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Linear Regression 

• Linear Model 


fθ(x) = θ0 + θ1x0 + θ2x1



Linear Regression 

• Linear Model 


fθ(x) = θ0 + θ1x0 + θ2x1
Learnable parameters



• Linear Model 





• Loss Functions (also called Cost Functions)


 - Mean Squared Error

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) = 1
m

m

∑
i=1

[ fθ(xi) − yi]2

Linear Regression 

The red lines are called residuals 



• Linear Model 





• Loss Functions (also called Cost Functions)


 - Mean Squared Error


 - Residual Sum of Squares

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) = 1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) =
m

∑
i=1

[ fθ(xi) − yi]2

Linear Regression 

The red lines are called residuals 

O



• Linear Model 





• How do we find the solution to this? How do we find the optimal ?


• We optimize  to minimize the loss function 





fθ(x) = θ0 + θ1x

θ

θ

L(θ) = 1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) = 1
m

m

∑
i=1

[θ0 + θ1 ⋅ x − yi]2

Linear Regression 

 f

∇f( ) = 0

 points in direction of steepest ascent∇f( )



Linear Regression 

 f

∇f( ) = 0

 points in direction of steepest ascent∇f( )
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• How do we find the solution to this? How do we find the optimal ?


• We optimize  to minimize the loss function 








Find the point where 





θ

θ

L(θ) = 1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) = 1
m

m

∑
i=1

[θ0 + θ1 ⋅ xi − yi]2

∇L(θ) = 0
∂L(θ)
∂θ0

= 2
m

m

∑
i=1

(θ0 + θ1xi − yi) = 0

∂L(θ)
∂θ1

= 2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi) = 0

Linear Regression 

 f

∇f( ) = 0

 points in direction of steepest ascent∇f( )
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Linear Regression 

 





The slope  makes sense:


• If  and  covary strongly (move together), the slope is steeper


• If  has high variance (spread out), the slope is gentler


• The sign of covariance determines if the line goes up or down


θ0 = ȳ − θ1x̄

θ1 = Cov(x, y)
Var(x)

θ1 = Cov(x, y)
Var(x)

x y

x

θ0

̂y

x

Slope = θ1

fθ(x) = θ0 + θ1x
6

Do

2



Linear Regression 
Solutions in Matrix Form
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Linear Regression 
Solutions in Matrix Form

• Let’s look at the matrix formulation of the same problem 





But in matrix form, , where  has  rows of data and  columns 

of features and 


  
 

(think back to system of equations for why this is true)

L(θ) = 1
m ∑

i
(yi − ̂yi)2

fθ(x) = ̂Y = Xθ X ∈ ℝm×d m d
θ = [θ0

θ1] ∈ ℝd×1

L(θ) = 1
m ∑ (Y − Xθ)2



w0
w1

• Consider the equation  y = w0x0 + w1x1

 
 

 
 

 
 

(1) ⋅ w0 + (450) ⋅ w1 = 2000

(1) ⋅ w0 + (510) ⋅ w1 = 2100

(2) ⋅ w0 + (980) ⋅ w1 = 2400

(3) ⋅ w0 + (1500) ⋅ w1 = 3000

Systems of Linear Equations - Linear Regression Example

1 450
1 510

2000

2100[ ]2 980
3 1500

][ =
2400
3000
[ ]

Price # 
Rooms Sq. Ft. 

2000 1 450

2100 1 510

2400 2 980

3000 3 1500

y x1x0

Quick Recap

X ∈ ℝ4×2 W ∈ ℝ2×1 y ∈ ℝ4×1

do 0

00 To

009 000000
0

Wo 650 W 2000



Linear Regression 
Solution

We want to find the minimum so set gradient to zero











If  is invertible, then 


∇L(θ) = − 2XTY + 2XTXθ = 0
2XTXθ = 2XTY

XTXθ = XTY

XTX

θ = (XTX)−1XTY
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Practical Issues in Linear Regression 
Multicollinearity 

• When two features are highly correlated or are linearly dependent on each 
other 
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Practical Issues in Linear Regression 
Multicollinearity 

• When two features are highly correlated or are linearly dependent on each 
other 


• Why it's a problem:


•  becomes nearly singular (ill-conditioned)


• Small changes in data cause huge changes in coefficients


• Coefficients become unreliable and hard to interpret


• Standard errors blow up

XTX

θ = (XTX)−1XTY

No 2

µ
Cannotcomple

inverse



Practical Issues in Linear Regression 
Multicollinearity 

• When two features are highly correlated or are linearly dependent on each 
other 


• Why it's a problem:


•  becomes nearly singular (ill-conditioned)


• Small changes in data cause huge changes in coefficients


• Coefficients become unreliable and hard to interpret


• Standard errors blow up

XTX

θ = (XTX)−1XTY Simple Detection: 
If correlation between features ≥ 0.8

No 210



Practical Issues in Linear Regression 
Quick Aside  

θ = (XTX)−1XTY
When else is this not going to be invertible? 

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model

m
n



Practical Issues in Linear Regression 
Quick Aside  

θ = (XTX)−1XTY
When else is this not going to be invertible? 

