

Classification

DS 4400 | Machine Learning and Data Mining I

Zohair Shafi

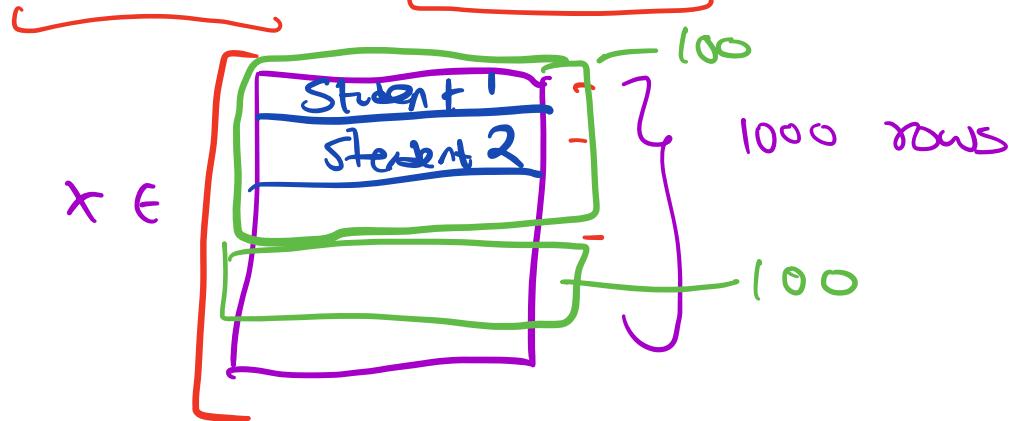
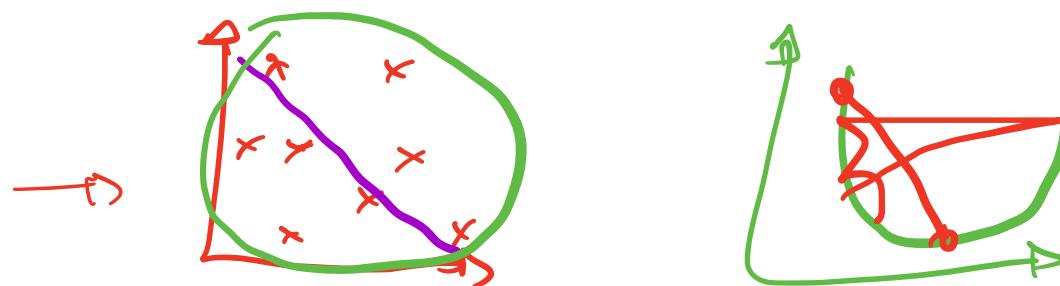
Spring 2026

Wednesday | January 28, 2026

Recap Continuation

Gradient Descent

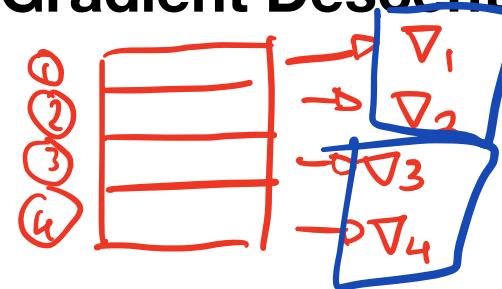
Batch vs Mini-Batch vs Stochastic Gradient Descent



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

- Batch Gradient Descent
 - Use **entire training set per epoch**
 - The whole training dataset is used to compute a single parameter update



$$\theta_t = \theta_{t-1} - \alpha \frac{1}{m} \sum_{i=1}^m \nabla \ell_{\theta_{t-1}}(x_i, y_i)$$

→ $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \nabla_{\theta} L(x) \rightarrow \text{G.D.}$

size of the dataset.

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

- Batch Gradient Descent
 - Use **entire training set per epoch**
 - The whole training dataset is used to compute a single parameter update
 - One epoch leads to **one** parameter update

$$\theta_t = \theta_{t-1} - \alpha \frac{1}{m} \sum_{i=1}^m \nabla \ell_{\theta_{t-1}}(x_i, y_i)$$

Sum over the whole training dataset

Gradient Descent

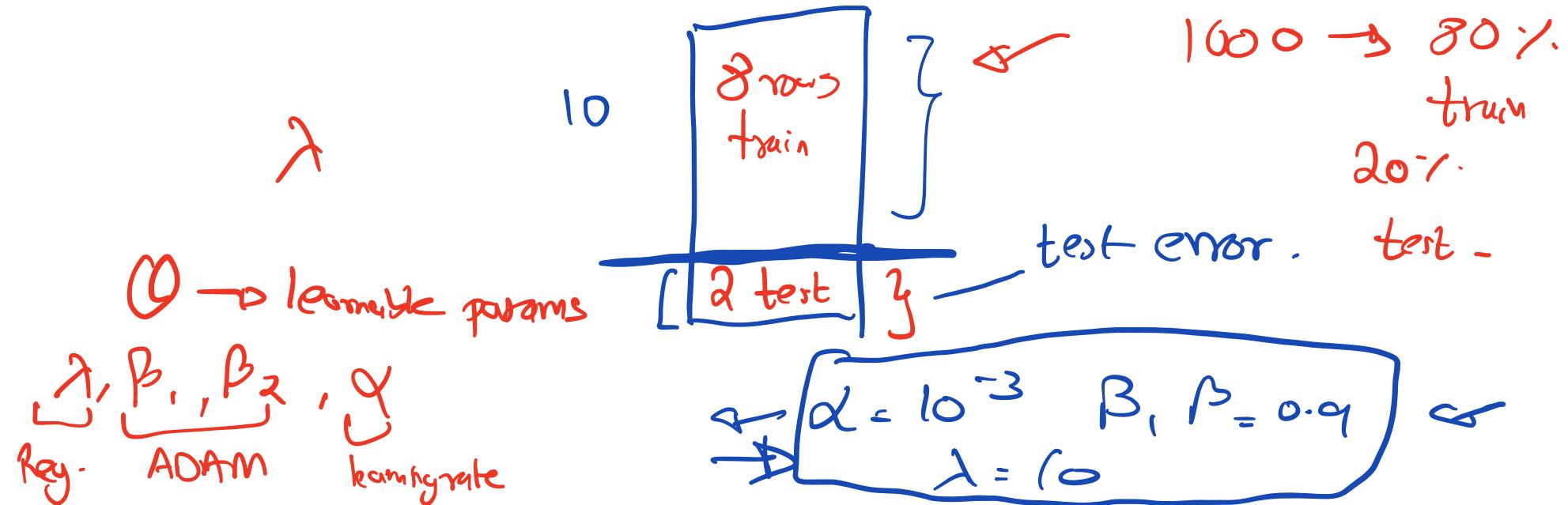
Batch vs Mini-Batch vs Stochastic Gradient Descent

