Northeastern University
Khoury College of
Computer Sciences

k— Nearest Neighbors

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Monday | February 2, 2026

Today’s Outline

e Metrics

* Kk-Nearest Neighbors

Updates

» Office hour timings

* Jopic based office hours

* Homework 2 Is out - due Friday Feb 15th 11:59PM
» Homework 1 - answers on Wednesday

* Final exam dates

* Functions that can be considered linear regression

Metrics

 An obvious metric is accuracy

Number of Correct Predictions
Accuracy = —mM8M8M8M8M8Mm
Total Number of Data Points

* Say you have a cat classifier with 1000 images. Your classifier gets 797 out of
1000 images correct

797
Accuracy = —— =79 %

1000

Metrics

* But, accuracy does not tell the whole picture
* Especially when data is skewed
 For example, if your training data is of size 1000 images
* 900 of them are of dogs
100 of them are cats

* Question: Is accuracy a good metric in this case”?

Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

Actual Negative

Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Predicted Positive

Predicted Negative

Metrics

Actual Positive

True Positive (TP)

False Negative (FN)

Accuracy

Actual Negative

False Positive (FP)

True Negative (TN)

I'P+ 1IN

Accuracy = ——
IP+ 1IN+ FP+FN

The proportion of correct predictions.

Simple and intuitive, but misleading for imbalanced data.

A classifier that always predicts the majority class achieves high accuracy

on imbalanced datasets while being useless.

Metrics

Precision and Recall

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

I'P

Precision = W

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

I'P

Precision =

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

I'P

Precision = ——
IP+ FP
Recall = ———
IP+ FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

Precision =

I'P

I'P+ FP

I'P

R || =

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

I'P

Precision = ————
IP+ FP

I'P

Recall = —
I'P+ FN

relevant elements

false negatives true negatives
O
® o ® O
O O
O
Q O

true positives false positives

retrieved elements

Predicted Positive

Predicted Negative

Actual Positive True Positive (TP)

False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

How many retrieved
items are relevant?

Precision =

How many relevant
items are retrieved?

Recall =

Metrics

Precision and Recall

TP Of all instances predicted as positive, what fraction actually are positive?
Precision measures the reliability of positive predictions. High precision means few

m false alarms.

When to care about precision?
When false positives are costly.

Precision =

I'P

Recall| =z ——— Examples include spam filtering (users hate losing important emails), recommendation
TP + FN systems (irrelevant recommendations erode trust), and legal contexts (wrongful
accusations).

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

TP Of all actual positive instances, what fraction did we correctly identify? Recall
Precision = measures coverage of positive instances. High recall means few missed positives.
I[P+ FP When to care about recall?
When false negatives are costly.
1P Examples include disease screening (missing a diagnosis can be fatal), security
Recall = ————————— threats (missing an attack is catastrophic), and search engines (users want all relevant
TP + FN results).
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

» 1P
Precision = ——
IP+ FP
TP
Recall = ——
IP+ FN

Precision and recall are inherently in tension.

Increasing the threshold for positive classification typically increases precision
but decreases recall.

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

I'P

Precision = ———
IP+ FP

I'P

Recall = —
I'P+ FN

F1=2

Predicted Positive

Predicted Negative

Actual Positive True Positive (TP)

False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Precision - Recall B 2TP
Precision + Recall 2TP + FP + FN

The harmonic mean of precision and recall

F1 score is high only when both precision and recall are high

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = —— F1=2
I'P+ FP Precision + Recall 2TP+ FP + FN
TP o TN
Recall = —— Specificity = ————
I'P+ FN I'N + FP
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ———— e g
TP+ FP Precision + Recall 2TP + FP+ FN
TP TN

Recall = Specificity = —————
I'P+ FN IN+ FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ———— e g
TP+ FP Precision + Recall 2TP + FP+ FN
TP TN

Recall = —— Specificity =
TP + FN P = TN+ FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ——— Fl=2— =
I'P+ FP Precision + Recall 2TP+ FP + FN
TP o TN N FP
Recall = —— Specificity = ———— False Positive Rate = ———
I'P+ FN I'N + FP I'N + FP
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ———— e g
TP+ FP Precision + Recall 2TP + FP+ FN
TP TN FP

Recall = ——— Specificity === False Positive Rate = ===
TP+FN Y [IN+ FP TN + FP

Same denominator
Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ———— e g
TP+ FP Precision + Recall 2TP + FP+ FN
TP TN FP

