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Recap Continuation



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent
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Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Des =Ya
Q _

 Batch Gradient Descent §

« Use entire training set per epoch

 The whole training dataset is used to compute a single parameter update
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Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

» Batch Gradient Descent
« Use entire training set per epoch
 The whole training dataset is used to compute a single parameter update
* One epoch leads to one parameter update
1 &
0, =0_,— a% Z Ve, (%)

i=1

Sum over the whole training dataset



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

» Stochastic Gradient Descent
 Use one randomly selected training data point at each step
« Parameters are updated after looking at each data point

* One epoch leads to m/parameter updates

0,=0,_,— angt_l(xl-, )



Train / Test Splits

« Generally data is split into a training dataset and a testing data

* Rough rule of thumb is that this is an 80-20 split
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Train / Test Splits

» Generally data is split into a training dataset and a testing data

* Rough rule of thumb is that this is an 80-20 split
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» Generally data is split into a training dataset and a testing data

* Rough rule of thumb is that this is an 80-20 split
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80% of the entire dataset is set aside
for learning parameters - “training”




Train / Test Splits

» Generally data is split into a training dataset and a testing data

* Rough rule of thumb is that this is an 80-20 split
Yy Xo X X

80% of the entire dataset is set aside
for learning parameters - “training”

20% of the entire dataset is set aside  This is unseen data and tells you if
to test the models the model can generalize well




Train / Test Splits

 However, in practice, if you are given only one train and test set, its easy to
accidentally pick model architectures that work well on the test set, even
though test set data is unseen

e To counter this, we use two unseen datasets {“validation” set and “test” set >

e The split is generally of the form 80-10-10 where 80% is training data, 10% is
validation data and 10% is test data
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Practical Issues in Linear Regression
Overfitting vs Underfitting




Practical Issues in Linear Regression
Overfitting vs Underfitting

The blue model is underfitting the data

e (/..
The orange model is the data ‘\-\l/ .
A N '. o £ q_.

The green nodel is a good fit of the data < ) ¢ e {H -~




Practical Issues in Linear Regression
Underfitting %
A

* What is happening?

* The model is too simple to be able to capture the data ‘\\‘L—//
* How éo.yOU ider.1tify- it? s> & .‘8,\ /\;\/

* Training loss is high AEL

* Test loss is high &73"*L b , &,/ .
‘("‘Z(M )o >3

* Solutions o~ 5 i
« Add more features G‘fbd\

« Add polynomial features (xlz, x22, XXy, +++) ! oVt x
ha

* Use a more complex model




Practical Issues in Linear Regression
Quick Aside

A

« Add polynomial features (xlz,xzz, X1 Xy, ***)

a A
fé(X) =,BO + 91{1 + 82)(’;12




Practical Issues In Linear Regression

Quick Aside e
A
« Add polynomial features ( x] , xz, XX, **
—s [ fx) = '+l \g
CORRECTR W,

What about these models’?

NOT L\NQF\@\ : f (X) ‘ ex Il'\(u'r WSW&S/‘W\ |
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Practical Issues in Linear Regression
Overfitting Model Mve Camplec —

- A
= B2t
e =
* What is happening? @ o
* The model is too complex, so it learng the noise distributionﬁ]d outliers and hence does not
generalize well to new data points E 4, 5 |
« How do you identify it? CQ % 1 @ 7} é>$ 9{_
LR (R O, 7t
* Training loss is low X GL( —_
* Test loss is high Move
* Coefficients have Iarge magnltudﬁ st 7"- 2= ' o) 630‘1‘40\'
* Solutions
2 R0
« Regularization (L;, L,) ’(j = (o -5 1600
* Cross-validation for model selection <d4 td O — AOOO

¢ Reduce number of features

* Get more training data



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Error from wrong assumptions due to the model being too simple



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Error from high sensitivity to each data point and noise due to the model being too complex



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Inherent randomness in data. Cannot be removed.



Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model

. Bias Variance Train Error Test Error
Complexity
Too Simple High Low High High
— &
Sweet Spot @n Medium Medium Medium
Too Complex Low High Low High
———

Pout

Optimum Model Complexity

o

Variance

g,‘mP]C_

Model Complexity
—_—



Practical Issues in Linear Regression

Regularization
A

* Regularization explicitly trades bias for variance.




Practical Issues in Linear Regression

Regularization
A

* Regularization explicitly trades bias for variance.
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Practical Issues in Linear Regression
Regularization 5‘; S 409,70 La, Nogon — RJDe_ Negresa
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» Regularization explicitly trades bias for variance.
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Practical Issues in Linear Regression

Regularization
A

» Regularization explicitly trades bias for variance.