- Stochastic Gradient Descent
 - Use **one** randomly selected training data point at each step
 - Parameters are updated after looking at each data point
 - One epoch leads to **m** parameter updates

$$\theta_t = \theta_{t-1} - \alpha \nabla \ell_{\theta_{t-1}}(x_i, y_i)$$

Train / Test Splits

- Generally data is split into a training dataset and a testing data
- Rough rule of thumb is that this is an 80-20 split



Train / Test Splits

- Generally data is split into a training dataset and a testing dataset
- Rough rule of thumb is that this is an 80-20 split

Train / Test Splits

- Generally data is split into a training dataset and a testing data
- Rough rule of thumb is that this is an 80-20 split

y	x_0	x_1	x_2

80% of the entire dataset is set aside for learning parameters - “training”

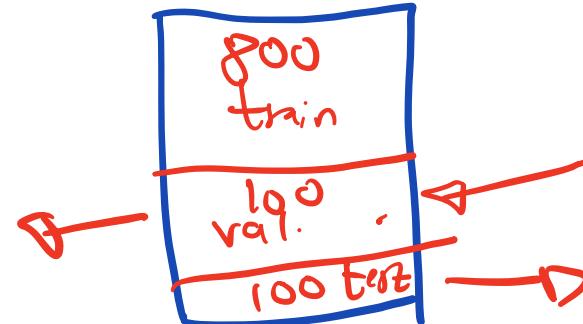
Train / Test Splits

- Generally data is split into a training dataset and a testing dataset
- Rough rule of thumb is that this is an 80-20 split

y	x_0	x_1	x_2
80% of the entire dataset is set aside for learning parameters - “training”			
20% of the entire dataset is set aside to test the models			

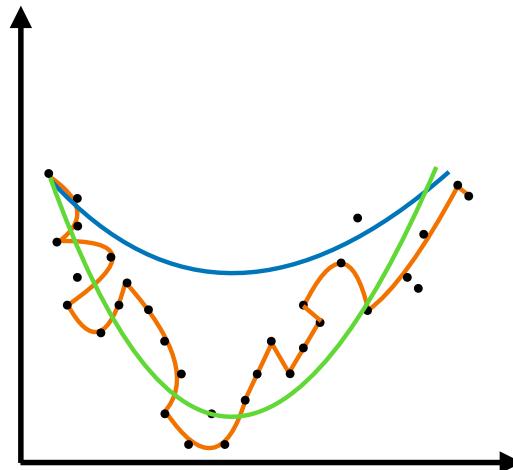
Train / Test Splits

- However, in practice, if you are given only one train and test set, it's easy to accidentally pick model architectures that work well on the test set, even though test set data is unseen
- To counter this, we use two unseen datasets - “validation” set and “test” set
- The split is generally of the form 80-10-10 where 80% is training data, 10% is validation data and 10% is test data



Practical Issues in Linear Regression

Overfitting vs Underfitting



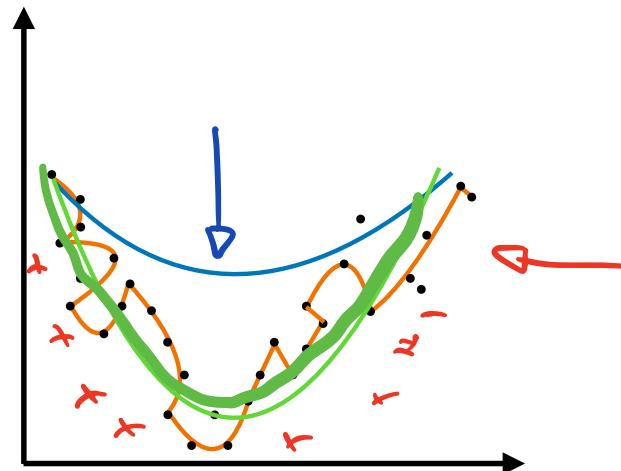
Practical Issues in Linear Regression

Overfitting vs Underfitting

The blue model is **underfitting** the data

The orange model is **overfitting** the data

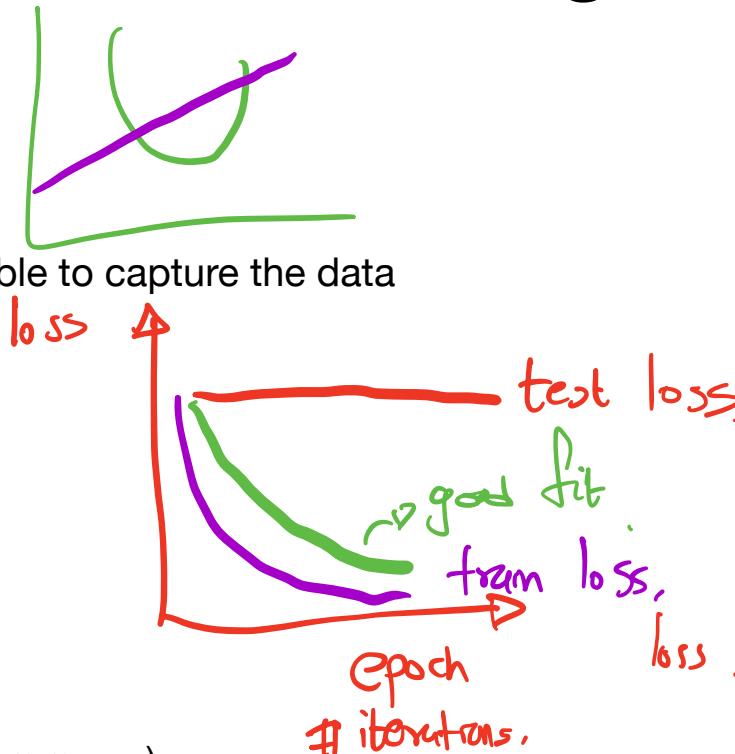
The **green** model is a good fit of the data