Recall = ——— Specificity === False Positive Rate = ===
TP+FN Y [IN+ FP TN + FP

Same denominator

Predicted Positive Predicted Negative FPR =1 - Specificity

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ———— e g
TP + FP Precision + Recall 2TP + FP + FN

1P I'N P
Recall = —— Specificity = ——— False Positive Rate = ———
IP+ FN IN+ FP IN + FP

Recall is the True Positive Rate
Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Why so many metrics?
TP+ TN

Accuracy =
TP
Precision = ———
IP+ FP
TP
Recall =

I'P+ FN

I'P+ 1IN+ FP+ FN

Predicted Positive

Predicted Negative

Actual Positive True Positive (TP)

False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Assume your training data looks like this:

1000 rows
10 rows are spam emails
990 are legitimate emails

Scenario 1:

Classifier always outputs legit
What is the accuracy?

Metrics

Why so many metrics?
TP+ TN

Accuracy =
TP
Precision = ———
IP+ FP
TP
Recall =

I'P+ FN

I'P+ 1IN+ FP+ FN

Predicted Positive

Predicted Negative

Actual Positive True Positive (TP)

False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)

Assume your training data looks like this:

1000 rows
10 rows are spam emails
990 are legitimate emails

Scenario 1:

Classifier always outputs legit
What is the accuracy?

Acc =

0+ 990

0+990+ 0+ 10

= 99 %

Metrics

Why so many metrics?

I'P+ 1IN
I'P+ 1IN+ FP+ FN
I'P

Precision =

I'P

Accuracy =

e TP FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Assume your training data looks like this:

1000 rows
10 rows are spam emails
990 are legitimate emails

Scenario 1:
Classifier always outputs legit A, = 0+5%0 — 00 9,
What is the accuracy? 0+990+ 0+ 10
Scenario 2:

Classifier predicts one spam email as spam, and rest as legitimate
What is the precision?

Metrics

Why so many metrics?

I'P+ 1IN
I'P+ 1IN+ FP+ FN
I'P

Precision =

I'P

Accuracy =

e TP FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Assume your training data looks like this:

1000 rows
10 rows are spam emails
990 are legitimate emails

Scenario 1:

Classifier always outputs legit A, =

What is the accuracy?

Scenario 2:

0+ 990

0+990+ 0+ 10

= 99 %

Classifier predicts one spam email as spam, and rest as legitimate

What is the precision?

Precision =

140

= 100 %

Metrics

Why so many metrics?

Assume your training data looks like this:

1000 rows

TP + TN 10 rows are spam emails

Accuracy _ 990 are legitimate emails
TP+ TN+ FP+ FN oot
o TP Classifier always outputs legit A, = 0+ 990 — 09 9
Precision = —— What is the accuracy? 0+ 990 + 0 + 10

I'P+ FP

Classifier predicts one spam email as spam, and rest as legitimate

Recall = ! > @
What is the precision?
[P+ FN S
Precision = = 100 %

Scenario 2:

Scenario 3: 1+0
Predicted Positive Predicted Negative

Classifier always outputs spam
Actual Positive True Positive (TP) False Negative (FN) What is the recall?

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Why so many metrics?

Assume your training data looks like this:

1000 rows

TP + TN 10 rows are spam emails

Accuracy _ 990 are legitimate emails
TP+ TN+ FP+ FN oot
o TP Classifier always outputs legit A, = 0+ 990 — 09 9
Precision = —— What is the accuracy? 0+ 990 + 0 + 10

I'P+ FP

Classifier predicts one spam email as spam, and rest as legitimate

Recall = ! > @
What is the precision?
[P+ FN S
Precision = = 100 %

Scenario 2:

Scenario 3: 1+0
Predicted Positive Predicted Negative

Classifier always outputs spam
Actual Positive True Positive (TP) False Negative (FN) What is the recall?

10
Recall = = 100 %
1040

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat in image if P(cat | image;) > 0

* Precision goes - Recall goes-

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat in image if P(cat | image;) > 0

* Precision goes down, Recall goes up

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat inimage if P(cat|image;) > 0.999

* Precision gces.RecaII goes-

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat inimage if P(cat|image;) > 0.999

* Precision goes up, Recall goes down

Metrics

Area Under Precision-Recall Curve (AUP)

0.75

0.5

Precision

0.25

0 0.25 0.5 0.75

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier:

Horizontal line at the
proportion of positives
(25% here).

