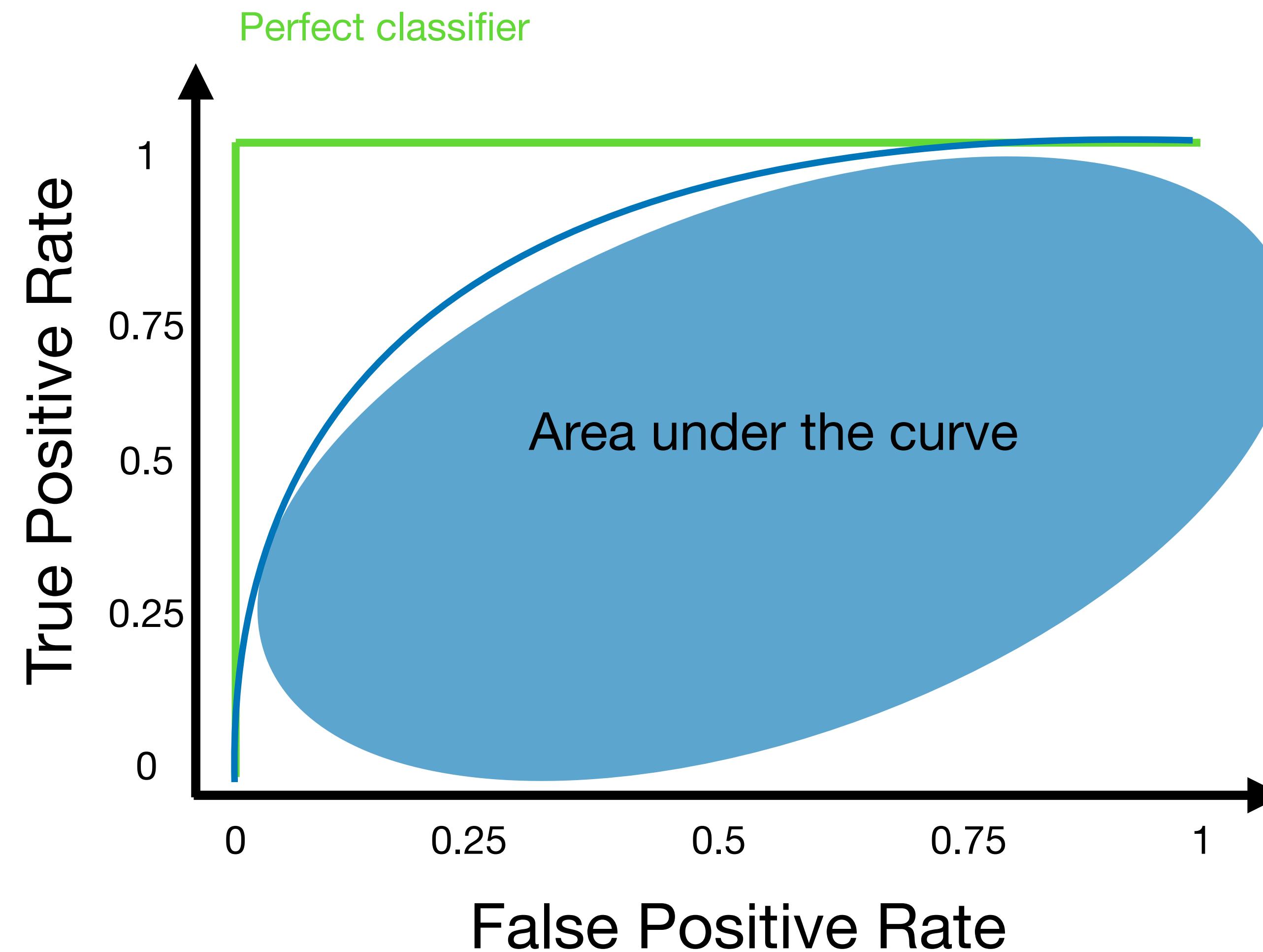


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$

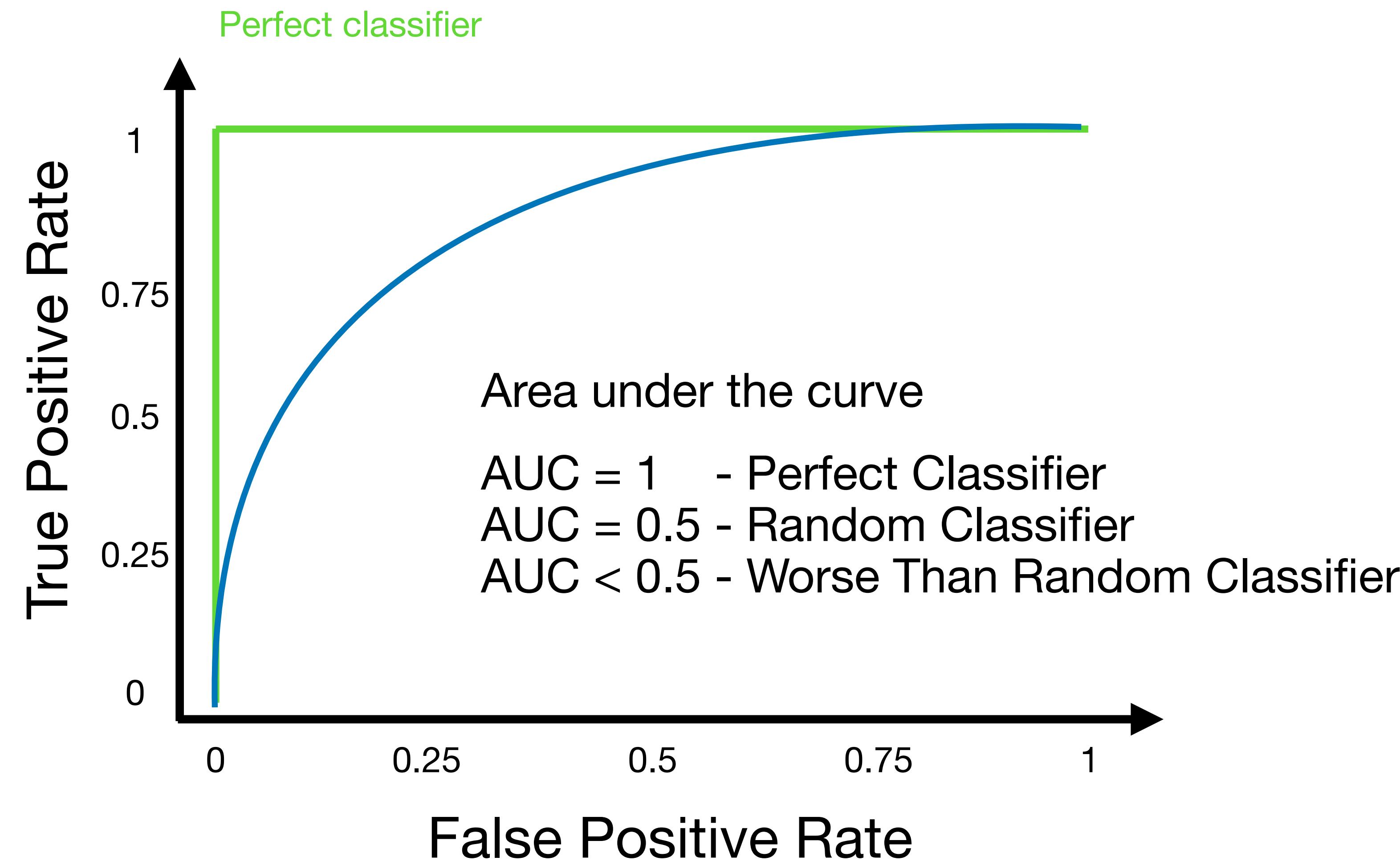


# Metrics

## AUC-ROC Curve

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$



# Metrics

## AUC-ROC Curve

**Intuition:**  
AUC equals the probability that a randomly chosen positive instance is **ranked higher** than a randomly chosen negative instance by the classifier's scores.

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$



# Metrics

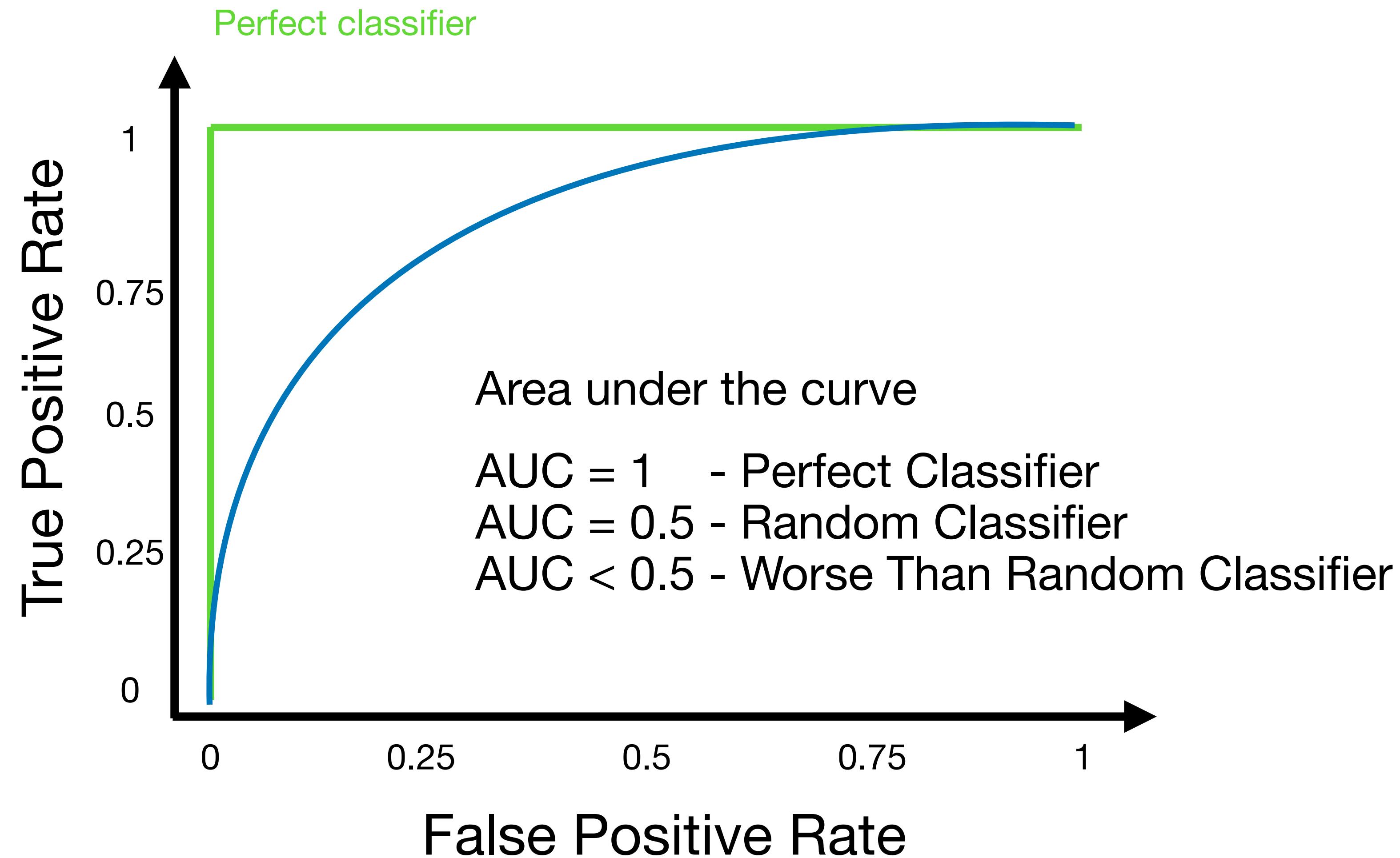
## AUC-ROC Curve

**Intuition:**  
AUC equals the probability that a randomly chosen positive instance is **ranked higher** than a randomly chosen negative instance by the classifier's scores.

**Limitation:**  
ROC curves can be overly optimistic for **highly imbalanced datasets** because the **FPR denominator** is dominated by the large TN count.