Practical Issues in Linear Regression

Underfitting

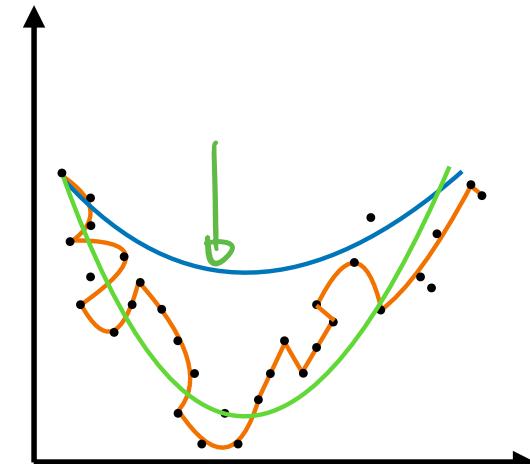
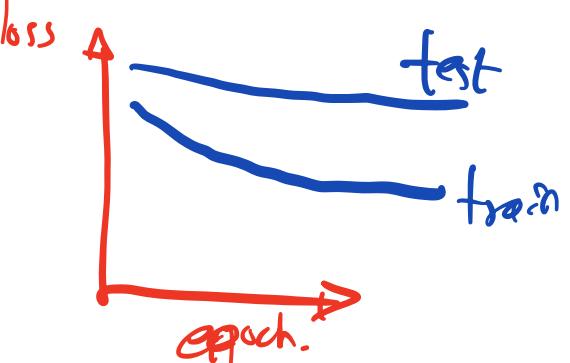
- What is happening?
 - The model is too simple to be able to capture the data



- How do you identify it?
 - Training loss is **high**
 - Test loss is **high**

- Solutions

- Add more features
- Add polynomial features ($x_1^2, x_2^2, x_1x_2, \dots$)
- Use a more complex model

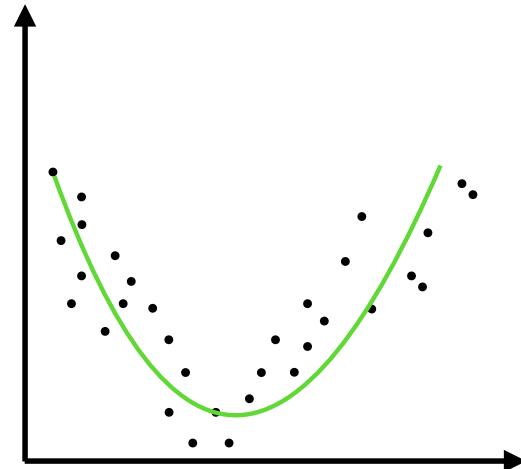


Practical Issues in Linear Regression

Quick Aside

- Add polynomial features $(x_1^2, x_2^2, x_1x_2, \dots)$

$$f_{\theta}(x) = \hat{\theta}_0 + \hat{\theta}_1 x_1 + \hat{\theta}_2 x_1^2$$



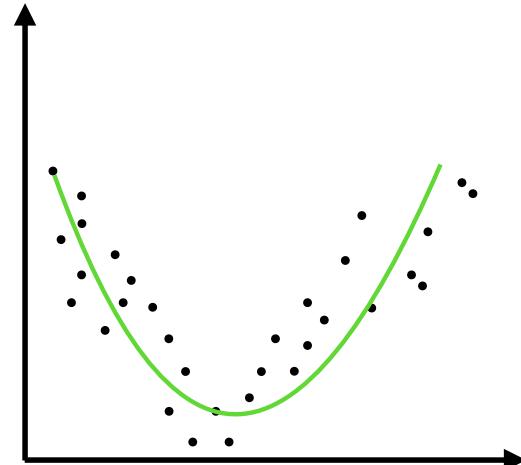
Practical Issues in Linear Regression

Quick Aside

- Add polynomial features ($x_1^2, x_2^2, x_1x_2, \dots$)

$$f_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$

$$\theta_2 \cdot x^{100}$$



CORRECTION:

What about these models?

NOT LINEAR
REGRESSION

$$f_{\theta}(x) = \theta_0^{x_0} + \theta_1^{x_1} \quad \text{— linear regression.}$$

$$f_{\theta}(x) = x_0^{\theta_0} + x_1^{\theta_1} \quad \text{— NOT linear regression}$$

Practical Issues in Linear Regression

Overfitting

- What is happening?
 - The model is too complex, so it learns the noise distribution and outliers and hence does not generalize well to new data points
- How do you identify it?
 - Training loss is **low**
 - Test loss is **high**
 - Coefficients have **large magnitudes**
- Solutions
 - Regularization (L_1, L_2)
 - Cross-validation for model selection
 - Reduce number of features
 - Get more training data

Model more complex -

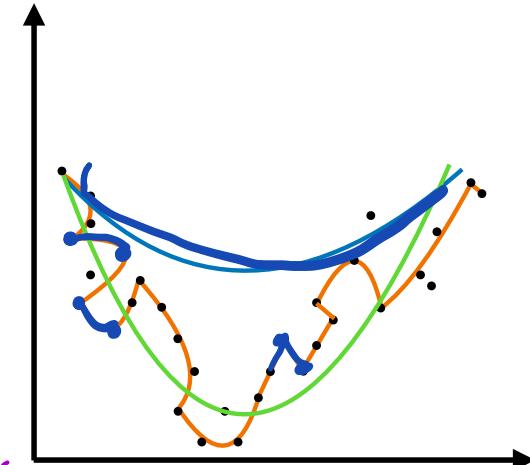
$$y = \theta_0 x + \theta_1$$

$$y = \theta_0 x + \theta_1 x^2 + \theta_2 x^3 + \theta_4 x^5$$

$y = x$

$x = 10, y = 10 \rightarrow$
 $x = 20, y = 20 \rightarrow$
1000
2000

more general.