AUC-PR equals the
class proportion. No
predictive power.

Precision

0 0.25 0.5 0.75 1

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier:

Horizontal line at the
proportion of positives
(25% here).

0.75
AUC-PR equals the
class proportion. No

predictive power.

0.5 Poor classifier

Precision

Poor classifier:

O O5 sesssnunununnnnnnnnnnnnnnnnnnagaannnnsannnnnnnnnnnnnnnnnnnnns
Precision drops steadily
as recall increases.

Still better than random,
but significant tradeoft 0 0.25 05 0.75 1
between precision and
recall.

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier:

Horizontal line at the

proportion of positives

(25% here). Good classifier

0.75
AUC-PR equals the C
class proportion. No %
predictive power O 99| Poor classifier Good classifier:
O
Poor classifier: al High precision
0.25 maintained until high
Precision drops steadily recall.
as recall increases. The curve hugs the top-
Still better than random, 0 right corner.
but significan’g t.radeoﬁ 0 0.25 0.5 0.75 1
between precision and
recall.

Recall

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

N

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN+ FP
AUC-ROC Curve

N

Area Under Curve -

Receiver Operating Characteristics
0.75

AUC-ROC plots TPR against FPR
at all classification thresholds

between 0 and 1.
0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

N

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

N

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrICS I'P+ FN I'N + FP
AUC-ROC Curve

N

0.75

Random classifier

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrICS I'P+ FN I'N + FP
AUC-ROC Curve

N

0.75

Random classifier

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=——— FPR=————
Metrics IP+ FN IN+ FP
AUC-ROC Curve

Direction to
get better

0.75

. Random classifier

0.25

True Positive Rate

Even better classifier

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrlCS IP+ FN I'N + FP
AUC-ROC Curve

0.75)-------

Random classifier

Better classifier
Even better classifier - TPR: 0.75, FPR: 0.23

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrlCS IP+ FN I'N + FP
AUC-ROC Curve

075222

Random classifier

Better classifier - TPR: 0.75, FPR: 0.5
Even better classifier - TPR: 0.75, FPR: 0.23

0.25

True Positive Rate

-----“--

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN+ FP
AUC-ROC Curve

075|=======

Random classifier
TPR: 0.75, FPR: 0.75

Better Cla:ssifier - TPR: 0.75, FPR: 0.5
Even better tlassifier - TPR: 0.75, FPR: 0.23
|

0.25

True Positive Rate

-----“--

i
i
i
0 0.25 0.5 0.75 1

False Positive Rate

I'P FP

' TPR=——— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

Perfect classifier

—h

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

N

0.75

Area under the curve

AUC =1 - Perfect Classifier
AUC = 0.5 - Random Classifier

0.25 AUC < 0.5 - Worse Than Random Classifier

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=——— FPR=———
Metrics I'P+ FN IN+ FP
AUC-ROC Curve

Intuition:

AUC equals the
probability that a
randomly chosen positive
instance is ranked
higher than a randomly
chosen negative instance
by the classifier's scores.

N

0.75

Area under the curve

AUC =1 - Perfect Classifier
AUC = 0.5 - Random Classifier
AUC < 0.5 - Worse Than Random Classifier

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=——— FPR=———
Metrics I'P+ FN IN+ FP
AUC-ROC Curve

Intuition: .
AUC equals the
probability that a
randomly chosen positive
instance is ranked
higher than a randomly
chosen negative instance
by the classifier's scores.

0.75

Area under the curve

AUC =1 - Perfect Classifier
AUC = 0.5 - Random Classifier
AUC < 0.5 - Worse Than Random Classifier

Limitation:

ROC curves can be
overly optimistic for
highly imbalanced
datasets because the
FPR denominator is 0

dominated by the large
TN count. 0 0.25 0.5 0.75 1

False Positive Rate

0.25

True Positive Rate

Today’s Outline

e Metrics

 k-Nearest Neighbors

k-Nearest Neighbors

 KNN is a non-parametric, instance-based (lazy) learning algorithm.

* |t makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

k-Nearest Neighbors

 KNN is a non-parametric, instance-based (lazy) learning algorithm.

* |t makes no assumptions about the underlying data distribution and stores all
training instances rather than learning explicit parameters.

 Key ldea:
e Similar instances have similar labels.