1 1 Va
L) = — 3 (¥ = X0F + 2110] N3 7

0 =(X"X + D)~ XTY PN

e As /A increases:
Qe

» Coefficients shrink toward zero
* Bias increases (we're constraining the model)

* Variance decreases (less sensitive to data)

e At somel/l*z test error is minimized

o




Practical Issues in Linear Regression

Regularization
s ‘. O 9ol t
» Regularization explicitly trades bias for variance.
1 L]
L) =— ) (Y = X0 + A|6] p:
m These sort of parameters AV
are usually called «
0=X"'X+ )Xy hyper-parameters
e As /increases: They are not learnable
but are human defined

» Coefficients shrink toward zero
* Bias increases (we're constraining the model)

* Variance decreases (less sensitive to data)

« At some A%, test error is minimized



Feature Normalization _
Why Normalize? Q,K_@ 1 @
‘bs(

- If feature x; ranges from O to 1 and feature x, ranges from 0 to 1,000,000, this
could lead to numerical instability in the solving process

* This is particular relevant to gradient descent

L . ol &~ Qo
* Regularization unfairness

(666 o— 0, o—
e If x, is much larger, 6, must be much smaller to produce similar predictions.

* The regularization penalty then affects features unequally based on arbitrary
scale choices. l\o N

‘ow} Lol

* Distance-based algorithms



O
Feature Normalization 77

Normalization Methods 46 — Zmiy
o
m 7('/"\5
1. Min-Max Normalization —)/D ""0 il )
/_/veaf\
2. Mean-Variance Normalization —% <. <«— 7"&
\ — Skal- dewrdrin.
3. Max-Absolute Normalization “L © ,Lx—-a\
05'5
4. Robust Normalization ()2 U 2
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Feature Normalization

Min-Max Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this
normalization method will scale each column to 0 and 1
x — min(x)

/

max(x) — min(x)
* This method preserves zero entries in sparse data

« But is very sensitive to outliers



Feature Normalization

Mean-Variance Normalization

 For every column in the input data, i.e., for each X, X;, X,, X, etc., this
normalization method will scale to have mean 0 and standard dewatlon 1

[2%
' L\ — x’

Cv,,dl‘&
 Most common in practice

. Less sensitive to outliers than min-max ~ (cdeant \D . )—-‘ T
Or\k = X < )V y
* Does not bound the range to 0 and 1 e ‘@ D
X, = A - (lose o~
best besb by

C qu'n



Feature Normalization

Max-Absolute Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this
normalization method will scale each column to -1 and 1

X

/

| max(x)|

» Good for sparse data since it preserves sparsity (zeros stay zero)



Feature Normalization

Robust Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this
normalization method will scale each column as

/

x —/median(x)

— JIORkx))

 Robust to outliers

 Use when data has many outliers



Optimizing Loss Functions

Gradient Descent - Practical Fixes

» Feature Scaling

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated
(ill-conditioned).

This dramatically

10 ° —y 1 . accelerates the optimization
s L process
¢ o . ®
HO o7 . 90
0 0 This also allows having one
> > single learning rate for all
0 10,000 0 1

parameters



Optimizing Loss Functions

Gradient Descent - Practical Fixes

NOTE: Scaling parameters (mean, standard deviation, min, max) must be

» Feature Scaling

to prevent data leakage.

computed only on training data and then applied to validation and test data

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated

(ill-conditioned).

This dramatically
accelerates the optimization
process

This also allows having one
single learning rate for all
parameters



Today’s Outline

» Classification
 Metrics

» k-Nearest Neighbors



Today’s Outline

» Classification
» Metrics

» k-Nearest Neighbors



Classification ?
Introduction J /

X

« Classification is a supervised learning task where the goal is to predict a
discrete class label y for a given input x

—0

« For binary classification, y € {0, 1} <<—

e ——

 For multi-class classification, y € {1, 2, ..., k} where k > 2




Classification

Decision Boundary

A classifier partitions space into multiple
sections, each section corresponding to a
class.




Classification

Decision Boundary

A classifier partitions space into multiple
sections, each section corresponding to a

class.
(é - (90 o +09

This is the learned
curve, the
“decision
boundary”




Classification

Decision Boundary

A classifier partitions space into multiple
sections, each section corresponding to a

class.
This is class 1

* Different algorithms produce different e,

boundary shapes X N L e

_ o ol This is the learned
 Linear classifiers produce hyperplanes S0 f}ggvc?sitgg
. . . ) This is class 0 boundary”
* Non-linear classifiers can produce arbitrarily >

complex boundaries. X0



Classification

Decision Boundary

« But practically speaking, your classifier will
output a probability value between 0 and 1