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

$$\text{Expected Loss} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Noise}$$

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

$$\text{Expected Loss} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Noise}$$

Error from wrong assumptions due to the model being too simple

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

$$\text{Expected Loss} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Noise}$$

Error from high sensitivity to each data point and noise due to the model being too complex

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

$$\text{Expected Loss} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Noise}$$

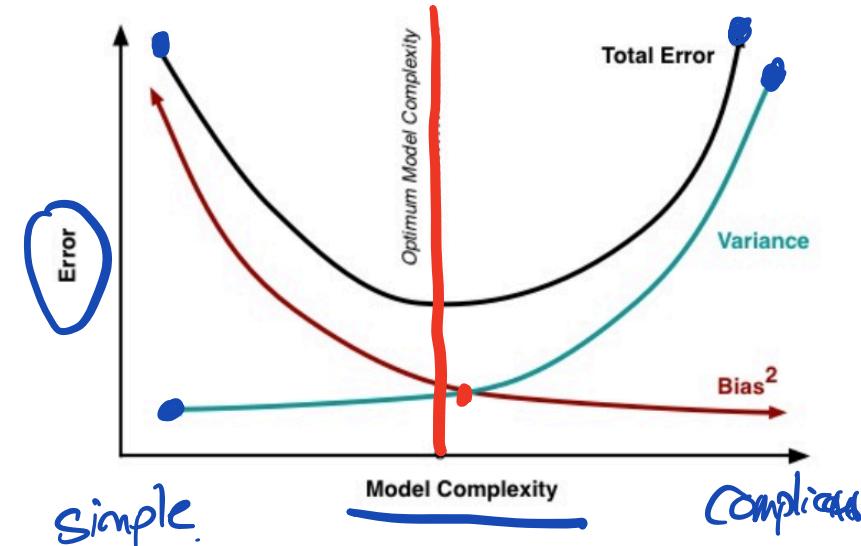
Inherent randomness in data. Cannot be removed.

Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a **tradeoff**?

Model Complexity	Bias	Variance	Train Error	Test Error
Too Simple	High <i>bad</i>	Low	High	High
Sweet Spot	Medium	Medium	Medium	Medium
Too Complex	Low	High <i>bad.</i>	Low	High

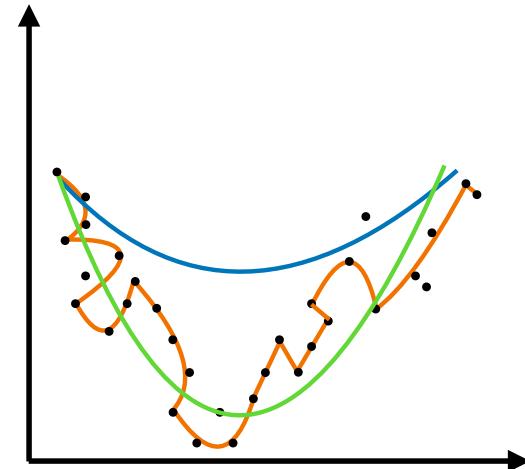


Practical Issues in Linear Regression

Regularization

- Regularization explicitly trades bias for variance.

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2$$



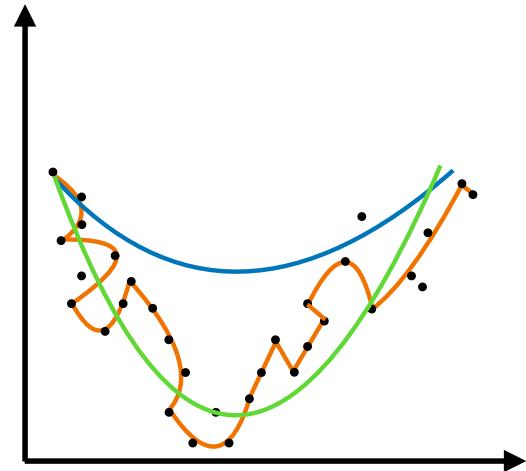
Practical Issues in Linear Regression

Regularization

- Regularization explicitly trades bias for variance.

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2$$

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2 + \lambda \|\theta\|^2$$



Practical Issues in Linear Regression

Regularization

$$\hat{y} = \underline{\theta_0 x} + \underline{\theta_1 x}$$

L_2 Norm \rightarrow Ridge regression.

L_1 Norm \rightarrow Lasso regression.

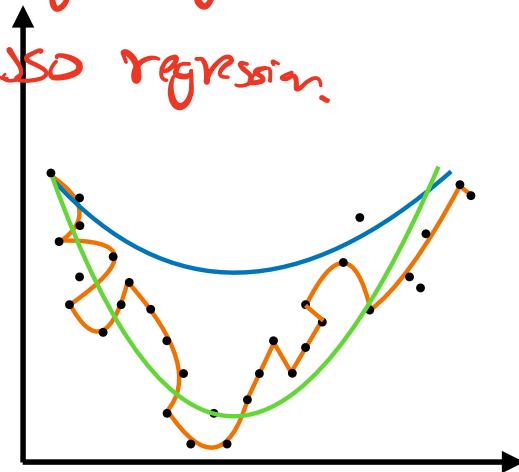
- Regularization explicitly trades bias for variance.