* Jo classify a new point, find the K training instances closest to it and let
them vote

k-Nearest Neighbors

Slc_:"hgohol Sggzs Get Into
GPA College?
XL A2)
xXD| 3.6 1500 = 1
X 27 950 =0 | Xj
xO) | 37 1300 = 1
x| 30 1550 _ 1
x| 32 | 1000 € =0
xew) | 3.2 1250 ?

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3

Find &
nearest

neighbors *

o ¥
¢ ¢ ¢ * *
¢ o *) ¢

¢
¢ ¢

k-Nearest Neighbors

k-Nearest Neighbors

Letk =3 Prediction for new student

Find k = majority(€ €)
neighbors * % -&
@
@@ ¢ * Y
® o *) ¢
¢
¢ ¢

k-Nearest Neighbors

Algorithm:

Training Phase:

Store all training instances (xtmm,)’tmin)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x**) to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

(D
@
3
e

+©)

x(new)

High

k-Nearest Neighbors

Algorithm:

Training Phase:

Store all training instances (xtmm, ytm,-n)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

S0l Scores G
XL A2)
3.6 | 1500 = 1
2.7 950 =0
3.7 | 1300 = 1
3.2 | 1550 = 1
32 | 1000 4 =0
3.2 | 1250 ?

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) ,.()\ — (new) _ .(1)\2

d(x > A) \Z ()6 xJ)
J=0

Manhattan Distance (L; Norm):

n
(new) (D)} — (new) _ 1.(0)
dx", x0) = 3 | — x|
j=0

Cosine Similarity:

cnew) . ()

x| @]

sim(x"") x) =

(distance = 1 — sim(x""), x(0))

The choice of the distance metric
fundamentally affects which points are being
considered “neighbors”

Algorithm:

Training Phase:

Store all training instances (xtmm, ytmm)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) ,.(0)\ — (new) _ .(1)\2

d(x", x'V) \Z (-)
j=0

Manhattan Distance (L; Norm):

n
(new) (D)} — (new) _ 1.(0)
dx", x0) = 3 | — x|
j=0

Cosine Similarity:

cnew) . ()

x| @]

sim(x"") x) =

(distance = 1 — sim(x""), x(0))

Most common choice, but sensitive to feature
scales

Algorithm:

Training Phase:

Store all training instances (xtmm, ytmm)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) ,.()\ — (new) _ .(1)\2

d(x > A) \Z (XJ xJ)
J=0

Manhattan Distance (L; Norm):

n
(new) 1.(D)y — (new) _ (1)
dx, x0) = |3 —x0)
j=0

Cosine Similarity:

cnew) . ()

x| @]

sim(x"") x) =

(distance = 1 — sim(x""), x(0))

Sum of absolute differences.
More robust to outliers than Euclidean.
Appropriate when features represent
fundamentally different quantities.

Algorithm:

Training Phase:

Store all training instances (xtmm, ytmm)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Euclidean Distance (L, Norm):

n

(new) ,.()\ — (new) _ .(1)\2

d(x > A) \Z (XJ xJ)
J=0

Manhattan Distance (L; Norm):

n
(new) (D)} — (new) _ ()
dx, x0) = |2 —x0)
j=0

Cosine Similarity:

cnew) . ()

x| {|x @]

sim(x"") x) =

(distance = 1 — sim(x"¢"), xW))

Measures angle between vectors, ignoring
magnitude.
Useful for text data and high-dimensional
sparse vectors.

Algorithm:

Training Phase:

Store all training instances (xtmm, ytmm)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors

Hamming Distance:

n
(new) (D)} — . (x(new) (2)
dx ", x0)y =) 1+ (" # x(0)
j=0

Hamming distance is a metric for comparing sequences
of equal length - it counts the number of positions
where corresponding elements differ.

Example:

d([red, small, round], [red, large, round]) = 1
d([cat, young, male], |dog, old, female]) = 3
Ad(ACGT,ACTT) =1

Use Cases:

Categorical features: When features are categorical (say
state a person lives in), Euclidean distance is
meaningless.

Hamming distance treats each feature as equal - either it
matches or it doesn’t.