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{TN + FP}$$



# Today's Outline

- Metrics
- **k-Nearest Neighbors**

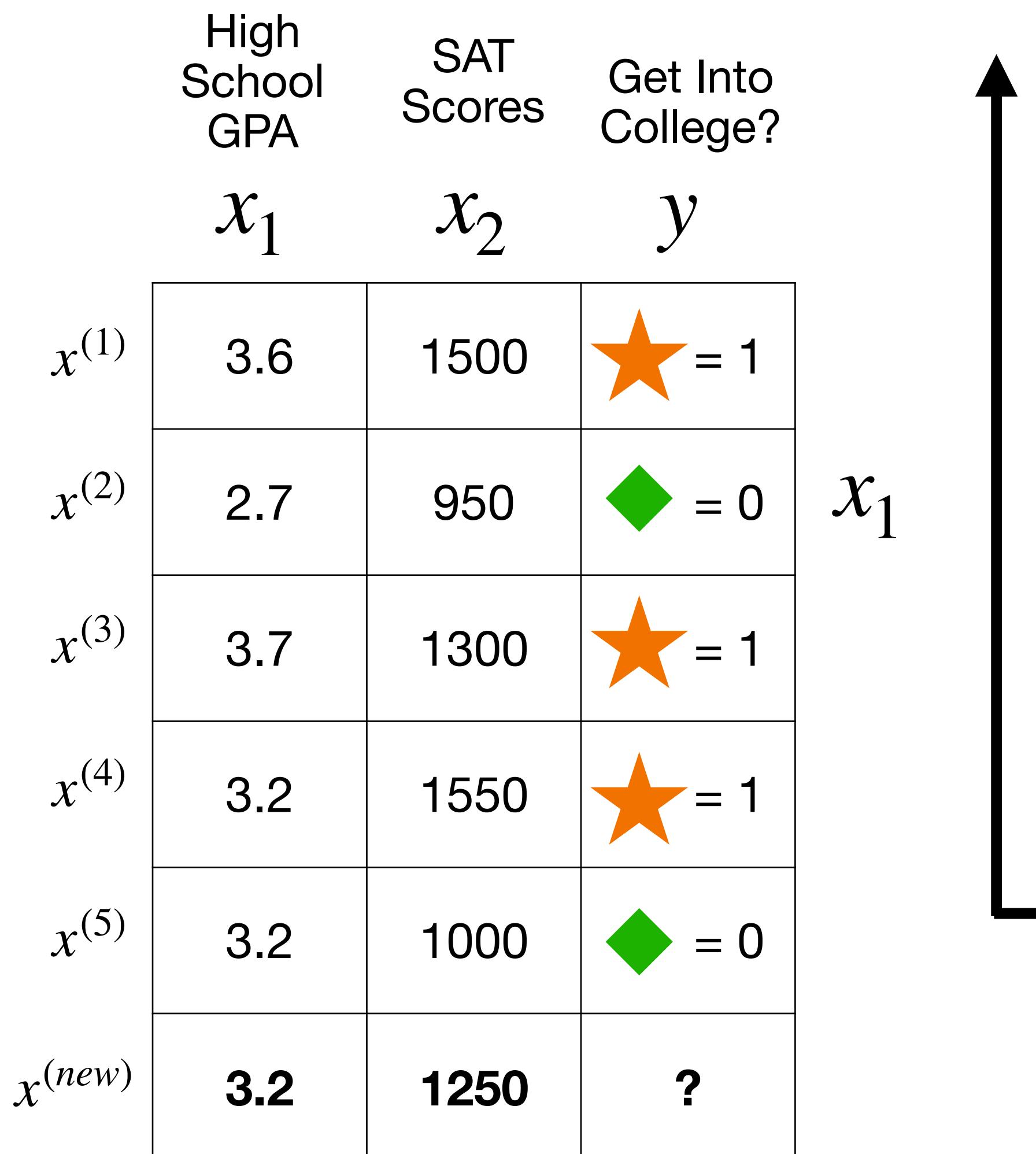
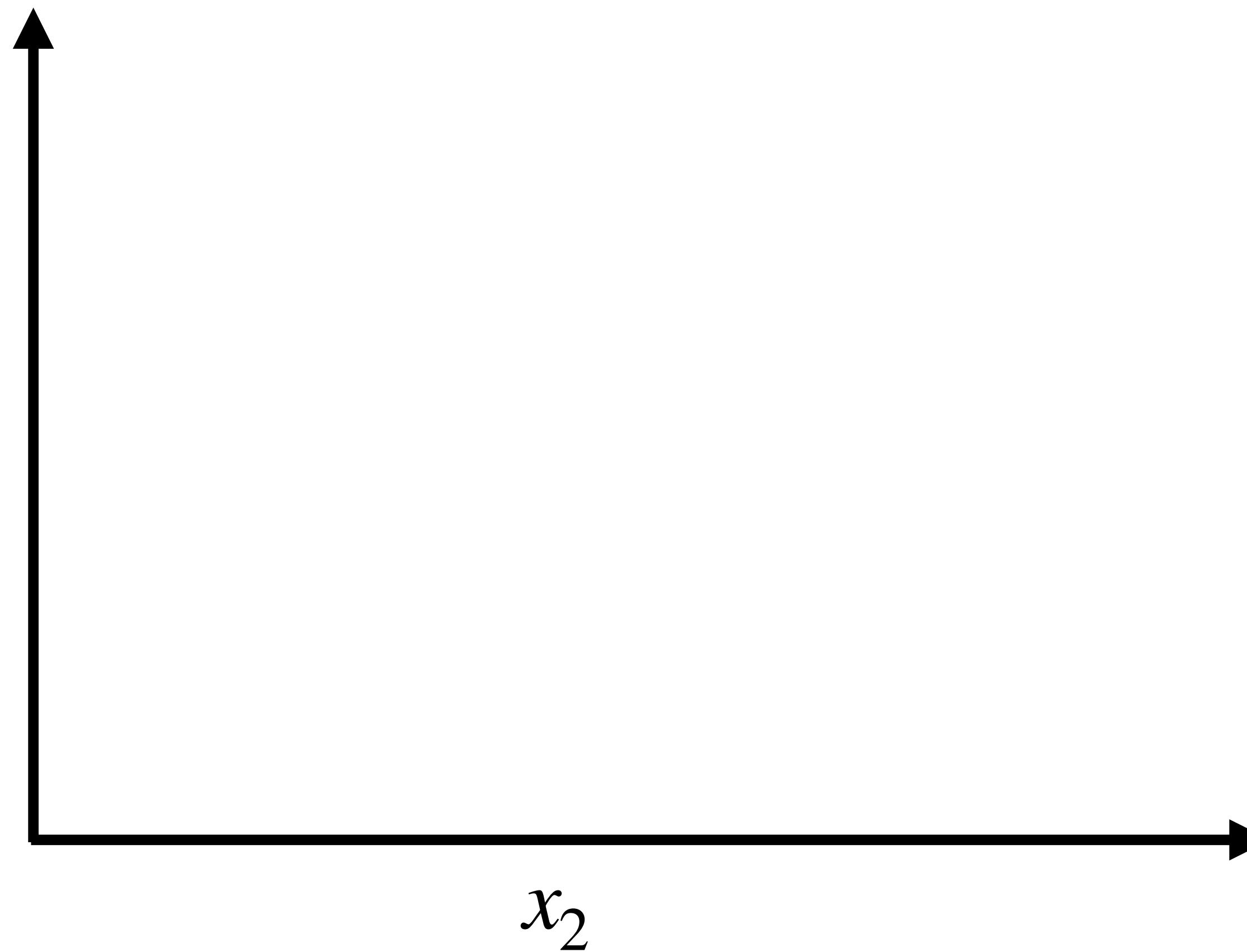
# k-Nearest Neighbors

- KNN is a **non-parametric**, instance-based (lazy) learning algorithm.
- It makes no assumptions about the underlying data distribution and stores all training instances **rather than learning explicit parameters**.

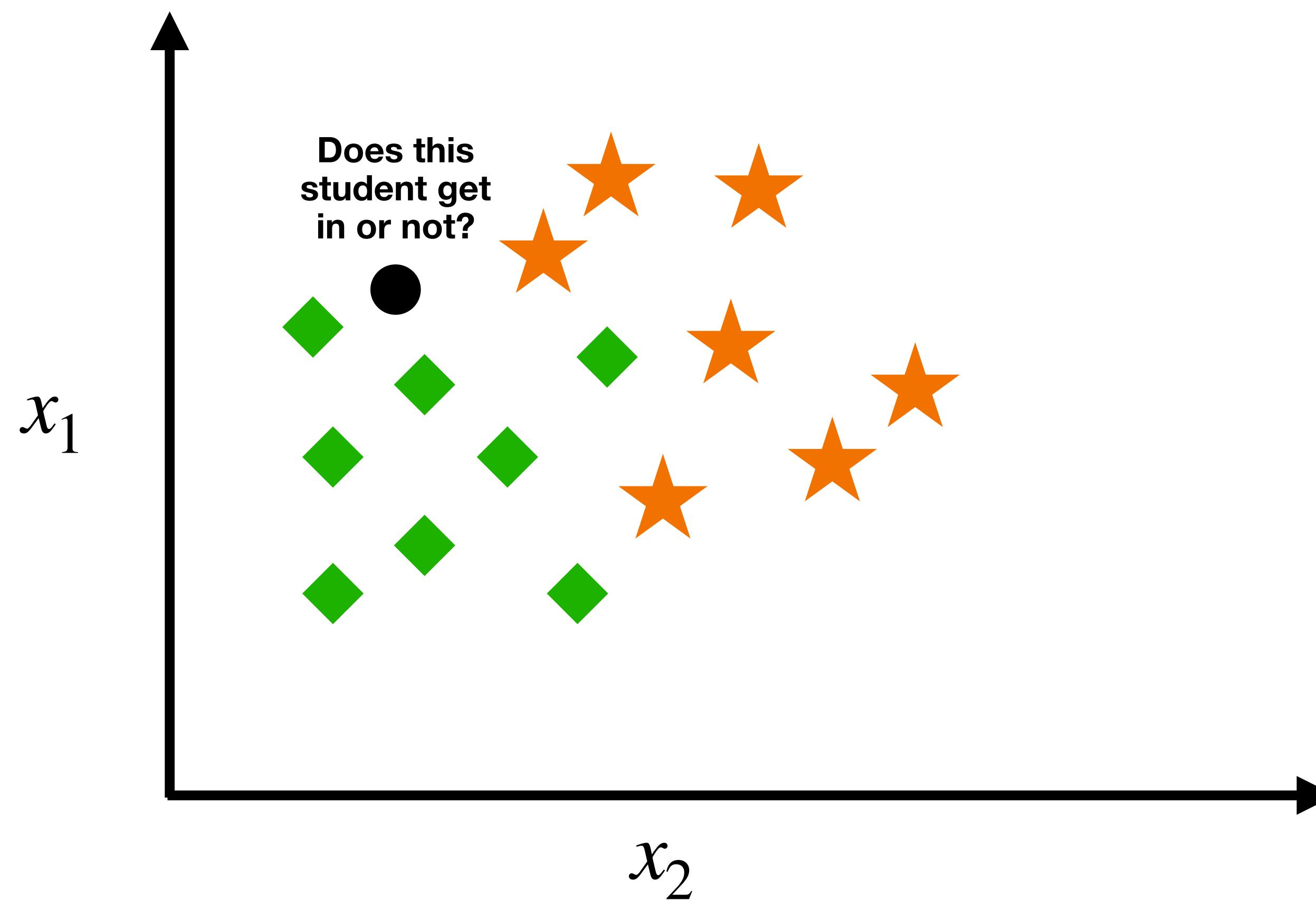
# k-Nearest Neighbors

- KNN is a **non-parametric**, instance-based (lazy) learning algorithm.
- It makes no assumptions about the underlying data distribution and stores all training instances **rather than learning explicit parameters**.
- **Key Idea:**
  - Similar instances have similar labels.
  - To classify a new point, find the **K training instances closest to it** and let them vote