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2$$

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2 + \lambda \|\theta\|^2$$

$$\hat{\theta} = (X^T X + \lambda I)^{-1} X^T Y$$

$$\|\theta\|_2 \rightarrow \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} \rightarrow \begin{bmatrix} 10^2 + 20^2 + 30^2 \\ \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} \leftarrow L_2$$
$$| 10 + 20 + 30 | \leftarrow L_1$$



Practical Issues in Linear Regression

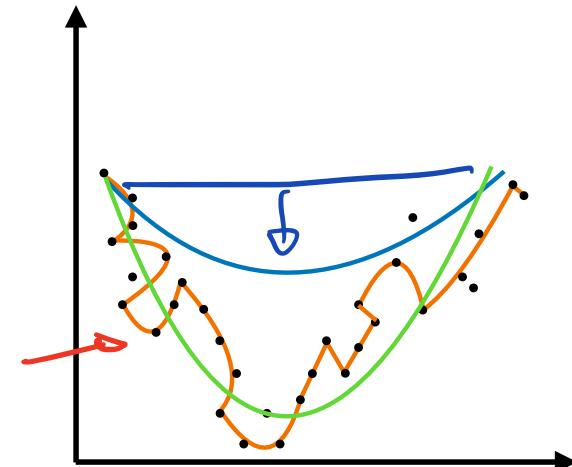
Regularization

- Regularization explicitly trades bias for variance.

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2 + \lambda \|\theta\|^2$$

$$\theta = (X^T X + \lambda I)^{-1} X^T Y$$

- As λ increases:
 - Coefficients shrink toward zero
 - Bias increases (we're constraining the model)
 - Variance decreases (less sensitive to data)
 - At some λ^* , test error is minimized



Practical Issues in Linear Regression

Regularization

$$\text{MSE} - \lambda \|\theta\|_2^2$$

0.00001

- Regularization explicitly trades bias for variance.

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2 + \lambda \|\theta\|^2$$

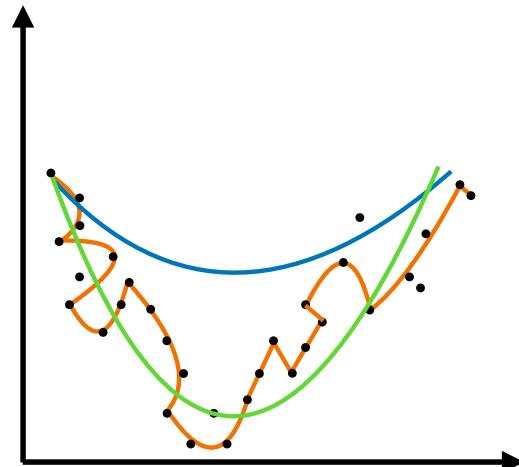
$$\theta = (X^T X + \lambda I)^{-1} X^T Y$$

- As λ increases:

- Coefficients shrink toward zero
- Bias increases (we're constraining the model)
- Variance decreases (less sensitive to data)
- At some λ^* , test error is minimized

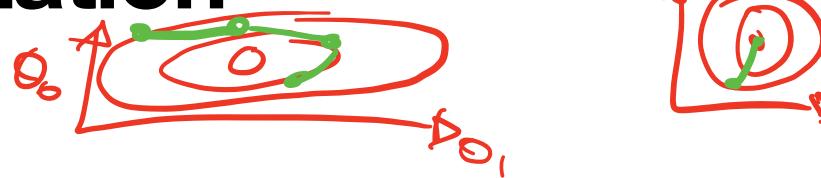
These sort of parameters are usually called **hyper-parameters**

They are **not learnable** but are human defined



Feature Normalization

Why Normalize??



- If feature x_1 ranges from 0 to 1 and feature x_2 ranges from 0 to 1,000,000, this could lead to numerical instability in the solving process
 - This is particularly relevant to gradient descent
- Regularization unfairness
 - If x_2 is much larger, θ_2 must be much smaller to produce similar predictions.
 - The regularization penalty then affects features unequally based on arbitrary scale choices.
- Distance-based algorithms

$$\theta = \begin{bmatrix} 0.1 \\ 1000 \end{bmatrix} \quad \|\theta\|_2$$

Feature Normalization

$$x \leftarrow \frac{x - \text{mean}}{\text{range}}$$

Normalization Methods

1. Min-Max Normalization

$$x \leftarrow \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

range

2. Mean-Variance Normalization

$$x \leftarrow \frac{x - \mu}{\sigma}$$

mean
 $\mu = 0$
 $\sigma = 1$ Std. deviation.

3. Max-Absolute Normalization

$$x \leftarrow \frac{x}{|x_{\max}|}$$

4. Robust Normalization

$$x \leftarrow \frac{x - \text{median}}{3^{\text{rd}} \text{ Quartile} - 1^{\text{st}} \text{ Quartile}}$$

Percentile (50) \rightarrow Median.

Percentile (25) - 1st Quartile.
(75) - 3rd Quartile

Feature Normalization

Min-Max Normalization

- For every column in the input data, i.e., for each x_0, x_1, x_2, x_4 etc., this normalization method will scale each column to 0 and 1

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

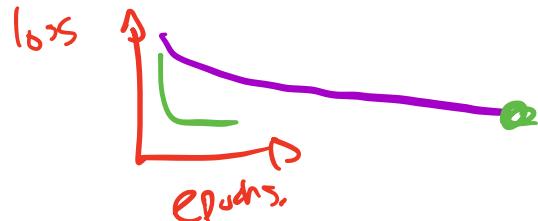
$x \rightarrow 1 - 1000$
 $10,000$

- This method preserves zero entries in sparse data
- But is very sensitive to **outliers**

Feature Normalization

Mean-Variance Normalization

- For every column in the input data, i.e., for each x_0, x_1, x_2, x_4 etc., this normalization method will scale to have mean 0 and standard deviation 1



$$x' = \frac{x - \mu(x)}{\sigma(x)}$$

loss $\rightarrow (y - \hat{y})^2$
 $y - (0_0 x_0 + 0_1 x_1)^2$

Gradient Descent

$$Q = (x^T x)^{-1} x^T y$$

Closed form

$$x_{\text{test}} \leftarrow \frac{x_{\text{test}} - \mu_{\text{train}}}{\sigma_{\text{train}}}$$

Feature Normalization

Max-Absolute Normalization

- For every column in the input data, i.e., for each x_0, x_1, x_2, x_4 etc., this normalization method will scale each column to -1 and 1

$$x' = \frac{x}{\max(x)} \quad \frac{0}{1000}$$

- Good for sparse data since it preserves sparsity (zeros stay zero)

t

Feature Normalization

Robust Normalization

- For every column in the input data, i.e., for each x_0, x_1, x_2, x_4 etc., this normalization method will scale each column as

$$x' = \frac{x - \text{median}(x)}{\text{IQR}(x)}$$

2nd g,
3rd g - 1st g.