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model 

m
n
rank(X) = min(m, n)

If , then , so need more data 
points than number of parameters to get a 

unique set of parameters

m < n rank(X) ≤ m

EFFI sic
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Gradient Descent: Optimizing Loss Functions 

• For any loss function 


• To find minimum, set  and solve for 

ℓ(θ)
∇ℓ = 0 θ  ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )



Optimizing Loss Functions 

• For any loss function 


• To find minimum, set  and solve for 


• This is called the closed form solution 


• But it’s not always possible to find closed form 
solutions, especially when there are a large number of 
parameters


• Inverting a matrix is a costly operation - most 
common methods have complexity 

ℓ(θ)
∇ℓ = 0 θ

O(n3)

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

1100
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Optimizing Loss Functions 

• This is where Gradient Descent comes in


• Practical and efficient - has  where  is 
number of training points,  is number of epochs and 

 is number of features


• Generally applicable to different loss functions


• Convergence guarantees for certain types of loss 
functions (e.g., convex functions)

O(mTn) m
T

n

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

Ofm
params
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Optimizing Loss Functions 

• What does the loss landscape look like with multiple learnable parameters?

θ0
θ1 θ0 θ1

ℓθ(x) ℓθ(x)



Optimizing Loss Functions 
loss
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Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj



Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

0.5
10
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Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

This is going to be your “starting point” on the loss landscape



Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj



Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

Negative of partial derivative points 
in the direction of steepest descent



Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

1



Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

 controls how big a step to takeα



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

What happens when  is too small?  
Say 

α
α = 10−5



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

What happens when  is too small?  
Say 

α
α = 10−5



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate
What happens when  is too small?  
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate
What happens when  is too small?  
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate
What happens when  is too small?  
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate
What happens when  is too small?  
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10



Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate
What happens when  is too small?  
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10

With a small learning rate , if the loss 
function is convex, the optimization will 
eventually converge

α With a large learning rate , if the loss function 
is convex, the optimization could possibly 
start diverging and never converge

α

for in one
non



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

Maximum Iteration Gradient Norm Threshold Function Value Change Parameter Value Change
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Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Maximum Iteration 


• Each iteration through the training dataset is called 
an “epoch”


• Terminate after a fixed number of epochs 


• Simple, but provides no guarantees about solution 
quality



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Gradient Norm Threshold 


• Terminate when the gradient becomes sufficiently 
small 





• At this point, if the gradients are small enough,  
the parameters won’t move much anyway 

∥∇ℓθ(x)∥2 ≤ ϵ

I



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Function Value Change


• Terminate when the loss stops changing 
meaningfully 


|ℓθt
(x) − ℓθt−1

(x) | ≤ ϵ

g
n



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Parameter Value Change


• Terminate when the parameters stop changing 
meaningfully 


|θt − θt−1 | ≤ ϵ



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Validation Based Stopping (Early Stopping)


• Monitor performance on a validation set of instances


• Stop when validation loss begins to increase which 
signals overfitting 


• Serves as both stopping criterion and 
 regularization 


a



Optimizing Loss Functions 
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss 
landscapes 


• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to 
the global minimum


• Saddle points, where the gradient is zero but the point is neither a 
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum

Of a α Tof
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Optimizing Loss Functions 
Gradient Descent - Momentum position at t 1
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Optimizing Loss Functions 
Gradient Descent - Momentum



Optimizing Loss Functions 
Gradient Descent - Momentum

• Standard gradient descent can oscillate in ravines


• Areas where the surface curves more steeply in one dimension than another


• Or they can get stuck in plateau / saddle points


• Momentum helps accelerate gradient descent by accumulating velocity in directions 
of consistent gradient 

 

 

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

θt = θt−1 − α∇ℓθt−1



Optimizing Loss Functions 
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

ft
ofbones

I



Optimizing Loss Functions 
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Velocity Vector



Optimizing Loss Functions 
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

 is the momentum coefficient, typically 
set to 0.9
β



Optimizing Loss Functions 
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

If , you get back standard gradient descentβ = 0



Optimizing Loss Functions 
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α



Optimizing Loss Functions 
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α



Optimizing Loss Functions 
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α What if you set  to be large 
initially? 

α



Optimizing Loss Functions 
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α And keep reducing  as 
number of epochs increases?

α



• A single global learning rate may be suboptimal


• Some parameters might benefit from larger updates while others need 
smaller ones. 


• Adaptive methods adjust the learning rate for each parameter individually 
based on historical gradient information.

Optimizing Loss Functions 
Gradient Descent - Per Parameter Adaptive Learning Rates

5 8 0



Optimizing Loss Functions 
Gradient Descent - AdaGrad

momentum
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Optimizing Loss Functions 
Gradient Descent - AdaGrad + RMSProp
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• AdaGrad adapts the learning rate for each parameter based on the sum of 
squared historical gradients



Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 − α
Gt + ϵ

⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates


• Parameters with small historical gradients receive larger updates


• The limitation is that the accumulated sum  grows monotonically, eventually making the learning rate 
vanishingly small.

Gt

L



• AdaGrad adapts the learning rate for each parameter based on the sum of 
squared historical gradients



Gt = Gt−1 + (∇ℓθt−1)2

θt = θt−1 − α
Gt + ϵ

⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates


• Parameters with small historical gradients receive larger updates


• The limitation is that the accumulated sum  grows monotonically, eventually making the learning 
rate vanishingly small.

Gt



• RMSprop addresses AdaGrad's diminishing learning rate by using an 
exponentially decaying average of squared gradients



Gt = ρ ⋅ Gt−1 + (1 − ρ) ⋅ (∇ℓθt−1)2

θt = θt−1 − α
Gt + ϵ

⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - RMSProp

• The decay rate  is typically set to 0.9. 


• This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

ρ
-



• Adam (Adaptive Moment Estimation) combines the benefits of momentum 
(first moment) with the adaptive learning rates of RMSProp (second moment)


Optimizing Loss Functions 
Gradient Descent - ADAM

GD Of Q Watmomentum

want decay 4 βUt Not
Or Ot 1

7 Ut Ge Page C B