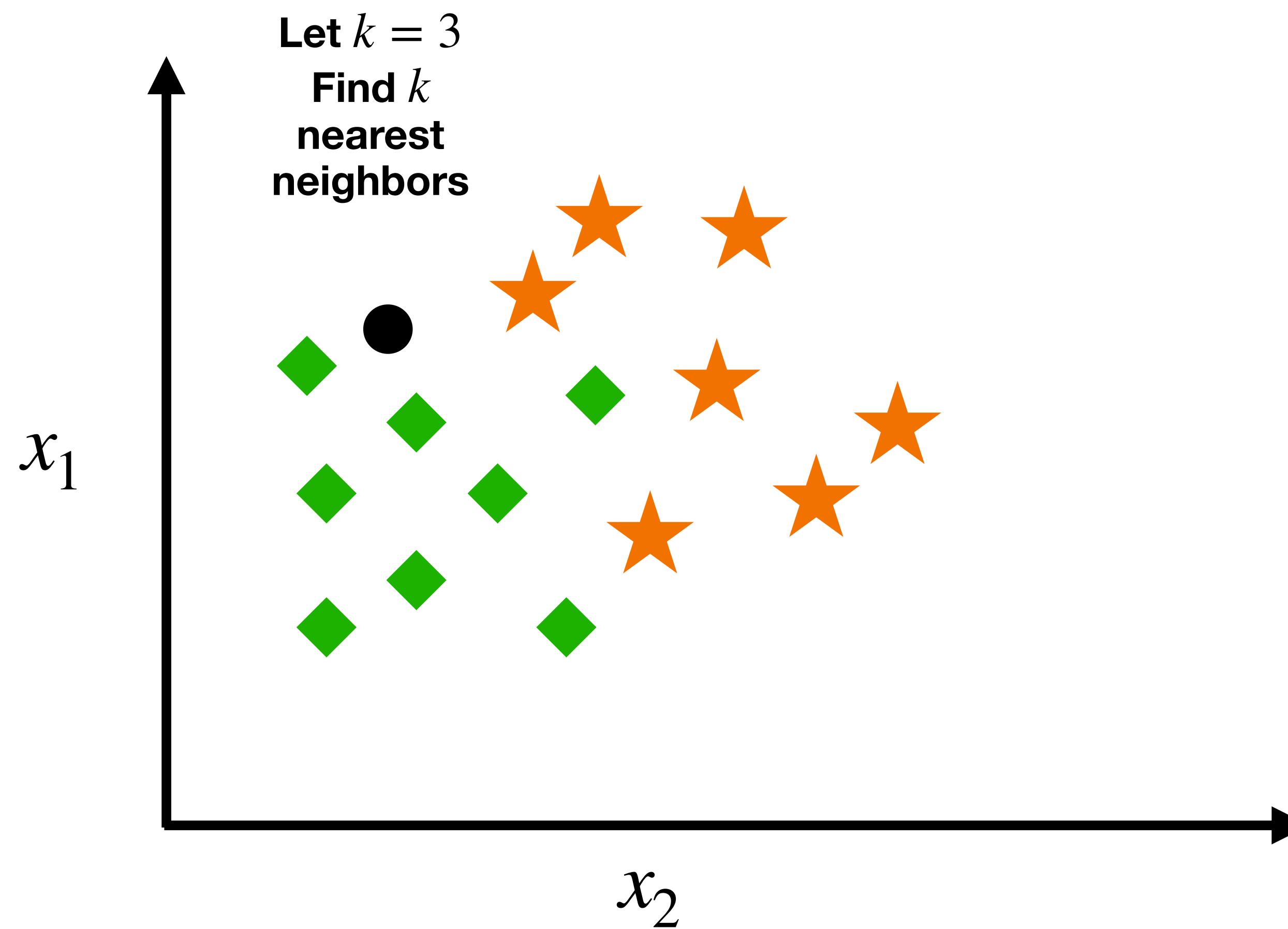
# k-Nearest Neighbors



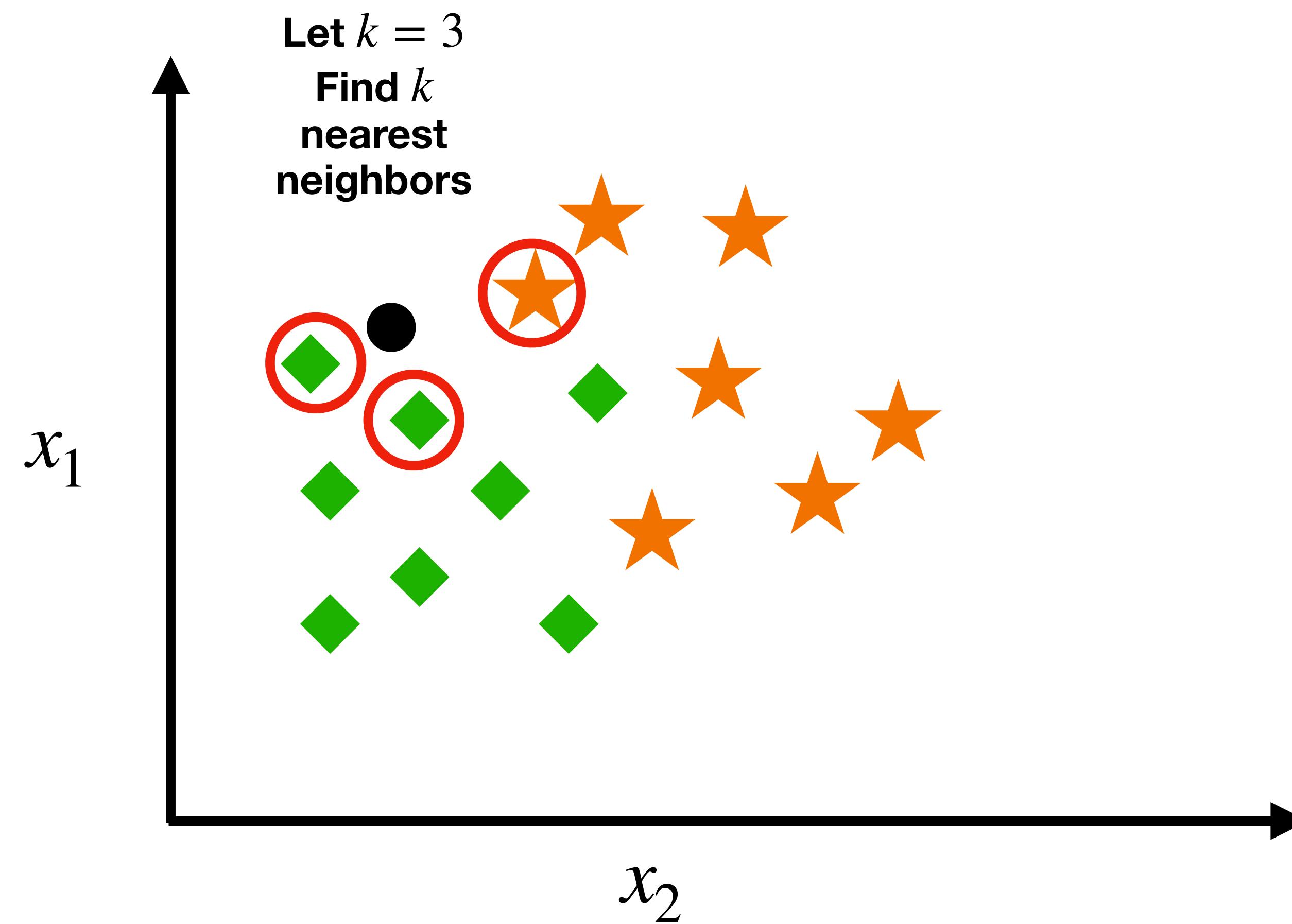
# k-Nearest Neighbors



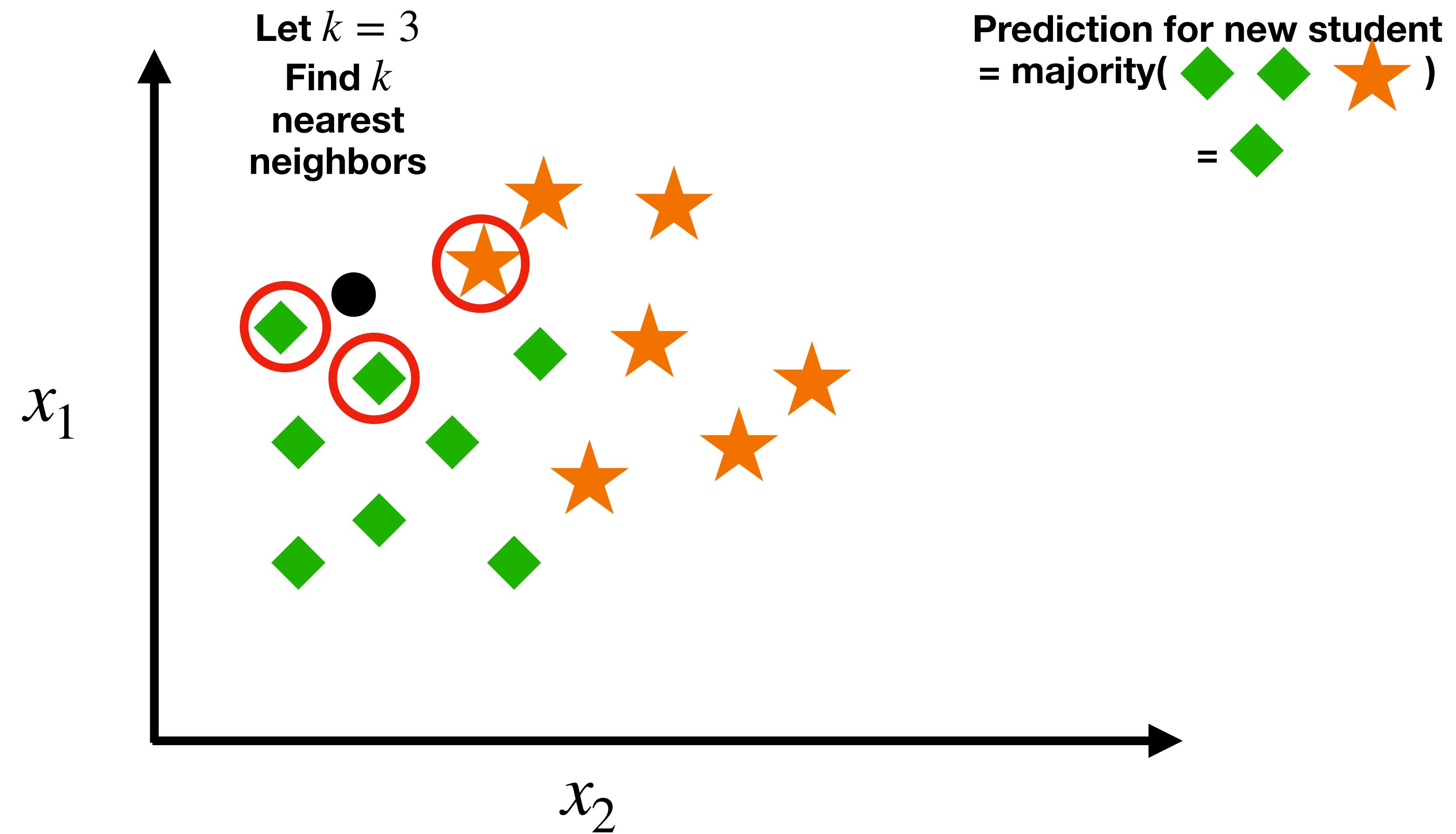
# k-Nearest Neighbors



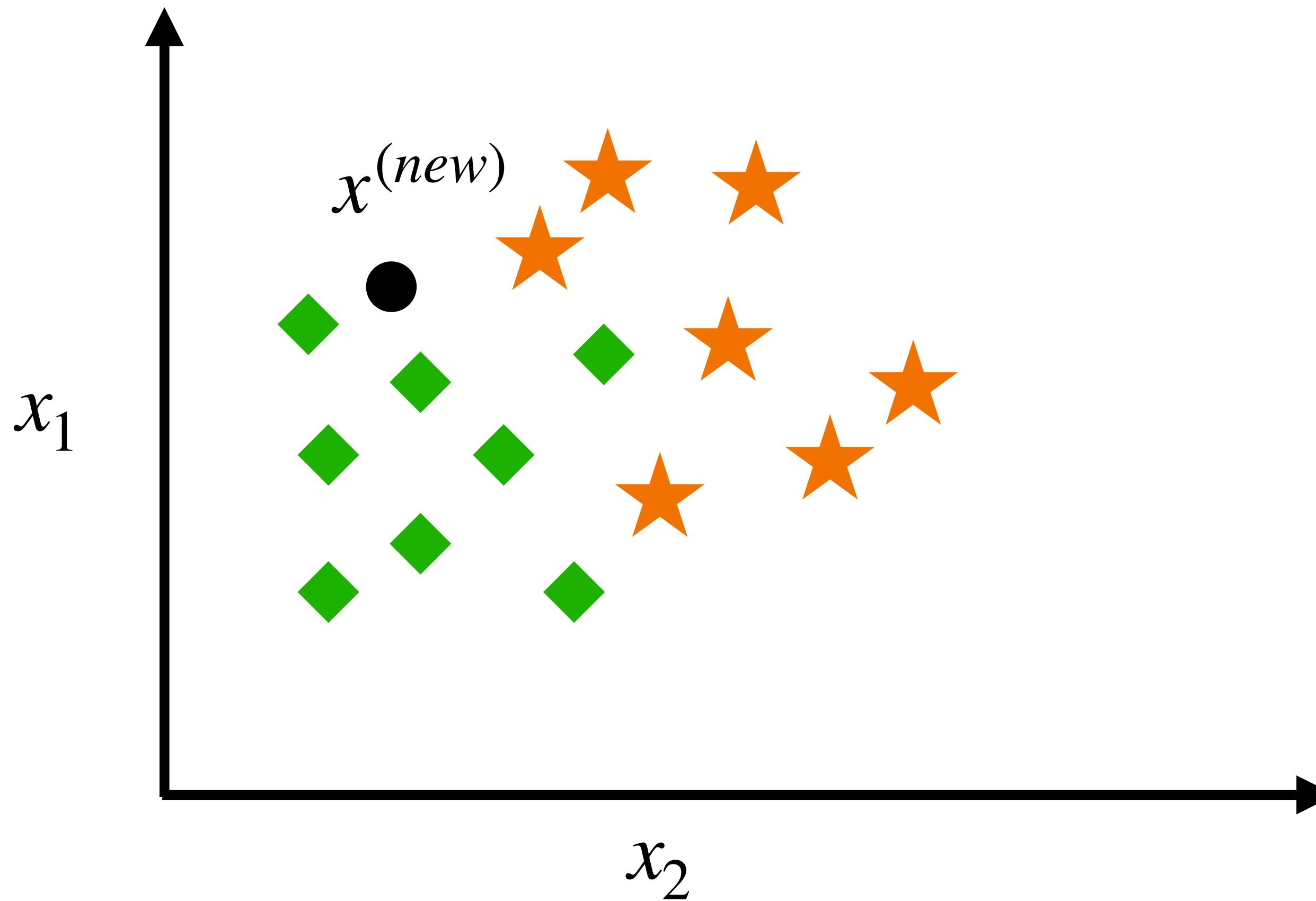
# k-Nearest Neighbors



# k-Nearest Neighbors



# k-Nearest Neighbors



## Algorithm:

### Training Phase:

Store all training instances  $(x_{train}, y_{train})$   
No computation required. We are not learning any parameters

### Prediction/Testing Phase:

1. Compute distance from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ -nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ -neighbors

# k-Nearest Neighbors

| High School GPA | SAT Scores | Get Into College?                                                                                |
|-----------------|------------|--------------------------------------------------------------------------------------------------|
| $x_1$           | $x_2$      | $y$                                                                                              |
| $x^{(1)}$       | 3.6        | 1500  $= 1$ |
| $x^{(2)}$       | 2.7        | 950  $= 0$  |
| $x^{(3)}$       | 3.7        | 1300  $= 1$ |
| $x^{(4)}$       | 3.2        | 1550  $= 1$ |
| $x^{(5)}$       | 3.2        | 1000  $= 0$ |
| $x^{(new)}$     | 3.2        | 1250 ?                                                                                           |

## Algorithm:

### Training Phase:

Store all training instances  $(x_{train}, y_{train})$   
No computation required. We are not learning any parameters

### Prediction/Testing Phase:

1. Compute **distance** from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ –nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ –neighbors

# k-Nearest Neighbors

The choice of the distance metric fundamentally affects which points are being considered “neighbors”

**Euclidean Distance ( $L_2$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sqrt{\sum_{j=0}^n (x_j^{(new)} - x_j^{(i)})^2}$$

**Manhattan Distance ( $L_1$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sum_{j=0}^n |x_j^{(new)} - x_j^{(i)}|$$

**Cosine Similarity:**

$$sim(x^{(new)}, x^{(i)}) = \frac{x^{(new)} \cdot x^{(i)}}{\|x^{(new)}\| \|x^{(i)}\|}$$

$$(distance = 1 - sim(x^{(new)}, x^{(i)}))$$

**Algorithm:**

Training Phase:

Store all training instances ( $x_{train}, y_{train}$ )

No computation required. We are not learning any parameters

Prediction/Testing Phase:

1. Compute **distance** from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ –nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ –neighbors

# k-Nearest Neighbors

Most common choice, but sensitive to **feature scales**

**Euclidean Distance ( $L_2$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sqrt{\sum_{j=0}^n (x_j^{(new)} - x_j^{(i)})^2}$$

**Manhattan Distance ( $L_1$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sum_{j=0}^n |x_j^{(new)} - x_j^{(i)}|$$

**Cosine Similarity:**

$$sim(x^{(new)}, x^{(i)}) = \frac{x^{(new)} \cdot x^{(i)}}{\|x^{(new)}\| \|x^{(i)}\|}$$

