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Recap Continuation



Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent
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• Batch Gradient Descent 


• Use entire training set per epoch 

• The whole training dataset is used to compute a single parameter update 


θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)
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• Batch Gradient Descent 


• Use entire training set per epoch 

• The whole training dataset is used to compute a single parameter update 


• One epoch leads to one parameter update 


θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent

Sum over the whole training dataset



• Stochastic Gradient Descent 


• Use one randomly selected training data point at each step 

• Parameters are updated after looking at each data point 


• One epoch leads to m parameter updates


θt = θt−1 − α∇ℓθt−1
(xi, yi)

Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent
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Train / Test Splits

• Generally data is split into a training dataset and a testing data 


• Rough rule of thumb is that this is an 80-20 split 
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Train / Test Splits

• Generally data is split into a training dataset and a testing data 


• Rough rule of thumb is that this is an 80-20 split 
y x0 x1 x2

80% of the entire dataset is set aside 
for learning parameters - “training”

20% of the entire dataset is set aside 
to test the models

This is unseen data and tells you if 
the model can generalize well



Train / Test Splits

• However, in practice, if you are given only one train and test set, its easy to 
accidentally pick model architectures that work well on the test set, even 
though test set data is unseen 


• To counter this, we use two unseen datasets - “validation” set and “test” set


• The split is generally of the form 80-10-10 where 80% is training data, 10% is 
validation data and 10% is test data 



Practical Issues in Linear Regression 
Overfitting vs Underfitting 



Practical Issues in Linear Regression 
Overfitting vs Underfitting 

The blue model is underfitting the data


The orange model is overfitting the data 


The green model is a good fit of the data0



Practical Issues in Linear Regression 
Underfitting 

• What is happening?


• The model is too simple to be able to capture the data 


• How do you identify it? 


• Training loss is high 


• Test loss is high 

• Solutions


• Add more features 


• Add polynomial features ( )


• Use a more complex model 

x2
1 , x2
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Practical Issues in Linear Regression 
Quick Aside 

• Add polynomial features ( )
x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1
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• Add polynomial features ( )





What about these models?  
 




x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1

fθ(x) = θx0
0 + θx1

1

fθ(x) = xθ0
0 + xθ1

1

Practical Issues in Linear Regression 
Quick Aside 
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Practical Issues in Linear Regression 
Overfitting 

• What is happening?


• The model is too complex, so it learns the noise distribution and outliers and hence does not 
generalize well to new data points 


• How do you identify it? 


• Training loss is low 


• Test loss is high 

• Coefficients have large magnitudes 

• Solutions


• Regularization ( )


• Cross-validation for model selection


• Reduce number of features


• Get more training data

L1, L2

Model more complex
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Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise
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Error from wrong assumptions due to the model being too simple



Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise

Error from high sensitivity to each data point and noise due to the model being too complex



Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise

Inherent randomness in data. Cannot be removed. 



Practical Issues in Linear Regression 
Bias / Variance Tradeoff 

Why is it called a tradeoff? 

Model 
Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

at
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Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.


L(θ) = 1
m ∑ (Y − Xθ)2
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Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








L(θ) = 1
m ∑ (Y − Xθ)2

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

Norm Ridgeregression5 2 01 Linam Lasso regression

0
w2 202 302 c2Hully Oo o 02
10720 30 LR



Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








• As  increases:


• Coefficients shrink toward zero


• Bias increases (we're constraining the model)


• Variance decreases (less sensitive to data)


• At some , test error is minimized

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

λ

λ*

I



Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








• As  increases:


• Coefficients shrink toward zero


• Bias increases (we're constraining the model)


• Variance decreases (less sensitive to data)


• At some , test error is minimized

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

λ

λ*

These sort of parameters 
are usually called  
hyper-parameters 

They are not learnable 
but are human defined 
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Feature Normalization 
Why Normalize?

• If feature  ranges from 0 to 1 and feature  ranges from 0 to 1,000,000, this 
could lead to numerical instability in the solving process 


• This is particular relevant to gradient descent 


• Regularization unfairness


• If  is much larger,  must be much smaller to produce similar predictions.


• The regularization penalty then affects features unequally based on arbitrary 
scale choices.


• Distance-based algorithms

x1 x2

x2 θ2

Do
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Feature Normalization 
Normalization Methods

1. Min-Max Normalization


2. Mean-Variance Normalization 


3. Max-Absolute Normalization 


4. Robust Normalization 
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Feature Normalization 
Min-Max Normalization

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column to 0 and 1





• This method preserves zero entries in sparse data


• But is very sensitive to outliers


x0, x1, x2, x4

x′ = x − min(x)
max(x) − min(x)

s

z 1 1000

10,000



Feature Normalization 
Mean-Variance Normalization 

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale to have mean 0 and standard deviation 1





• Most common in practice


• Less sensitive to outliers than min-max


• Does not bound the range to 0 and 1


x0, x1, x2, x4

x′ = x − μ(x)
σ(x)III
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Feature Normalization 
Max-Absolute Normalization 