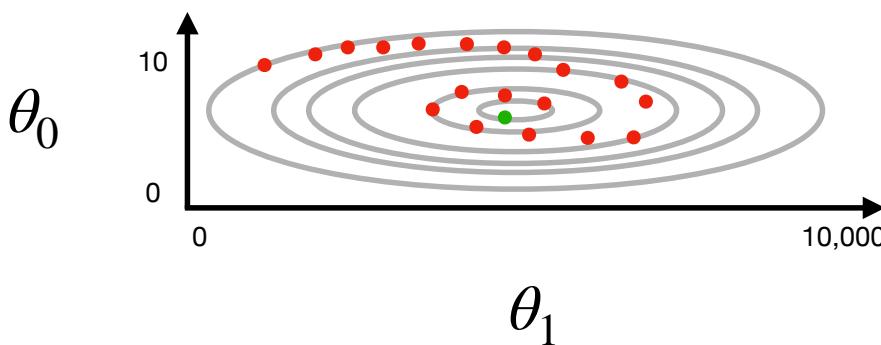
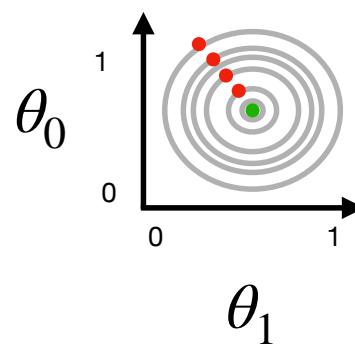
$x \leftarrow \frac{x}{\text{Scaling factor.}}$

- Robust to outliers
- Use when data has many outliers

Optimizing Loss Functions

Gradient Descent - Practical Fixes

- Feature Scaling
 - Remember we want all input features $x_1, x_2 \dots x_n$ to be in similar ranges
 - When features have different scales, the loss surface becomes elongated (ill-conditioned).



This dramatically accelerates the optimization process

This also allows having one single learning rate for all parameters

Optimizing Loss Functions

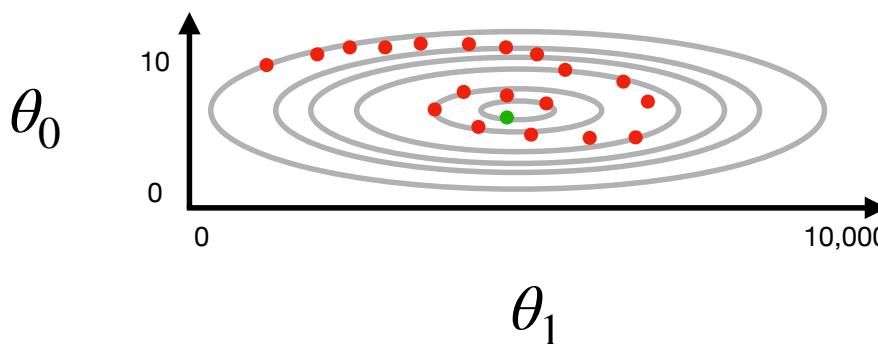
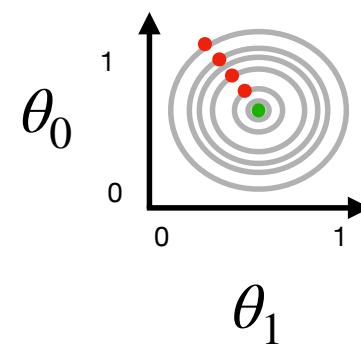
Gradient Descent - Practical Fixes

train
val
test

- Feature Scaling

NOTE: Scaling parameters (mean, standard deviation, min, max) must be computed only on training data and then applied to validation and test data to prevent data leakage.

- Remember we want all input features $x_1, x_2 \dots x_n$ to be in similar ranges
- When features have different scales, the loss surface becomes elongated (ill-conditioned).



This dramatically accelerates the optimization process

This also allows having one single learning rate for all parameters

Today's Outline

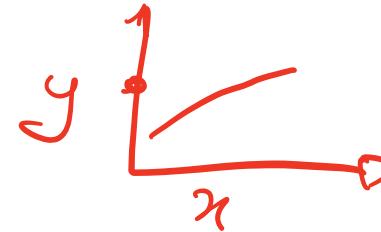
- Classification
- Metrics
- k-Nearest Neighbors

Today's Outline

- **Classification**
- Metrics
- k-Nearest Neighbors

Classification

Introduction

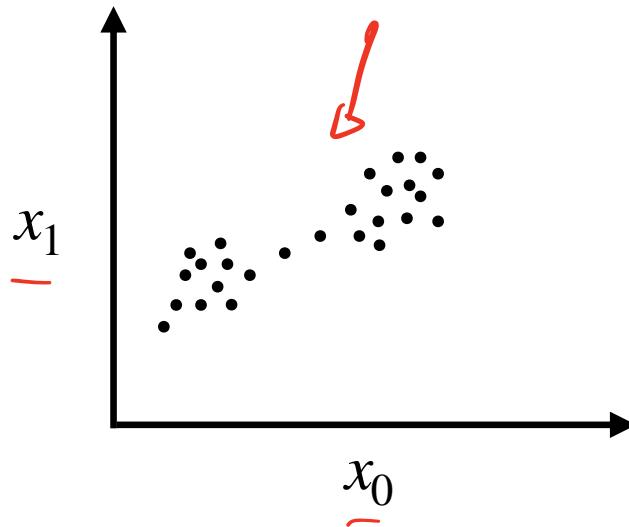


- Classification is a supervised learning task where the goal is to predict a discrete class label y for a given input x
- For binary classification, $y \in \{0, 1\}$
- For multi-class classification, $y \in \{1, 2, \dots, k\}$ where $k > 2$ 

Classification

Decision Boundary

- A classifier partitions space into multiple sections, each section corresponding to a class.