$$(distance = 1 - sim(x^{(new)}, x^{(i)}))$$

**Algorithm:**

Training Phase:

Store all training instances ( $x_{train}, y_{train}$ )

No computation required. We are not learning any parameters

Prediction/Testing Phase:

1. Compute **distance** from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ -nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ -neighbors

# k-Nearest Neighbors

**Euclidean Distance ( $L_2$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sqrt{\sum_{j=0}^n (x_j^{(new)} - x_j^{(i)})^2}$$

**Manhattan Distance ( $L_1$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sum_{j=0}^n |x_j^{(new)} - x_j^{(i)}|$$

**Cosine Similarity:**

$$sim(x^{(new)}, x^{(i)}) = \frac{x^{(new)} \cdot x^{(i)}}{\|x^{(new)}\| \|x^{(i)}\|}$$

$$(distance = 1 - sim(x^{(new)}, x^{(i)}))$$

Sum of **absolute** differences.

More **robust to outliers** than Euclidean.  
Appropriate when features represent fundamentally different quantities.

**Algorithm:**

Training Phase:

Store all training instances ( $x_{train}, y_{train}$ )  
No computation required. We are not learning any parameters

Prediction/Testing Phase:

1. Compute **distance** from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ -nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ -neighbors

# k-Nearest Neighbors

Measures **angle** between vectors, **ignoring magnitude**.

Useful for text data and high-dimensional sparse vectors.

**Euclidean Distance ( $L_2$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sqrt{\sum_{j=0}^n (x_j^{(new)} - x_j^{(i)})^2}$$

**Manhattan Distance ( $L_1$  Norm):**

$$d(x^{(new)}, x^{(i)}) = \sum_{j=0}^n |x_j^{(new)} - x_j^{(i)}|$$

**Cosine Similarity:**

$$sim(x^{(new)}, x^{(i)}) = \frac{x^{(new)} \cdot x^{(i)}}{\|x^{(new)}\| \|x^{(i)}\|}$$

$$(distance = 1 - sim(x^{(new)}, x^{(i)}))$$

**Algorithm:**

Training Phase:

Store all training instances ( $x_{train}, y_{train}$ )

No computation required. We are not learning any parameters

Prediction/Testing Phase:

1. Compute **distance** from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ –nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ –neighbors

# k-Nearest Neighbors

## Hamming Distance:

$$d(x^{(new)}, x^{(i)}) = \sum_{j=0}^n 1 \cdot (x_j^{(new)} \neq x_j^{(i)})$$

Hamming distance is a metric for comparing sequences of equal length - it counts the **number of positions where corresponding elements differ**.

## Example:

$$d([red, small, round], [red, large, round]) = 1$$

$$d([cat, young, male], [dog, old, female]) = 3$$

$$d(ACGT, ACTT) = 1$$

## Use Cases:

Categorical features: When features are categorical (say state a person lives in), Euclidean distance is meaningless.

Hamming distance treats each feature as equal - either it matches or it doesn't.

## Algorithm:

### Training Phase:

Store all training instances  $(x_{train}, y_{train})$

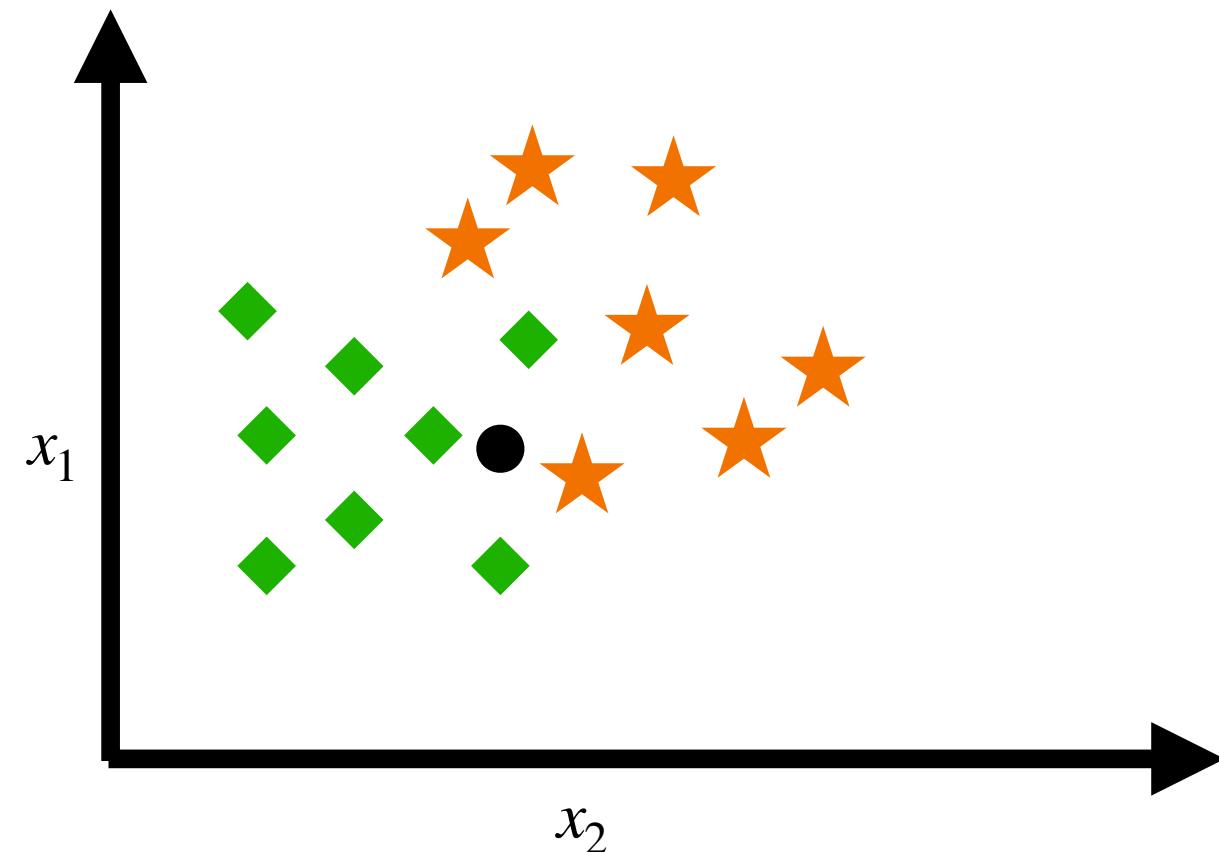
No computation required. We are not learning any parameters