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column to -1 and 1 





• Good for sparse data since it preserves sparsity (zeros stay zero)

x0, x1, x2, x4

x′ = x
|max(x) |



Feature Normalization 
Robust Normalization 

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column as  





• Robust to outliers


• Use when data has many outliers

x0, x1, x2, x4

x′ = x − median(x)
IQR(x)
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Optimizing Loss Functions 
Gradient Descent - Practical Fixes

• Feature Scaling 


• Remember we want all input features  to be in similar ranges 


• When features have different scales, the loss surface becomes elongated 
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0
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10,0000

θ0

θ1

0

1

0 1

This dramatically 
accelerates the optimization 
process


This also allows having one 
single learning rate for all 
parameters 



Optimizing Loss Functions 
Gradient Descent - Practical Fixes

• Feature Scaling 


• Remember we want all input features  to be in similar ranges 


• When features have different scales, the loss surface becomes elongated 
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

This dramatically 
accelerates the optimization 
process


This also allows having one 
single learning rate for all 
parameters 

NOTE: Scaling parameters (mean, standard deviation, min, max) must be 
computed only on training data and then applied to validation and test data 
to prevent data leakage.

traino
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Today’s Outline

• Classification 


• Metrics 


• k-Nearest Neighbors 



Today’s Outline
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• Metrics 


• k-Nearest Neighbors 



Classification 
Introduction

• Classification is a supervised learning task where the goal is to predict a 
discrete class label  for a given input 


• For binary classification,  


• For multi-class classification,  where 

y x

y ∈ {0, 1}
y ∈ {1, 2, . . . , k} k > 2

9



Classification 
Decision Boundary 

• A classifier partitions space into multiple 
sections, each section corresponding to a 
class.

x1

x0



Classification 
Decision Boundary 

• A classifier partitions space into multiple 
sections, each section corresponding to a 
class.

x1

x0

This is the learned 
curve, the 
“decision 
boundary”

Y Onto



• A classifier partitions space into multiple 
sections, each section corresponding to a 
class.


• Different algorithms produce different 
boundary shapes


• Linear classifiers produce hyperplanes


• Non-linear classifiers can produce arbitrarily 
complex boundaries.

Classification 
Decision Boundary 

x1

x0

This is the learned 
curve, the 
“decision 
boundary”This is class 0

This is class 1



• But practically speaking, your classifier will 
output a probability value between 0 and 1


•  Example: 


• 


•

ℙ(cat | image1) = 0.61
ℙ(cat | image2) = 0.52

Classification 
Decision Boundary 
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This is the learned 
curve, the 
“decision 
boundary”This is class 0

This is class 1
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• But practically speaking, your classifier will 
output a probability value between 0 and 1


•  Example: 


• 


•

ℙ(cat | image1) = 0.61
ℙ(cat | image2) = 0.52
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• But practically speaking, your classifier will 
output a probability value between 0 and 1


•  Example: 


• 


• 


• Practitioner needs to also set a threshold 

•  is a cat if 

ℙ(cat | image1) = 0.61
ℙ(cat | image2) = 0.52

imagei ℙ(cat | imagei) ≥ Threshold

Classification 
Decision Boundary 

x1

x0

This is the learned 
curve, the 
“decision 
boundary”This is class 0

This is class 1

0 5
1
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Today’s Outline

• Classification 


• Metrics  

• k-Nearest Neighbors 

7000 600 rats
400 dogs

11 4st aug



Metrics

• An obvious metric is accuracy 

 

• Say you have a cat classifier with 1000 images. Your classifier gets 797 out of 
1000 images correct


Accuracy = Number of Correct Predictions
Total Number of Data Points

Accuracy = 797
1000 = 79 %



Metrics

• But, accuracy does not tell the whole picture 


• Especially when data is skewed


• For example, if your training data is of size 1000 images


• 900 of them are of dogs


• 100 of them are cats


• Question: Is accuracy a good metric in this case? 

1000images 900 dogs
100 car



Metrics
Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive

Actual Negative

In True Positive False Negative

False Positive True
Negative
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Metrics
Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

1000

700 650

300 50



Metrics
Accuracy 

Accuracy = 
TP + TN

TP + TN + FP + FN

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

The proportion of correct predictions. 


Simple and intuitive, but misleading for imbalanced data. 


A classifier that always predicts the majority class achieves high accuracy 
on imbalanced datasets while being useless.
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Metrics
Precision and Recall 

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision 3
FPcostly

Real Iancostly
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Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP
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Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Of all instances predicted as positive, what fraction actually are positive?  
Precision measures the reliability of positive predictions. High precision means few 
false alarms. 

When to care about precision?  
When false positives are costly.  
 
Examples include spam filtering (users hate losing important emails), recommendation 
systems (irrelevant recommendations erode trust), and legal contexts (wrongful 
accusations).

o



Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Of all actual positive instances, what fraction did we correctly identify? Recall 
measures coverage of positive instances. High recall means few missed positives. 
 
When to care about recall?  
When false negatives are costly. 


Examples include disease screening (missing a diagnosis can be fatal), security 
threats (missing an attack is catastrophic), and search engines (users want all relevant 
results).



Metrics
Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Precision and recall are inherently in tension. 


Increasing the threshold for positive classification typically increases precision 
but decreases recall. 


Decreasing the threshold has the opposite effect. 


The optimal balance depends on the application's cost structure.