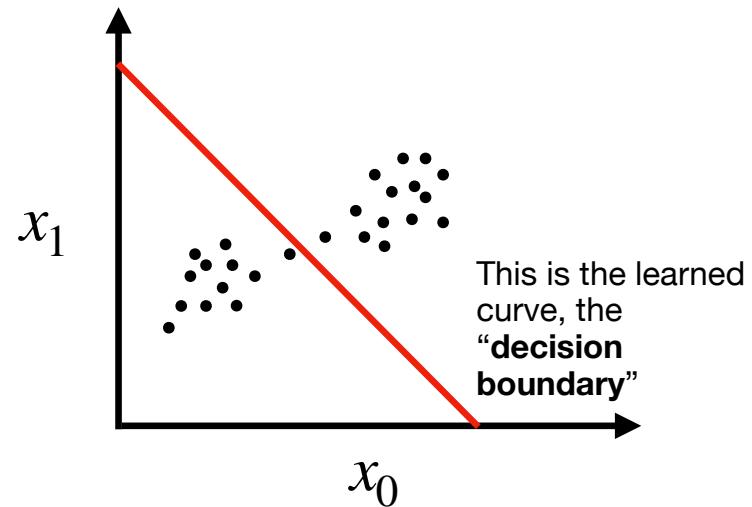


Classification

Decision Boundary

- A classifier partitions space into multiple sections, each section corresponding to a class.

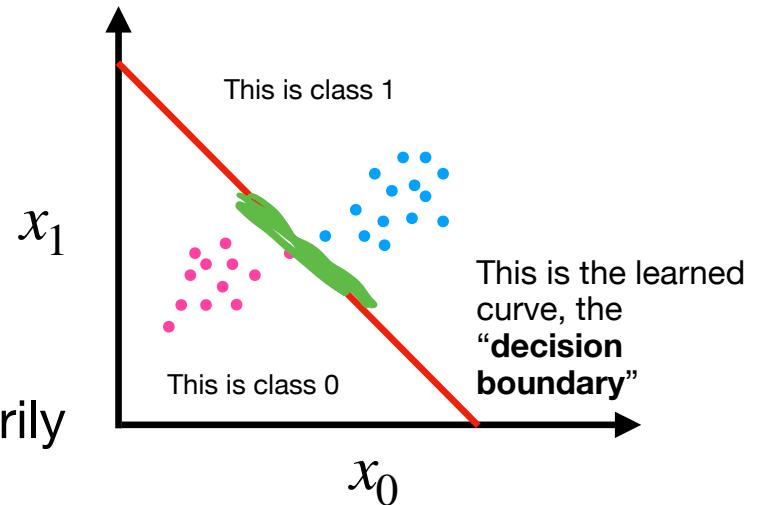
$$y = \theta_0 x_0 + \theta_1$$



Classification

Decision Boundary

- A classifier partitions space into multiple sections, each section corresponding to a class.
- Different algorithms produce different boundary shapes
 - Linear classifiers produce hyperplanes
 - Non-linear classifiers can produce arbitrarily complex boundaries.

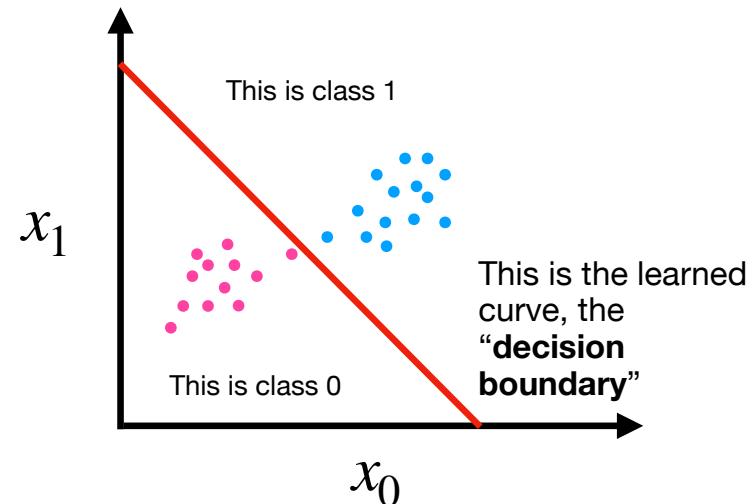


Classification

Decision Boundary

- But practically speaking, your classifier will output a probability value between 0 and 1
- Example:

- $\mathbb{P}(\text{cat} | \text{image}_1) = 0.61$
- $\mathbb{P}(\text{cat} | \text{image}_2) = 0.52$

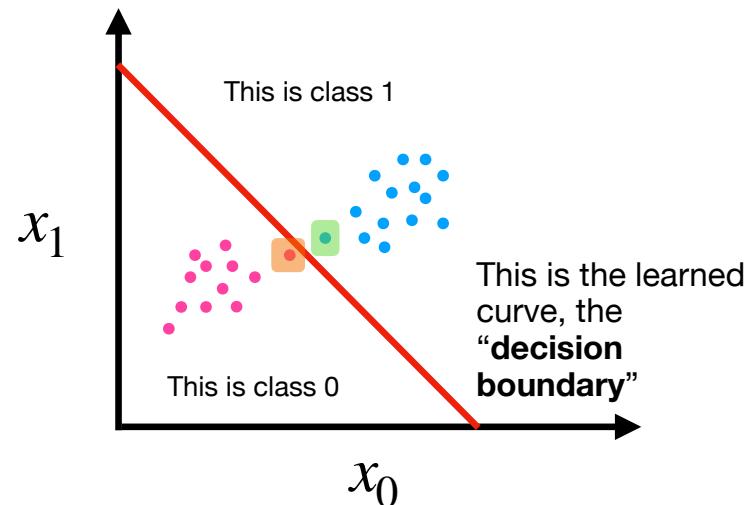


Classification

Decision Boundary

- But practically speaking, your classifier will output a probability value between 0 and 1
- Example:

- $\mathbb{P}(\text{cat} \mid \text{image}_1) = 0.61$
- $\mathbb{P}(\text{cat} \mid \text{image}_2) = 0.52$