### Prediction/Testing Phase:

1. Compute **distance** from new point  $x^{(new)}$  to every other point in the training data
2. Select the top  $k$ -nearest neighbors
3. For classification, return majority class amongst top  $k$
4. For regression, return mean or median of the values of the  $k$ -neighbors

# k-Nearest Neighbors

## Choosing $k$



- $k$  is the primary hyper-parameter controlling the bias-variance tradeoff

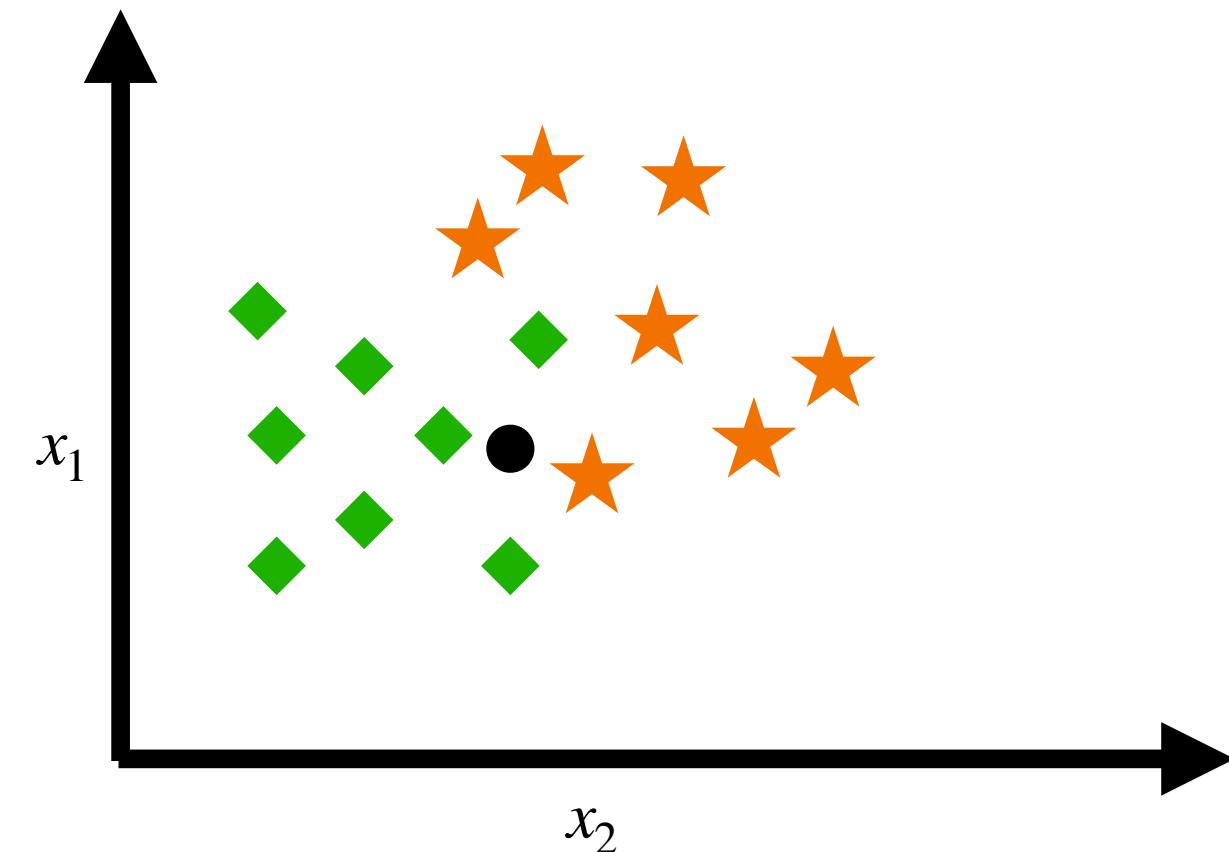
### Small $k$ (e.g. $k = 1$ )

- High variance, low bias
- Decision boundary is highly irregular
- Very sensitive to noise and outliers
- Prone to overfitting, but can capture fine grained structure

### Large $k$ (e.g. $k = m$ )

# k-Nearest Neighbors

## Choosing $k$



- $k$  is the primary hyper-parameter controlling the bias-variance tradeoff

### Small $k$ (e.g. $k = 1$ )

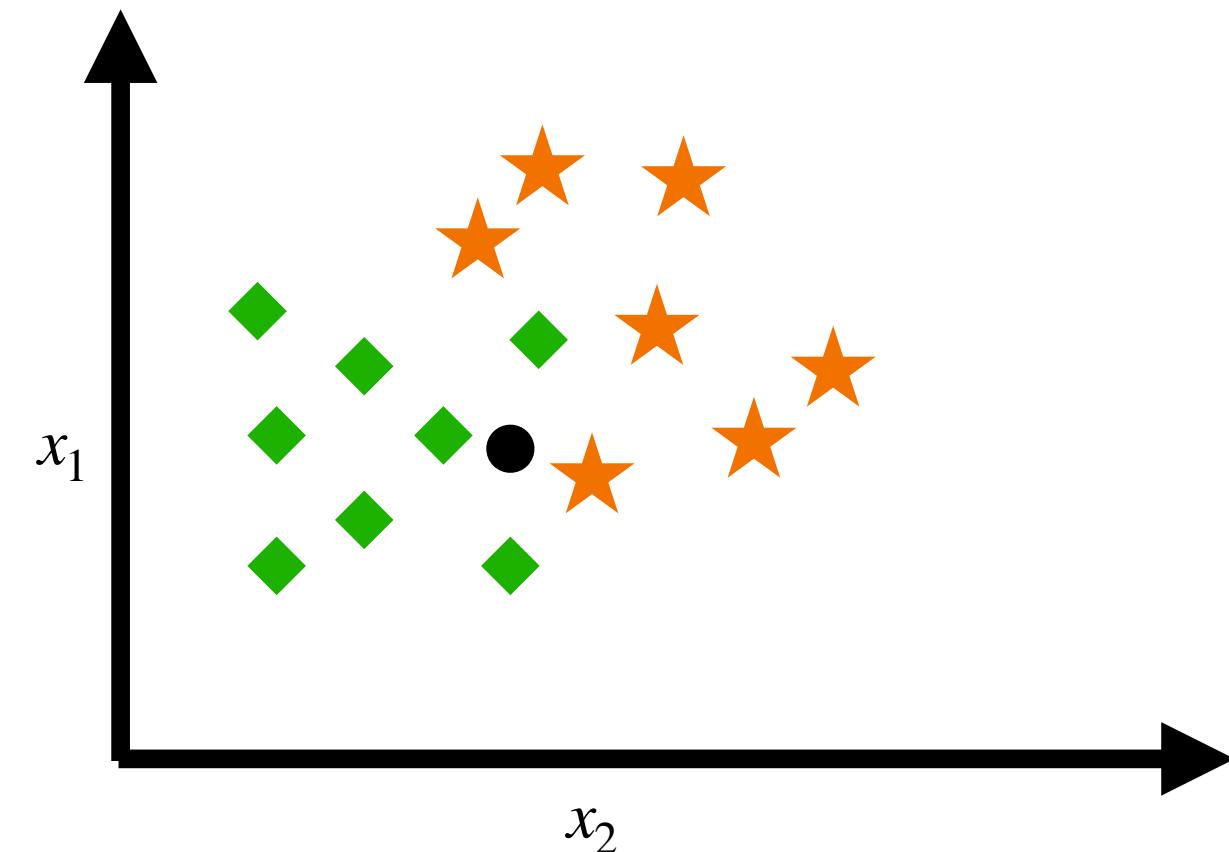
- High variance, low bias
- Decision boundary is highly irregular
- Very sensitive to noise and outliers
- Prone to overfitting, but can capture fine grained structure

### Large $k$ (e.g. $k = m$ )

- High bias, low variance
- Decision boundary is very smooth
- Robust to noise, but may miss local patterns
- At the extreme of  $k = m$ , always predicts majority class

# k-Nearest Neighbors

## Choosing $k$



- $k$  is the primary hyper-parameter controlling the bias-variance tradeoff

### Small $k$ (e.g. $k = 1$ )

- High variance, low bias
- Decision boundary is highly irregular
- Very sensitive to noise and outliers
- Prone to overfitting, but can capture fine grained structure

### Practical Tips

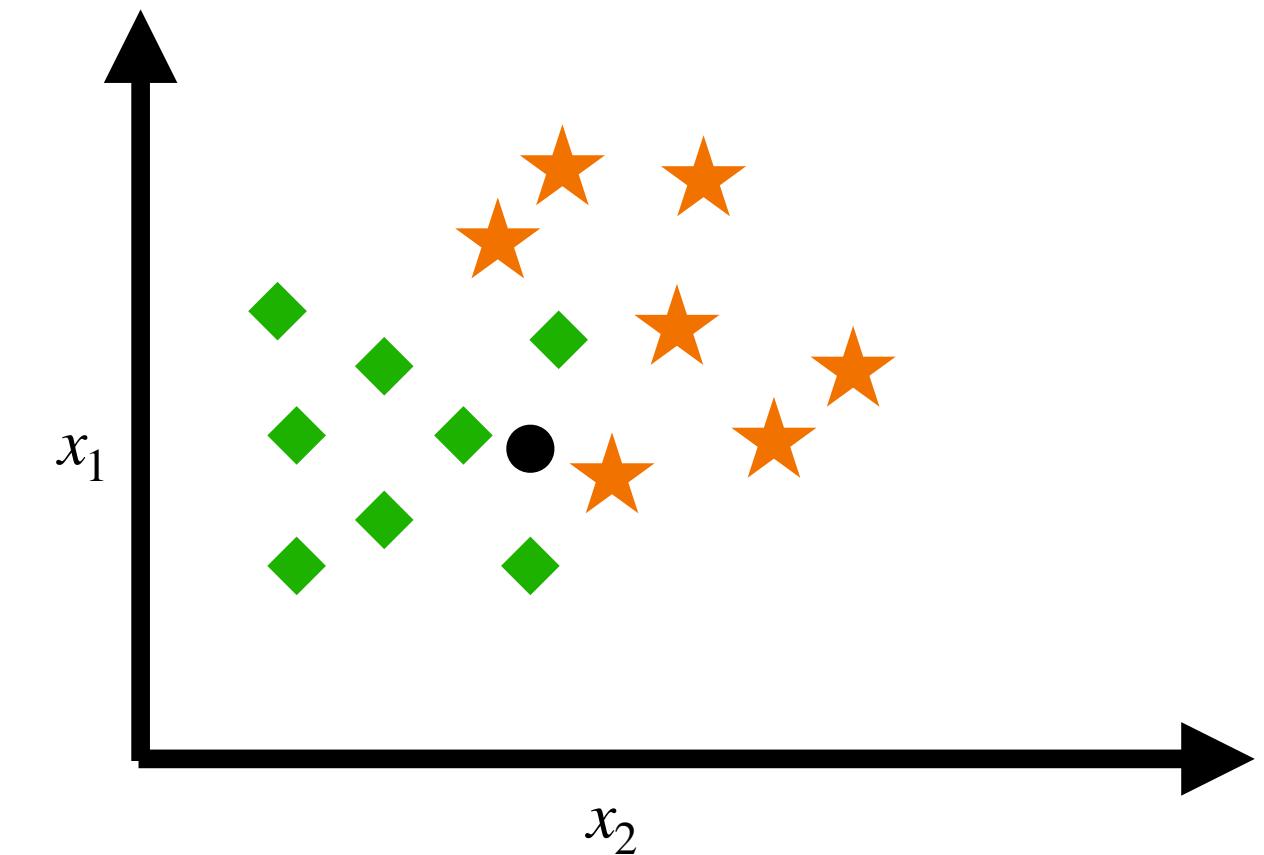
- Start with  $k = \sqrt{m}$
- Use cross-validation to select optimal  $k$
- If  $k$  is odd, it avoids ties in binary classification
- $k$  should be smaller than the smallest class size