Algorithm:

Training Phase:

Store all training instances (xtmm, ytmm)

No computation required. We are not learning any
parameters

Prediction/Testing Phase:

1. Compute distance from new point x\7¢"") to every other
point in the training data

2. Select the top k—nearest neighbors

3. For classification, return majority class amongst top k
4. For regression, return mean or median of the values of

the k—neighbors

k-Nearest Neighbors J oted
Choosing k M

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1) Large & (e.g. kK = m)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

k-Nearest Neighbors
Choosing k

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

Large & (e.g. kK = m)

High bias, low variance

Decision boundary is very
smooth

Robust to noise, but may
miss local patterns

At the extreme of kK = m,
always predicts majority
class

k-Nearest Neighbors

Choosing k

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

Practical Tips

Start with k = \/m

Use cross-validation to
select optimal k

If k is odd, it avoids ties in
binary classification

k should be smaller than
the smallest class size

Large k (e.g. kK = m)

High bias, low variance

Decision boundary is very
smooth

Robust to noise, but may
miss local patterns

At the extreme of kK = m,
always predicts majority
class

k-Nearest Neighbors
Choosing k

 k is the primary hyper-parameter controlling the bias-variance tradeoff
k=1

o °*3
:000 ."0 .. o’

k-Nearest Neighbors

Choosing k

 k is the primary hyper-parameter controlling the bias-variance tradeoff

k=1

o °*3
:Qoo .!‘0 ‘. o’

k=73

& <

e oo ."0 .. o’

k-Nearest Neighbors

Choosing k

 k is the primary hyper-parameter controlling the bias-variance tradeoff

k=1

e
o °*3
:.OO ."0 .. o’

k=73

&

e oo .!‘0 .. c

k=3l

k-Nearest Neighbors

Choosing k - Cross-validation

 Why Not Just Use Training Error?

A model that memorizes the training data achieves zero training error but
falls on new data.

* Training error is a biased (optimistic) estimate of true generalization
performance.

* \We need to estimate how well our model will perform on unseen data.

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Spilit
» Split data into training set (say 80%) and test set (20%).
* [rain on training set, evaluate on test set.
* |ssues:
 Wastes data - 20% of precious labeled data is never used for training

* High variance - Performance estimate depends heavily on which points land in the
test set

* No hyperparameter tuning: If we use the test set to select hyperparameters, we're
overfitting to the test set - (using validation set is a possible fix for this issue)

k-Nearest Neighbors

Choosing k - Cross-validation

* Naive Solution - Train/Test Split
« Data Leakage Issue

* |f we repeatedly evaluate on the test set while tuning hyperparameters,
information about the test set leaks into our model selection process.

* The test error becomes optimistically biased - no longer a valid estimate
of generalization

k-Nearest Neighbors

Choosing k - Cross-validation

* Solution!
* Use cross-validation
» Use all data for both training and validation
* (Get reliable performance estimates with uncertainty quantification

o Select hyperparameters without contaminating the final test set

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

X1 X X3 X Algorithm
(1) Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
(2)
X .
Train on , teston 2 2. Split data into k equally-sized folds (or partitions)
(3) row
X
4) 1 3.foreachfoldi=1, 2, ..., k:
g CVy=—= 2, £ 0p, JfDy)
x® L' b, 3a. Use fold i as the validation set
(6)
& 3b. Use the remaining k — i folds as the training set
x
) 3c. Train the model on the training set
X

e 3d. Evaluate on the validation set, record performance metric

x(10) 4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi= 1, 2, ..., k:
CVy = — Z £(p,» fo D)
D, D, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
1 3.foreachfoldi=1, 2, ..., k:
CVy == D £ 0p, JyD3)
3 Dj 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
1 3.foreachfoldi=1, 2, ..., k:
CVy=—= 2 £0p, [y D)
* b, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

Algorithm

(1) Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
x(Trai test on 2

rain on , test on 2. Split data into k equally-sized folds (or partitions)

(3) row
X

4) 1 3.foreachfoldi=1, 2, ..., k:
g CVs=—= 2, £ 0p, JyD5)
x®) > D 3a. Use fold 7 as the validation set
x© .

3b. Use the remaining k — i folds as the training set

x(7)

) 3c. Train the model on the training set
X
e 3d. Evaluate on the validation set, record performance metric
x10) 4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Train on , test on 2
row

Mean CV Score:

N
CV=;Z:,CVZ-

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

(1) Let’s say we want to run
A k = S-fold cross validation . . .