Classification

Decision Boundary

0 - 1
0.55

- But practically speaking, your classifier will output a probability value between 0 and 1

- Example:

- $\mathbb{P}(\text{cat} | \text{image}_1) = \underline{0.61}$

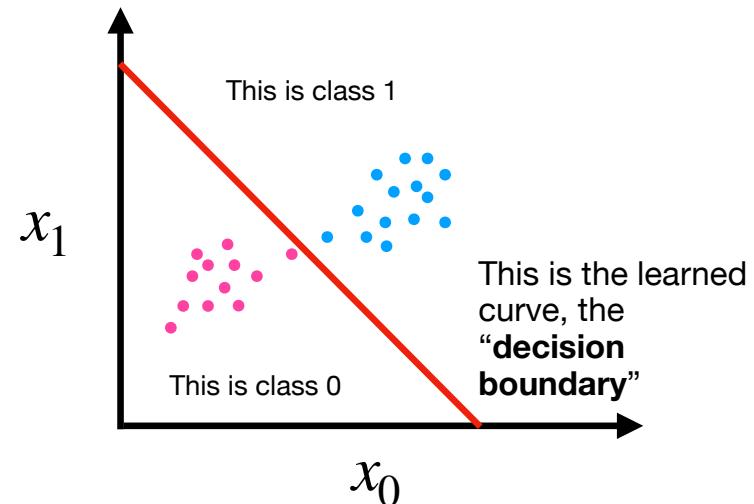
1
0.55

- $\mathbb{P}(\text{cat} | \text{image}_2) = \underline{0.52}$

0
0.55

- Practitioner needs to also set a **threshold**

- image_i is a cat if $\mathbb{P}(\text{cat} | \text{image}_i) \geq \text{Threshold}$



Today's Outline

- Classification
- Metrics
- k-Nearest Neighbors

1000 \rightarrow 600 rats
400 dogs.

45-0 \rightarrow 45% accuracy.
1000

Metrics

- An obvious metric is **accuracy**

$$Accuracy = \frac{\text{Number of Correct Predictions}}{\text{Total Number of Data Points}}$$

- Say you have a cat classifier with 1000 images. Your classifier gets 797 out of 1000 images correct

$$Accuracy = \frac{797}{1000} = 79\%$$

Metrics

1000 images \rightarrow 900 dogs
100 cats.

- But, accuracy does not tell the whole picture
- Especially when data is skewed
 - For example, if your training data is of size 1000 images
 - 900 of them are of dogs
 - 100 of them are cats
 - **Question:** Is accuracy a good metric in this case?

Metrics

Confusion Matrix

	cat Predicted Positive	dog Predicted Negative
cat Actual Positive	True Positive.	False Negative
dog Actual Negative	False Positive	True Negative.

Metrics

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP) 	False Negative (FN)
Actual Negative	False Positive (FP) 	True Negative (TN)

Metrics

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Confusion Matrix

1000

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP) 650	False Negative (FN)
Actual Negative	False Positive (FP) 50	True Negative (TN)

Metrics

Accuracy

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Everything I got correct } } everything .

The proportion of correct predictions.

Simple and intuitive, but misleading for imbalanced data.

A classifier that always predicts the majority class achieves high accuracy on imbalanced datasets while being useless.

Metrics

Precision and Recall

Precision \rightarrow

$$\frac{TP}{TP + FP}$$

} — FP costly.

Recall \rightarrow

$$\frac{TP}{TP + FN}$$

} — FN costly.

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

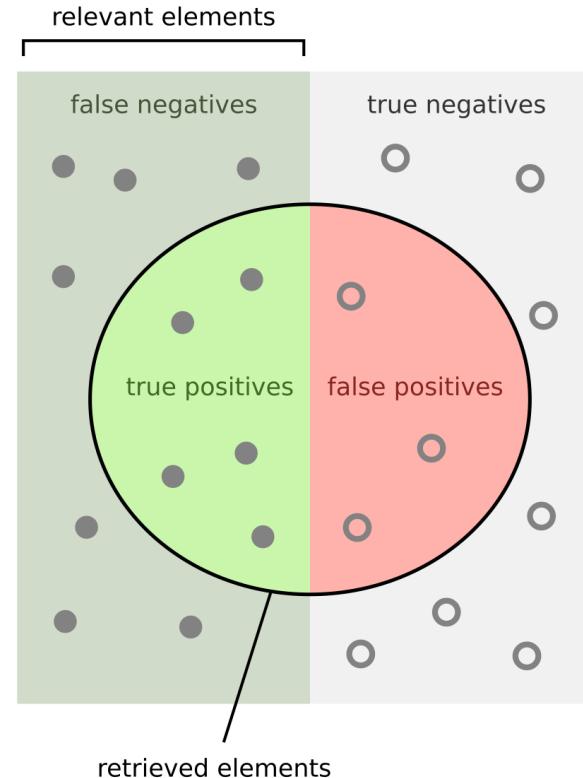
	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$



How many retrieved items are relevant?

$$\text{Precision} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

How many relevant items are retrieved?

$$\text{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

Of all instances predicted as positive, what fraction actually are positive? Precision measures the **reliability of positive predictions**. High precision means **few false alarms**.

When to care about precision?

When false positives are costly.

$$\text{Recall} = \frac{TP}{TP + FN}$$

Examples include spam filtering (users hate losing important emails), recommendation systems (irrelevant recommendations erode trust), and legal contexts (wrongful accusations).

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision and Recall

$$\text{Precision} = \frac{TP}{TP + FP}$$

Of all actual positive instances, **what fraction did we correctly identify?** Recall measures coverage of positive instances. High recall means **few missed positives**.

When to care about recall?

When false negatives are costly.

$$\text{Recall} = \frac{TP}{TP + FN}$$

Examples include disease screening (missing a diagnosis can be fatal), security threats (missing an attack is catastrophic), and search engines (users want all relevant results).

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

$$\text{Precision} = \frac{TP}{TP + FP}$$

Precision and recall are **inherently in tension**.

Increasing the threshold for positive classification typically **increases precision but decreases recall**.

$$\text{Recall} = \frac{TP}{TP + FN}$$

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)