### Large $k$ (e.g. $k = m$ )

- High bias, low variance
- Decision boundary is very smooth
- Robust to noise, but may miss local patterns
- At the extreme of  $k = m$ , always predicts majority class

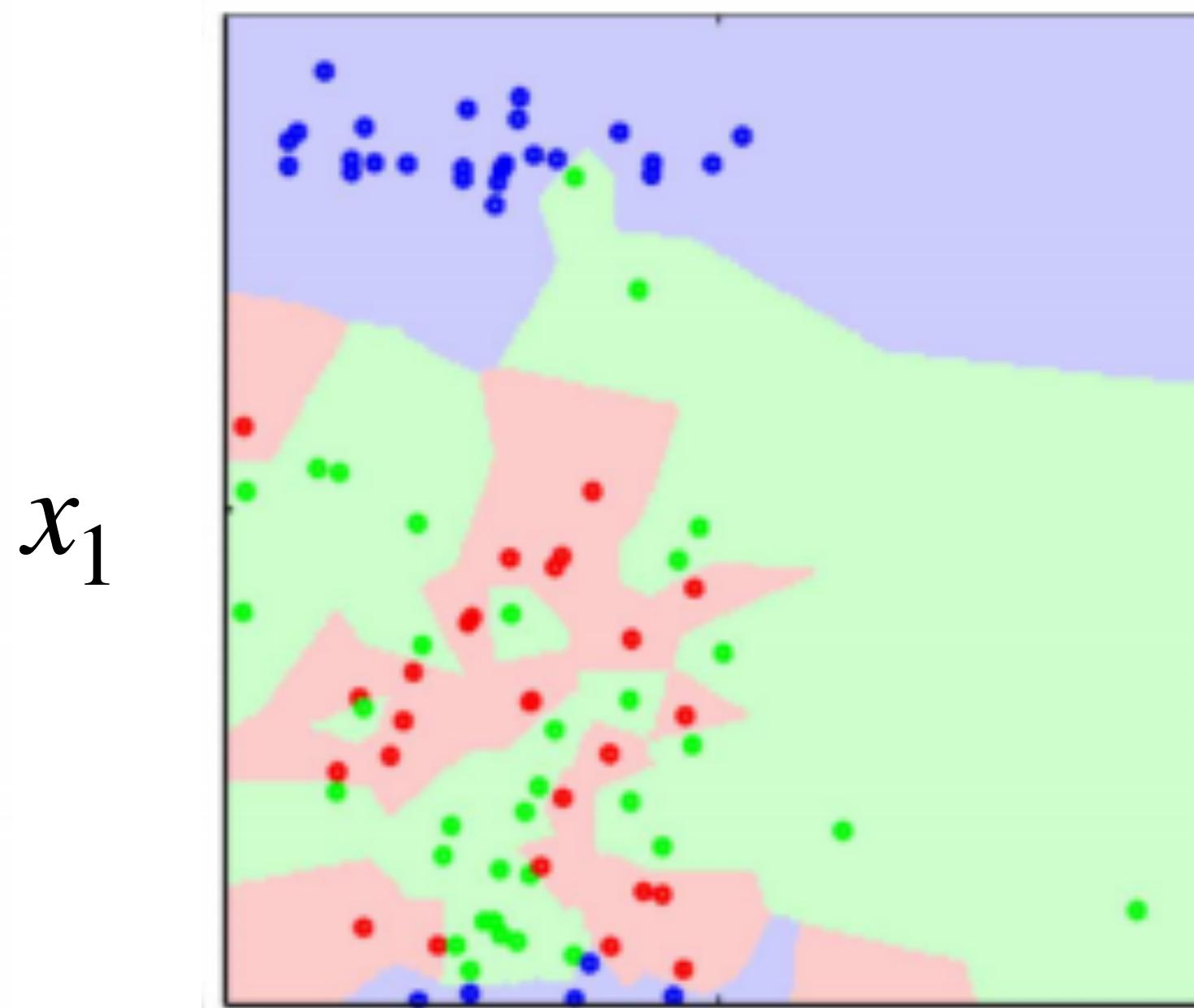
# k-Nearest Neighbors

## Choosing $k$



- $k$  is the primary hyper-parameter controlling the bias-variance tradeoff

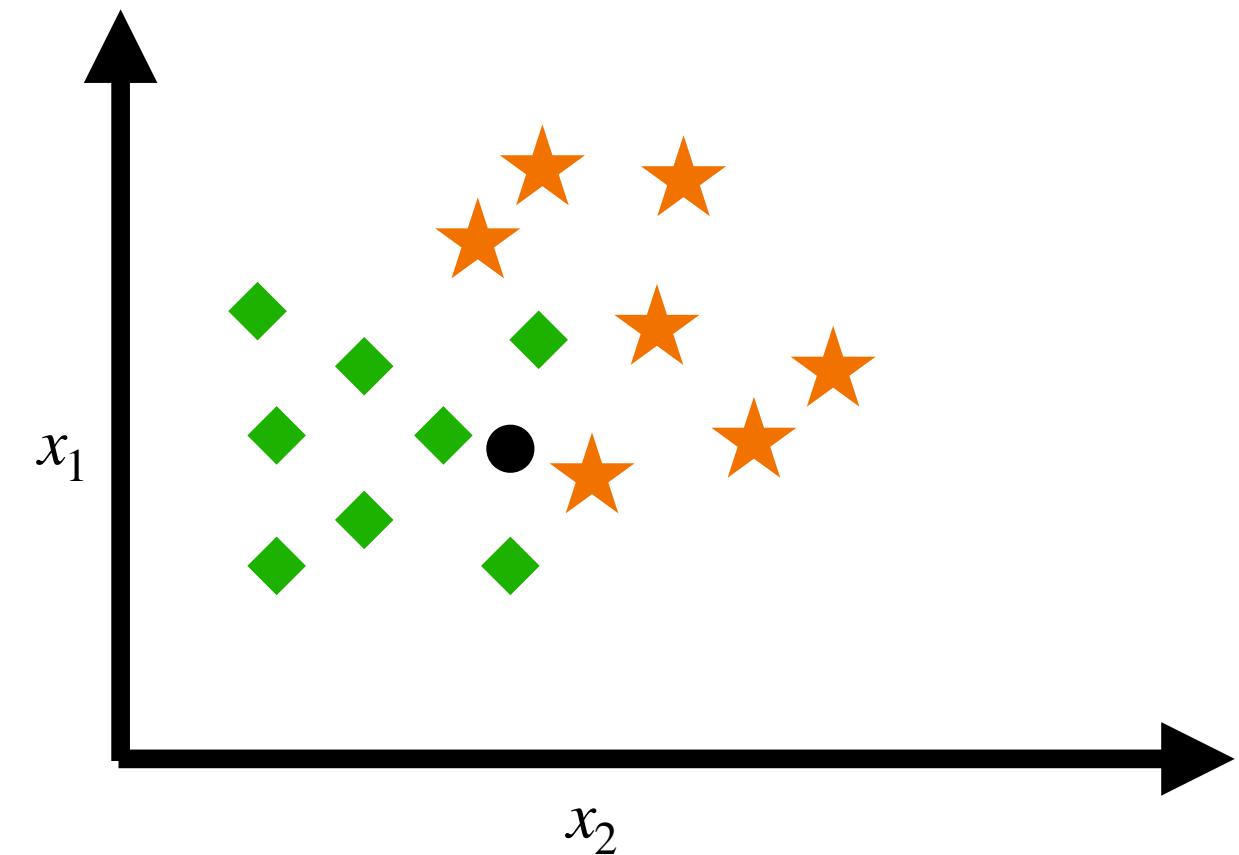
$$k = 1$$



$$x_2$$

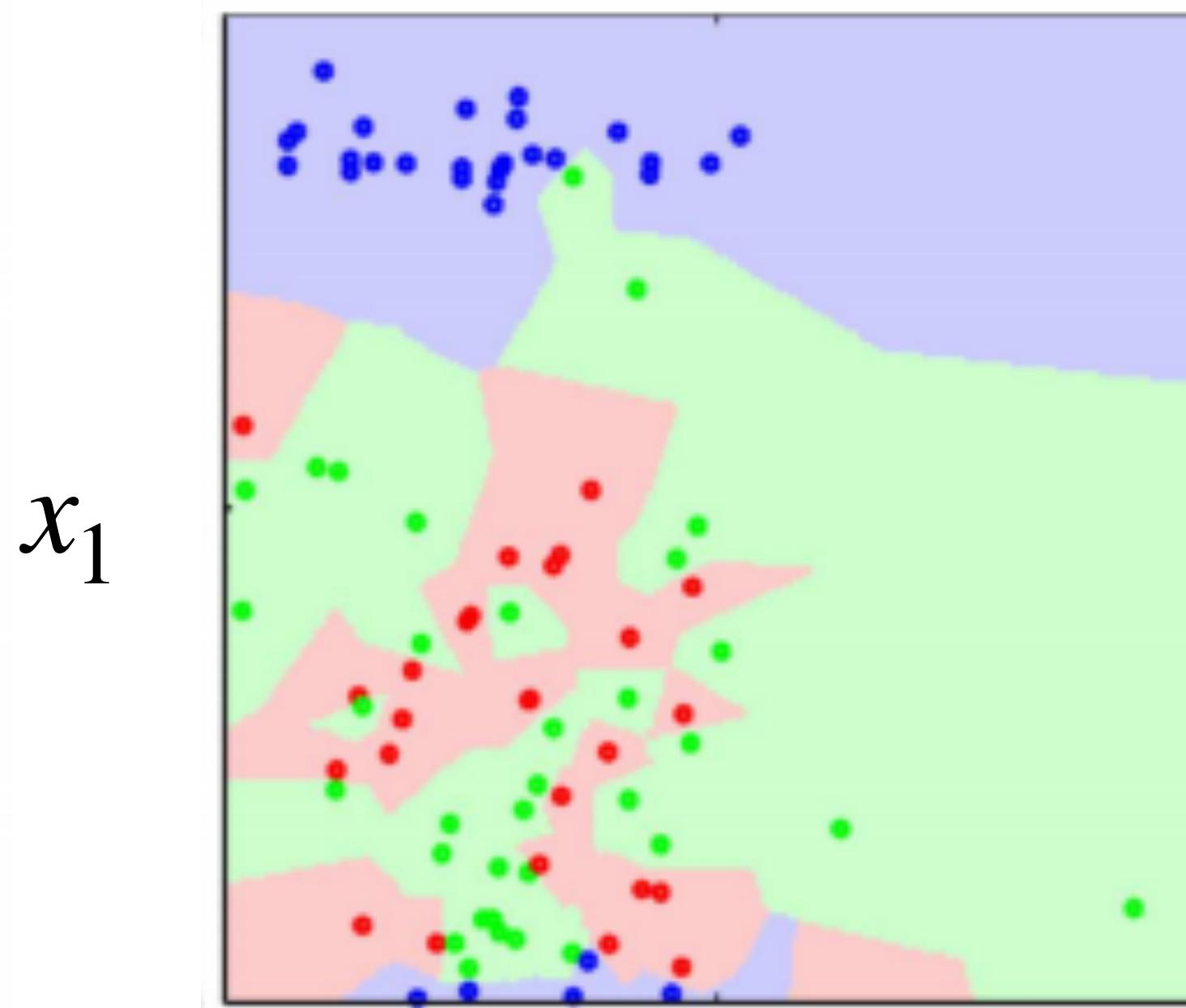
# k-Nearest Neighbors

## Choosing $k$

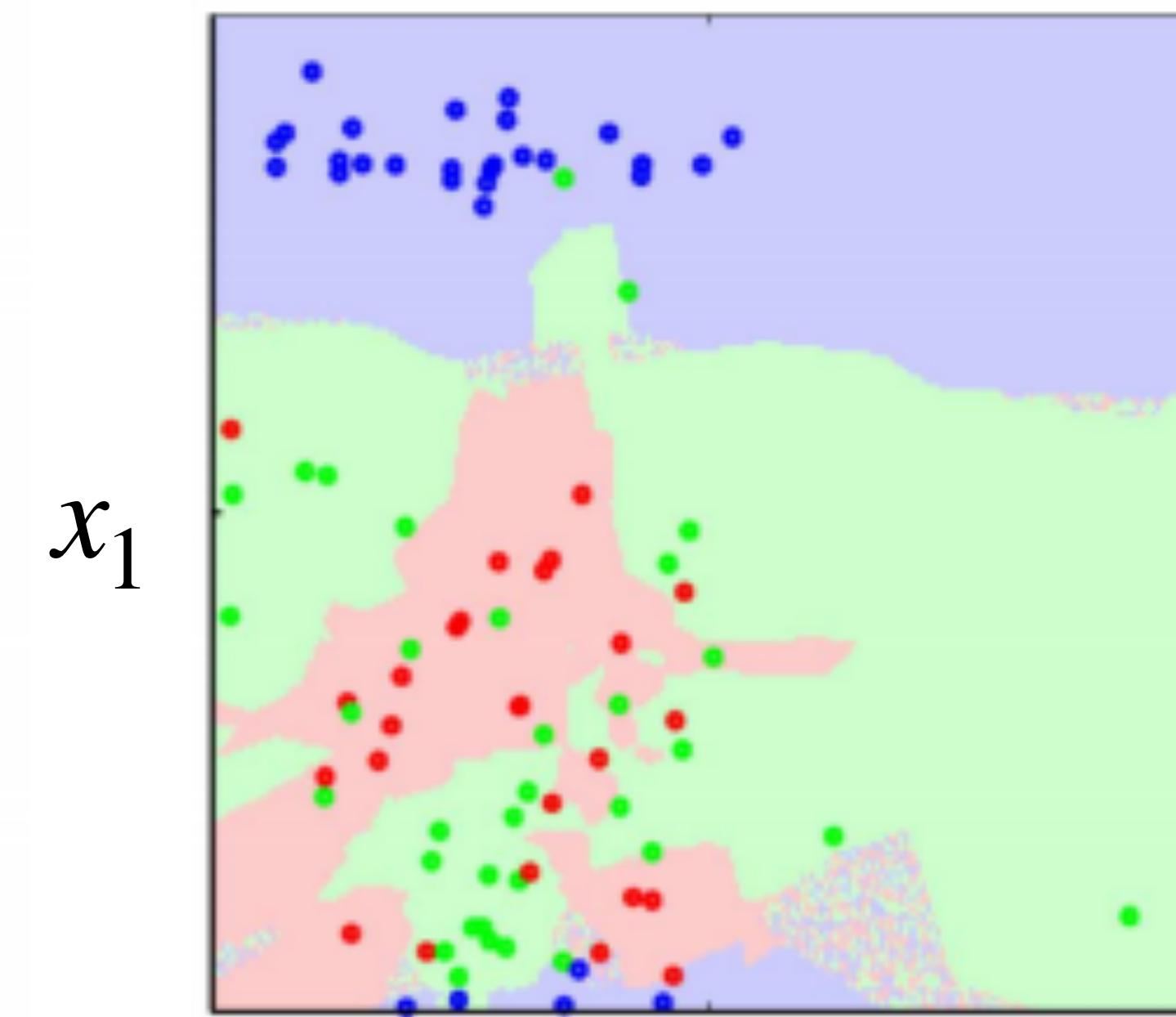


- $k$  is the primary hyper-parameter controlling the bias-variance tradeoff