2) k-value Training Size Properties
X Train on test on 2
X o High Bias

k=2 50% Low Variance

e Mean CV Score: Fast

&) k
X _ 1

CV = — Z CV, (=5 80% Good Balance
+(© k 4 1 Commonly Used
1=

(7

X .
k=10 90% Low Bias
+® Commonly Used
x® Low Bias
k=m-1 m-1 samples Highest Variance

(10)

X Slow

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©

D

+®)

+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Train on , test on 2
row

Mean CV Score:

1 ¢
CV=;Z:,CVZ-

k-fold CV requires
training £ models.

If training Is expensive,
smaller k is preferred.

k-value Training Size Properties
High Bias
k=2 50% Low Variance
Fast
Good Balance
— 0]
k=3 80% Commonly Used
Low Bias
— 0]
k=10 90% Commonly Used
Low Bias
k=m-1 m-1 samples Highest Variance
Slow

k-Fold Cross Validation

Variants
X X X3 X Stratified Cross-Validation
xh * The Problem with Random Splits
x? . e L . . .
 For imbalanced classification, random splits may create folds with different class
53 distributions.
x@ One fold might have 40% positives while another has 20%, leading to unreliable
5 estimates.
x©)
(6) e Stratified sampling ensures each fold has approximately the same class distribution as
X the full dataset.
x
* Algorithm:
x(3)
+©) Separate samples by class
x(10) « For each class, distribute samples evenly across k—folds

e (Combine to form final folds

Back to k-Nearest Neighbors

Practical Issues

* Feature Scaling
e Curse of Dimensionality

 Space and computational complexity

Back to k-Nearest Neighbors

Practical Issues - Feature Scaling

 KNN is highly sensitive to feature scales because distance metrics are
dominated by features with larger ranges.

 Example:
 |f feature A ranges from 0-1 and feature B ranges from 0-1000
 Euclidean distance is almost entirely determined by feature B.

» Solution: Always normalize or standardize features before applying KNN.

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

 KNN suffers severely in high-dimensional spaces:

* Distance concentration: As dimensionality increases, distances between
points become increasingly similar.

* The ratio of nearest to farthest neighbor approaches 1, making the
concept of “nearest” meaningless.

Back to k-Nearest Neighbors

Practical Issues - Curse of Dimensionality

 KNN suffers severely in high-dimensional spaces:
* Distance concentration: As dimensionality increases, distances between points become increasingly similar.
* The ratio of nearest to farthest neighbor approaches 1, making the concept of “nearest” meaningless.

e Sparsity: The volume of space grows exponentially with dimension. To maintain the same density of points, training
set size must grow exponentially.

* |rrelevant features: In high dimensions, many features may be irrelevant, adding noise to distance calculations.
* Mitigation strategies:

* Dimensionality reduction (PCA, feature selection)

 Feature weighting based on relevance

* Consider other algorithms for d > 20

Back to k-Nearest Neighbors

Practical Issues - Computational Complexity

 Training: O(1) - just store the data
* Prediction (naive):
« O(nm) per query, where m is training set size and n is dimensionality.

 Must compute distance to all m points.

* Prediction (optimized) - Data structures can accelerate nearest neighbor search:

« KD-trees: O(nlogm) average case for low dimensions, but degrades to O(nm) in high dimensions

« Ball trees: Better for high dimensions than KD-trees
* Locality-sensitive hashing (LSH): Approximate nearest neighbors in O(n) with preprocessing

« Space complexity: O(nm) to store the training data.

Back to k-Nearest Neighbors

Practical Issues

Pros

e Simple to understand and implement
* No training phase (fast to “train”)
* Naturally handles multi-class classification

 Non-parametric: makes no distributional
assumptions

» Can capture arbitrarily complex decision boundaries

» Easily adapts to new training data (just add it)

cons

Slow prediction for large datasets
High memory requirement (stores all training data)
Sensitive to irrelevant features and feature scaling

Struggles in high dimensions (curse of
dimensionality)

No interpretable model or feature importance

Requires meaningful distance metric

Back to k-Nearest Neighbors
When to use k-NN?

Use Don’t Use

* Small to medium datasets | | -
* Large datasets with real-time prediction

| | | requirements
* Low to moderate dimensionality (n < 20)

* Very high-dimensional data
* Non-linear decision boundaries expected

, , _ , * Features have varying relevance
* Data arrives incrementally (online learning)

 Interpretability is required
 Quick baseline model needed

Next Class

* | ogistic Regression

 Brush up on conditional probability, Bayes’ Theorem and Bernoulli
Distribution