Example:
« P(cat|image;) = 0.61
e P(cat|image,) = 0.52

This is class 0

This is class 1

This is the learned
curve, the
“decision
boundary”

>
X0



Classification

Decision Boundary

« But practically speaking, your classifier will
output a probability value between 0 and 1

Example:
« P(cat|image;) = 0.61
« P(cat|image,) = 0.52

This is class 0

This is class 1

This is the learned
curve, the
“decision
boundary”

>
X0



Classification

Decision Boundary

« But practically speaking, your classifier will
output a probability value between 0 and 1

 Example:
« P(cat|image;) = 0.61
« P(cat|image,) = 0.52
* Practitioner needs to also set a threshold

- image; is a cat if P(cat|image;) > Threshold

This is class 1

This is the learned
curve, the
“decision
boundary”

>



Today’s Outline

» Classification
e Metrics

» k-Nearest Neighbors



Metrics

* An obvious metric is accuracy

Number of Correct Predictions

Accuracy =
Total Number of Data Points

e Say you have a cat classifier with 1000 images. Your classifier gets 797 out of
1000 images correct

797
Accuracy = T000 79 %



Metrics

e But, accuracy does not tell the whole picture
» Especially when data is skewed
* For example, if your training data is of size 1000 images
e 900 of them are of dogs
e 100 of them are cats

* Question: Is accuracy a good metric in this case?



Metrics

Confusion Matrix

Calc CLJ
Predicted Pesitive Predicted Rhegative
Ct ‘. - :
a4 -
Actual Paditive T ?osdu - <2Q\SQ }\bgq-h)\L
Q\O'J NN

Ve

Msine

Actual N@e FQ\SQ r\jbbl‘\w;e




Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

C—

True Negative (Tl\l)




Metrics

Confusion Matrix

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)




Metrics

Confusion Matrix

(o

Predicted Positive

Predicted Negative

Actual Positive
()

True Positive (TP)
Lso

Actual Negative
300

True Negative (TN)




Predicted Positive

Predicted Negative

Metrics

Actual Positive

True Positive (TP)

Accuracy —2

Actual Negative

False Positive (FP)

False Negative (FN)

True Negative (TN)

I'PHTN
IP+ TN+ FP+ FN

Accuracy =

The proportion of correct predictions.

Covyet;

Simple and intuitive, but misleading for imbalanced data.

A classifier that always predicts the majority class achieves high accuracy

on imbalanced datasets while being useless.

3 Doyl 1 got



Metrics s

Precision and Recall

Predicted Positive

Actual Posmve True Positive (TP)

Actual Negative

Predicted Negative

True Negative (TN)




Metrics

Precision and Recall

TP

Precision = TP+ FP
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)




Metrics

Precision and Recall

Precision =

TP

TP+ FP

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)




Metrics

Precision and Recall

TP

Precision =
TP+ FP
TP
Recall =
TP+ FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)




Metrics

Precision and Recall

Precision =

TP

TP+ FP

TP

Recall =
‘TP -+ FN\

Actual Negative

Predicted Positive

False Positive (FP)

Predicted Negative

True Negative (TN)




relevant elements

]
M etrl CS false negatives true negatives

Precision and Recall

How many retrieved
items are relevant?

TP
PreC|S|0n —_ true positives = false positives
TP + FP

TP "5
Recall =
TP+ FN

Precision = ———

/—\ retrieved elements
( Predicted Positb Predicted Negative

Ac:_%‘ i rue Positive (T P)

—_

Actual Negative False Positive (FP)

False Negative (FN)

rue Negative (TN)

How many relevant
items are retrieved?

Recall = —

-



Metrics

Precision and Recall

TP Of all instances predicted as positive, what fraction actually are positive?
Precision = Precision measures the reliability of positive predictions. High precision means few
= false alarms.
TP + FP
When to care about precision?
When false positives are costly.
TP
Recall = Examples include spam filtering (users hate losing important emails), recommendation
TP + FN  systems (irrelevant recommendations erode trust), and legal contexts (wrongful
accusations).
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)




Metrics

Precision and Recall

TP Of all actual positive instances, what fraction did we correctly identify? Recall
Precision = measures coverage of positive instances. High recall means few missed positives.

TP + F P When to care about recall?
When false negatives are costly.

TP Examples include disease screening (missing a diagnosis can be fatal), security
Recall = threats (missing an attack is catastrophic), and search engines (users want all relevant

TP + FN results).

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)




Metrics

Precision vs Recall Tradeoff - F1 Score

TP

Precision and recall are inherently in tension.

Increasing the threshold for positive classification typically increases precision

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

Precision =

TP + FP

but decreases recall.
TP
Recall =
TP+ FN

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP)

True Negative (TN)