$$k = 1$$



$$k = 3$$

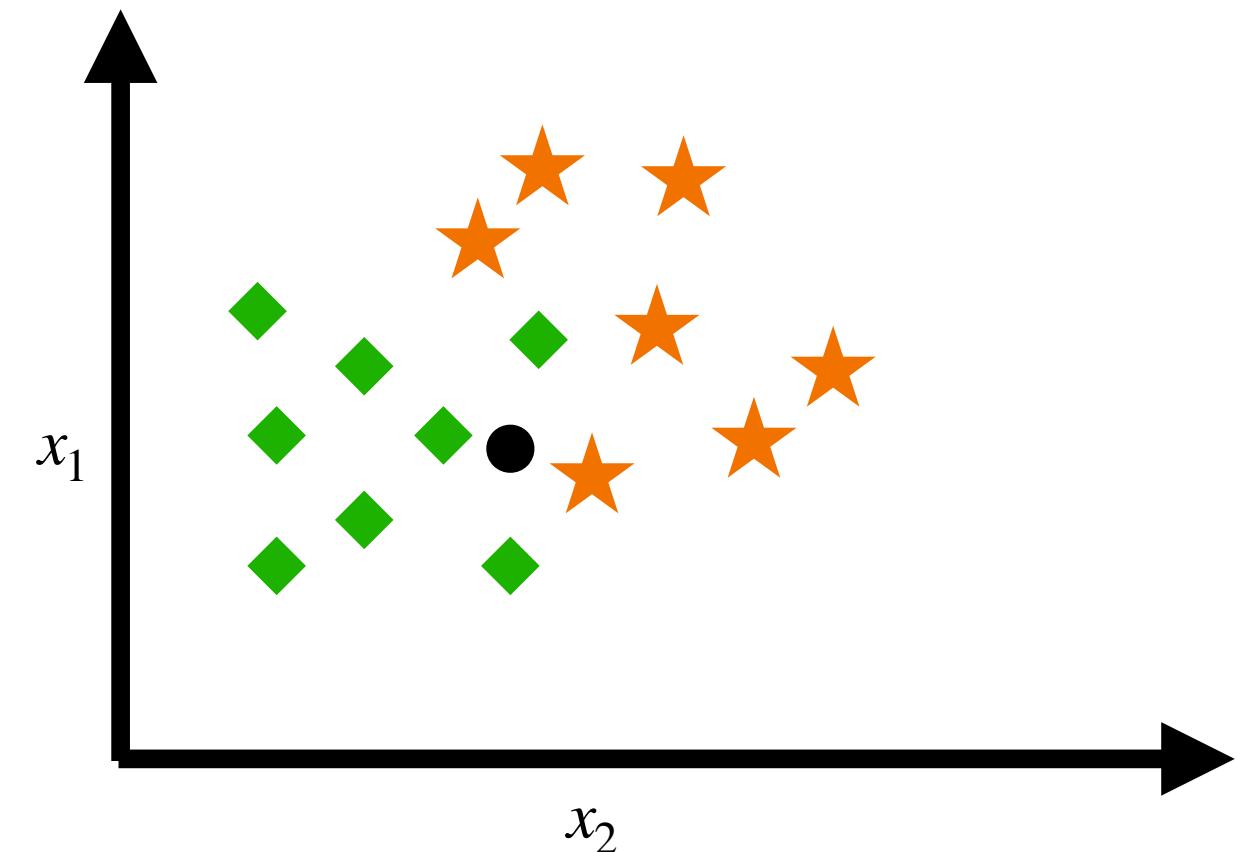


$$x_2$$

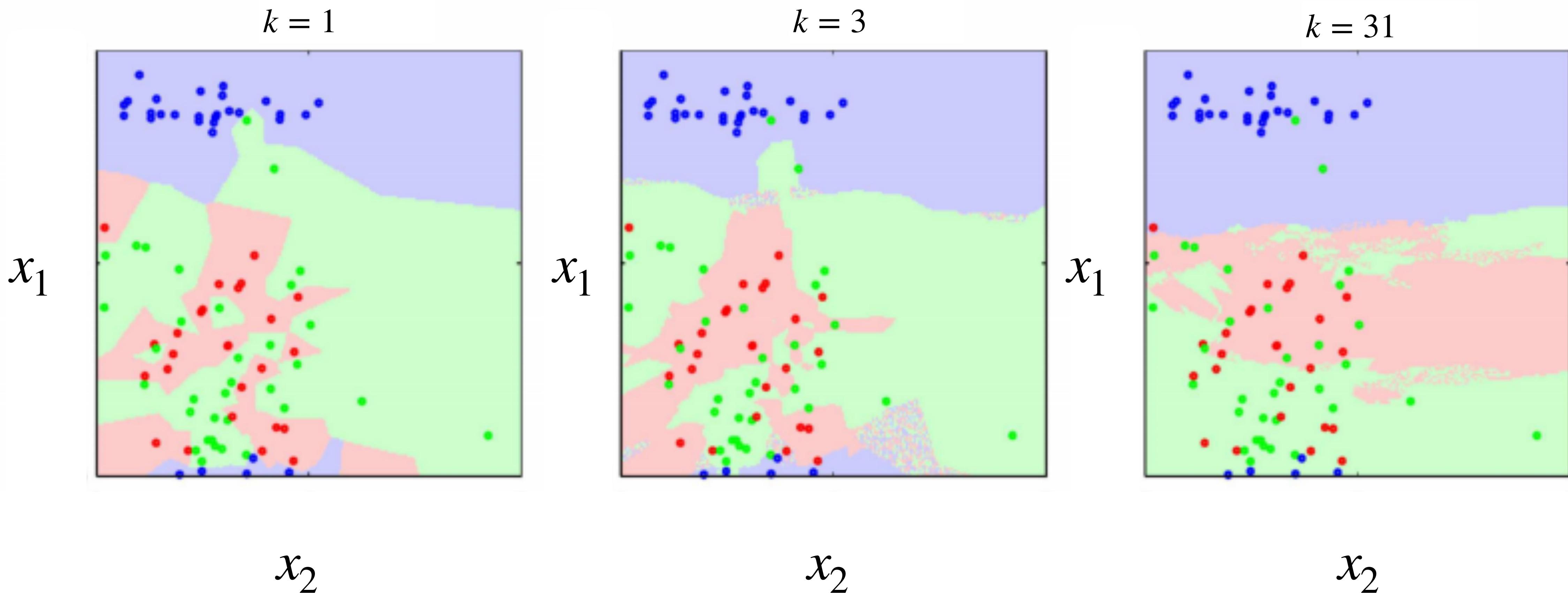
$$x_2$$

# k-Nearest Neighbors

## Choosing $k$



- $k$  is the primary hyper-parameter controlling the bias-variance tradeoff



# k-Nearest Neighbors

## Choosing k - Cross-validation

- Why Not Just Use Training Error?
  - A model that memorizes the training data achieves zero training error but fails on new data.
  - Training error is a biased (optimistic) estimate of true generalization performance.
  - We need to estimate how well our model will perform on **unseen data**.

# k-Nearest Neighbors

## Choosing k - Cross-validation

- Naive Solution - Train/Test Split
  - Split data into training set (say 80%) and test set (20%).
  - Train on training set, evaluate on test set.
  - Issues:
    - Wastes data - 20% of precious labeled data is never used for training
    - High variance - Performance estimate depends heavily on **which points land in the test set**
    - No hyperparameter tuning: If we use the test set to select hyperparameters, we're overfitting to the test set - (using **validation set** is a possible fix for this issue)

# k-Nearest Neighbors

## Choosing k - Cross-validation

- Naive Solution - Train/Test Split
  - **Data Leakage Issue**
    - If we repeatedly evaluate on the test set while tuning hyperparameters, information about the test set **leaks** into our model selection process.
    - The test error becomes optimistically biased - no longer a valid estimate of **generalization**

# k-Nearest Neighbors

## Choosing k - Cross-validation

- **Solution!**
- Use cross-validation
  - Use **all data** for both training and validation
  - Get **reliable performance estimates** with uncertainty quantification
  - Select hyperparameters **without contaminating the final test set**

# k-Fold Cross Validation

## Algorithm

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$                | $x_2$ | $x_3$ | $x_4$ |
|------------|----------------------|-------|-------|-------|
| $x^{(1)}$  |                      |       |       |       |
| $x^{(2)}$  |                      |       |       |       |
| $x^{(3)}$  |                      |       |       |       |
| $x^{(4)}$  |                      |       |       |       |
| $x^{(5)}$  |                      |       |       |       |
| $x^{(6)}$  |                      |       |       |       |
| $x^{(7)}$  |                      |       |       |       |
| $x^{(8)}$  |                      |       |       |       |
| $x^{(9)}$  | Validation Set $D_1$ |       |       |       |
| $x^{(10)}$ |                      |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

$$CV_1 = \frac{1}{D_1} \sum_{D_1} \ell(y_{D_1}, f_\theta(D_1))$$

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$                | $x_2$ | $x_3$ | $x_4$ |
|------------|----------------------|-------|-------|-------|
| $x^{(1)}$  |                      |       |       |       |
| $x^{(2)}$  |                      |       |       |       |
| $x^{(3)}$  |                      |       |       |       |
| $x^{(4)}$  |                      |       |       |       |
| $x^{(5)}$  |                      |       |       |       |
| $x^{(6)}$  |                      |       |       |       |
| $x^{(7)}$  | Validation Set $D_2$ |       |       |       |
| $x^{(8)}$  |                      |       |       |       |
| $x^{(9)}$  |                      |       |       |       |
| $x^{(10)}$ |                      |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

$$CV_2 = \frac{1}{D_2} \sum_{D_2} \ell(y_{D_2}, f_\theta(D_2))$$

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$                | $x_2$ | $x_3$ | $x_4$ |
|------------|----------------------|-------|-------|-------|
| $x^{(1)}$  |                      |       |       |       |
| $x^{(2)}$  |                      |       |       |       |
| $x^{(3)}$  |                      |       |       |       |
| $x^{(4)}$  |                      |       |       |       |
| $x^{(5)}$  | Validation Set $D_3$ |       |       |       |
| $x^{(6)}$  |                      |       |       |       |
| $x^{(7)}$  |                      |       |       |       |
| $x^{(8)}$  |                      |       |       |       |
| $x^{(9)}$  |                      |       |       |       |
| $x^{(10)}$ |                      |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

$$CV_3 = \frac{1}{D_3} \sum_{D_3} \ell(y_{D_3}, f_\theta(D_3))$$

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$                | $x_2$ | $x_3$ | $x_4$ |
|------------|----------------------|-------|-------|-------|
| $x^{(1)}$  |                      |       |       |       |
| $x^{(2)}$  |                      |       |       |       |
| $x^{(3)}$  |                      |       |       |       |
| $x^{(4)}$  | Validation Set $D_4$ |       |       |       |
| $x^{(5)}$  |                      |       |       |       |
| $x^{(6)}$  |                      |       |       |       |
| $x^{(7)}$  |                      |       |       |       |
| $x^{(8)}$  |                      |       |       |       |
| $x^{(9)}$  |                      |       |       |       |
| $x^{(10)}$ |                      |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

$$CV_4 = \frac{1}{D_4} \sum_{D_4} \ell(y_{D_4}, f_\theta(D_4))$$

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

$$CV_5 = \frac{1}{D_5} \sum_{D_5} \ell(y_{D_5}, f_\theta(D_5))$$

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation

## Algorithm

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

Mean CV Score:

$$\bar{CV} = \frac{1}{k} \sum_{i=1}^k CV_i$$

### Algorithm

1. Shuffle the dataset randomly
2. Split data into  $k$  equally-sized folds (or partitions)
3. for each fold  $i = 1, 2, \dots, k$ :
  - 3a. Use fold  $i$  as the validation set
  - 3b. Use the remaining  $k - i$  folds as the training set
  - 3c. Train the model on the training set
  - 3d. Evaluate on the validation set, record performance metric
4. Aggregate the  $K$  performance estimates

# k-Fold Cross Validation Algorithm

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

Mean CV Score:

$$\bar{CV} = \frac{1}{k} \sum_{i=1}^k CV_i$$

| <b>k-value</b> | <b>Training Size</b> | <b>Properties</b>                    |
|----------------|----------------------|--------------------------------------|
| k=2            | 50%                  | High Bias<br>Low Variance<br>Fast    |
| k=5            | 80%                  | Good Balance<br>Commonly Used        |
| k=10           | 90%                  | Low Bias<br>Commonly Used            |
| k=m-1          | m-1 samples          | Low Bias<br>Highest Variance<br>Slow |

# k-Fold Cross Validation Algorithm

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

Let's say we want to run  $k = 5$ -fold cross validation

Train on **8 rows**, test on **2 row**

Mean CV Score:

$$\bar{CV} = \frac{1}{k} \sum_{i=1}^k CV_i$$

$k$ -fold CV requires **training  $k$  models**.

If training is expensive, smaller  $k$  is preferred.

| <b>k-value</b> | <b>Training Size</b> | <b>Properties</b>                    |
|----------------|----------------------|--------------------------------------|
| k=2            | 50%                  | High Bias<br>Low Variance<br>Fast    |
| k=5            | 80%                  | Good Balance<br>Commonly Used        |
| k=10           | 90%                  | Low Bias<br>Commonly Used            |
| k=m-1          | m-1 samples          | Low Bias<br>Highest Variance<br>Slow |

# k-Fold Cross Validation

## Variants

|            | $x_1$ | $x_2$ | $x_3$ | $x_4$ |
|------------|-------|-------|-------|-------|
| $x^{(1)}$  |       |       |       |       |
| $x^{(2)}$  |       |       |       |       |
| $x^{(3)}$  |       |       |       |       |
| $x^{(4)}$  |       |       |       |       |
| $x^{(5)}$  |       |       |       |       |
| $x^{(6)}$  |       |       |       |       |
| $x^{(7)}$  |       |       |       |       |
| $x^{(8)}$  |       |       |       |       |
| $x^{(9)}$  |       |       |       |       |
| $x^{(10)}$ |       |       |       |       |

### Stratified Cross-Validation

- The Problem with Random Splits
  - For imbalanced classification, random splits may create folds with different class distributions.
  - **One fold might have 40% positives while another has 20%, leading to unreliable estimates.**
  - Stratified sampling ensures each fold has approximately the same class distribution as the full dataset.
  - Algorithm:
    - Separate samples by class
    - For each class, distribute samples evenly across  $k$ -folds
    - Combine to form final folds

# Back to k-Nearest Neighbors

## Practical Issues

- Feature Scaling
- Curse of Dimensionality
- Space and computational complexity

# Back to k-Nearest Neighbors

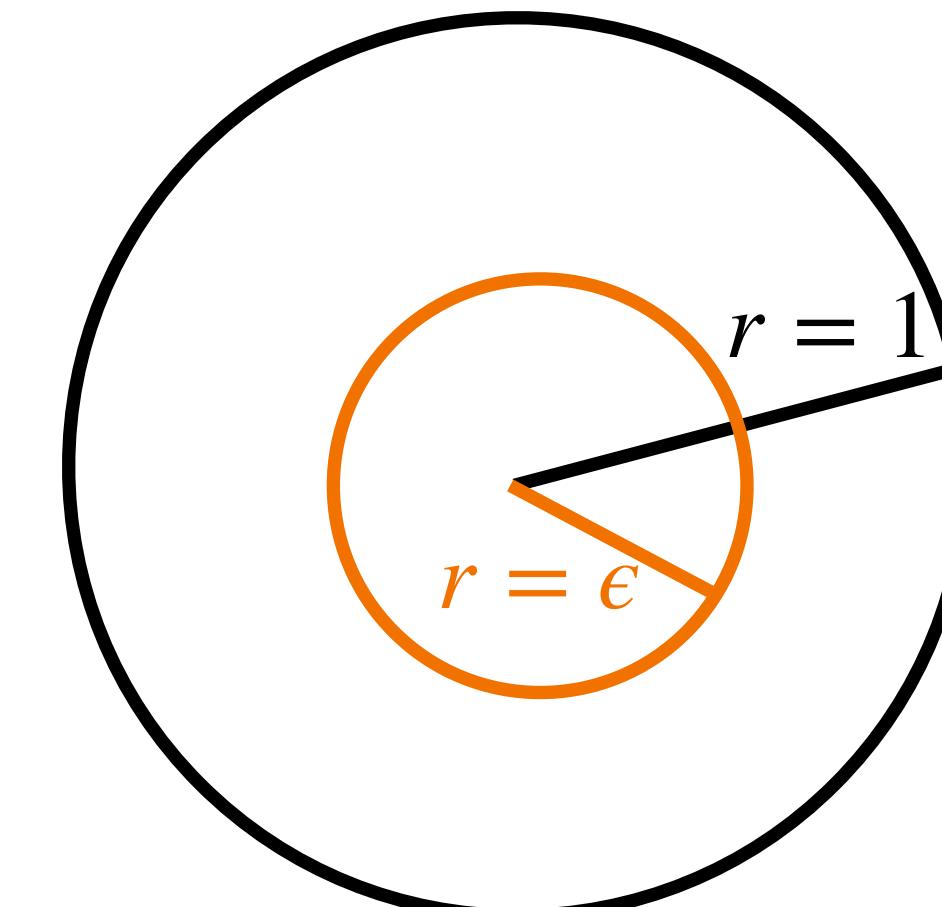
## Practical Issues - Feature Scaling

- KNN is **highly sensitive** to feature scales because distance metrics are dominated by features with larger ranges.
- Example:
  - If feature A ranges from 0-1 and feature B ranges from 0-1000
  - Euclidean distance is almost **entirely determined by feature B**.
  - Solution: Always normalize or standardize features before applying kNN.

# Back to k-Nearest Neighbors

## Practical Issues - Curse of Dimensionality

- KNN suffers severely in high-dimensional spaces:
  - Distance concentration: As dimensionality increases, **distances between points become increasingly similar**.
  - **The ratio of nearest to farthest neighbor approaches 1**, making the concept of “nearest” meaningless.



# Back to k-Nearest Neighbors

## Practical Issues - Curse of Dimensionality

- KNN suffers severely in high-dimensional spaces:
  - Distance concentration: As dimensionality increases, **distances between points become increasingly similar**.
  - **The ratio of nearest to farthest neighbor approaches 1**, making the concept of “nearest” meaningless.
- Sparsity: The volume of space grows exponentially with dimension. To maintain the same density of points, training set size must grow exponentially.
- Irrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance calculations.
- Mitigation strategies:
  - Dimensionality reduction (PCA, feature selection)
  - **Feature weighting** based on relevance
  - Consider other algorithms for  $d > 20$

# Back to k-Nearest Neighbors

## Practical Issues - Computational Complexity

- Training:  $O(1)$  - just store the data
- Prediction (naive):
  - $O(nm)$  per query, where  $m$  is training set size and  $n$  is dimensionality.
  - Must compute distance to all  $m$  points.
- Prediction (optimized) - Data structures can accelerate nearest neighbor search:
  - KD-trees:  $O(n \log m)$  average case for low dimensions, but degrades to  $O(nm)$  in high dimensions
  - Ball trees: Better for high dimensions than KD-trees
  - Locality-sensitive hashing (LSH): Approximate nearest neighbors in  $O(n)$  with preprocessing
- Space complexity:  $O(nm)$  to store the training data.

# Back to k-Nearest Neighbors

## Practical Issues

### Pros

- Simple to understand and implement
- No training phase (fast to “train”)
- Naturally handles multi-class classification
- Non-parametric: makes no distributional assumptions
- Can capture arbitrarily complex decision boundaries
- Easily adapts to new training data (just add it)

### Cons

- Slow prediction for large datasets
- High memory requirement (stores all training data)
- Sensitive to irrelevant features and feature scaling
- Struggles in high dimensions (curse of dimensionality)
- No interpretable model or feature importance
- Requires meaningful distance metric

# Back to k-Nearest Neighbors

## When to use k-NN?

### Use

- Small to medium datasets
- Low to moderate dimensionality ( $n < 20$ )
- Non-linear decision boundaries expected
- Data arrives incrementally (online learning)
- Quick baseline model needed

### Don't Use

- Large datasets with real-time prediction requirements
- Very high-dimensional data
- Features have varying relevance
- Interpretability is required

# Next Class

- Logistic Regression
  - Brush up on conditional probability, Bayes' Theorem and Bernoulli Distribution