Northeastern University
Khoury College of
Computer Sciences

Recap

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi

Spring 2026

Monday | January 26, 2026

Linear Regression g m,uc

3 Shie=m Skﬁ, Iﬂbﬁrch’C'

o b _ palel
\QX /7
X/ 4
\ >

%; Mx £

_ Wt C ‘-3- O-%x+xC
(1)1& o

Linear Regression

‘.3: &Z/“\'&
| \
A = I~
= Ot O
377,
o o
?ué-'c‘cé(
I‘\-"\Q‘I\W)c A 4
s LS (ﬁg.‘ “i\:>
Mo .
e

Linear Regression

\Y\Qét\: Line —o tj :
feo ¥ ()

MNinimize

[es] Lods

@ CON\?J"Q devivakive
® S b O

Linear Regression

wodV

* Linear Model

fé(X) = 90 + 91XO + 92X1

Linear Regression

gwoodl

* Linear Model

fé(X) = 90 + HIXO + Hle

Learnable parameters

Linear Regression

 Linear Model

fé(X) = 90 + 91)(0 + 92)(:1

* Loss Functions (also called Cost Functions)

The red lines are called residuals
1 < 4
L) = — Z [fo(x:) — yi]* - Mean Squared Error
m
i=1

Linear Regression

e Linear Model
fé(X) = 60 + QIXO + (92)61
* Loss Functions (also called Cost Functions)

The red lines are called residuals

A

L) = [f5(x.) — ¥:]* - Mean Squared Error

L(O) = Z [£,(x;) — ¥;]* - Residual Sum of Squares

=1 >

Linear Regression

* Linear Model !)

fg(x) = (90 + 91)6 V f(®) points in direction of steepest ascent

f

« How do we find the solution to this? How do we find the optimal 6?

« We optimize @ to minimize the loss function

1 m
L) = —) [fyx) -y
s Vf(®) =0

m

1
L©O)=— D 16+, - x—y]
i i=1

O, 0,
Linear Regression
Le("") z F\ 2 Cé-— (@o +@Q %)) %Cop{) s ¢

oL . 4. —
5@ & 9\ i (% - ng F ®'%3> (IB V£(®) points in direction of steepest ascent
0 /

ok L 2(y-G, «9.%3}(% \ /
90,

VA(®)=0

>

|‘l

Linear Regression

« How do we find the solution to this? How do we find the optimal 6?

» We optimize @ to minimize the loss function

Qb L) =LY o) — i
&0 2
@6 DGO

—_—

A
1 & C
L(®) = ;Z [0y + 6, - x; — y;]?

V f(®) points in direction of steepest ascent

f

mhem VL©®) =0

—

O, & o

690 m i—1 L
oL(O) 2 < 1
==Y 0+ 0 ~0
{) i=1

Vi(®) =0

Linear Regression

Cov(x,y)
The slope] = ————— makes sense:
Var(x)
 If x and y covary strongly (move together), the slope is steeper j} Slope = 0
- = - =Y
* If x has high variance (spread out), the slope is gentler
—/\
* The sign of covariance determines if the line goes up or down
6
\j‘ >

\)
.Lo:é d’ﬁé(y— Z’D . 7}[\ 2 (~/_ X‘@)Q ?Ycétcf" 3 | - k—
Linear Regression 7

2T
Solutions in Matrix Form
- @

§ = Ot O g

r N i
N%; @ '\-9(:33 _ #[S:'l
. o (;53 c{ 3 i ?tck
\D% - o 0, |
2 oy s> -0 K@\ H
' (5
[% . Q.0 ©.(5):1s xe - -
R
0, CD + G‘C'D =10 #{m,\ J'ﬁmm Ve #;\7:\(%\

O.CN+ Qi ()15

Linear Regression

Solutions in Matrix Form

* Let’s look at the matrix formulation of the same problem
1 .
LO)=— D, (=5
i

But in matrix form, f,(x) = Y = X0, where X € R4 has m rows of data and d columns

QO = RdXI

of features and 60 =
0,

_ 1 .
L(6) = —) (Y -X0)

(think back to system of equations for why this is true)

Quick Recap

Systems of Linear Equations - Linear Regression Example

@0 ®f
« Consider the equation y = wyx, + wyx,

Coy @ ()
Piee | nogms | 53 7 @ v, 4550 To000)

“2000 .§ @ 450 { () wy+(510) - w, = 2100

(2) - wy + (980) - w; = 2400

(3) - wy + (1500) - w, = 30@

—_—

2100 1 510

2400 2 980

3000 3 1500 ‘L‘/\)D-\- @T‘b(wb - ROOO

Q
]] Z—@ : _)R 2 C V- XG)
Linear Regression |
Solution

We want to find the minimum so set gradient to zero

7 . (AT Tvo
[G’DX VLO) = q2X'Y+2X'X0=0 |~<—
2X'x0 = 2X'y
X'x6 =X"y
. o CV‘/‘:D
®l -C\ﬁ'ag_‘ F X Xis invertible, then

I = (XTX)~ 1XTY)
7

Practical Issues in Linear Regression

Multicollinearity

* When two features are highly correlated or are linearly dependent on each

other
G Js: = | CXbeXy
~
po k-3 1
[g 01 (Q”“ ek Mrbe

(—o N \"'Q‘“\él derer g
™S of CQ\DN\(\S.

Practical Issues in Linear Regression
Multicollinearity No ¢

* When two features are highly correlated or are linearly dependent on each
other

« Why it's a problem: 0=X"X)"'X"y Copnk Comphe
ONNQ
« XX becomes nearly singular (ill-conditioned)
B ity
. l’Sﬂall changes in data cause huge changes in coefficients

« Coefficients become unreliable and hard to interpret

e Standard errors blow up

Practical Issues in Linear Regression

Multicollinearity Wo ~P N

* When two features are highly correlated or are linearly dependent on each
other L

L . — Simple D ion:
* Why It's a prOblem- 0= (XTX) 1XTY If correlatio;me)e’ceweZLe?;Z:reS
« XX becomes nearly singular (ill-conditioned)
« Small changes in data cause huge changes in coefficients

« Coefficients become unreliable and hard to interpret

e Standard errors blow up

Practical Issues in Linear Regression
Quick Aside

X = Ran

0= (XTX)_leY m: Number of training examples

o . . . n: Number of parameters in the model
When else is this not going to be invertible?

Practical Issues in Linear Regression

Quick Aside , «, . . X = 9xao

K ™G

T ﬁ\ﬂc‘b WG

T)
Y

| —

\

\

]

\

| U]

G

0= X Y m: Number of training examples

n: Number of parameters in the model
W When else is this not going to be invertible?

rank(X) = min(m, n)
(V{-,}

fm<n,t X) < m, so need more data
points than number of parameters to get a
unique set of parameters

3;,{\: A Shem o
AN B g Ashoe,
/

‘(h

Gradient Descent: Optimizing Loss Functions

 For any loss function £(0)

V(@) points in direction of steepest ascent

\/

Ve(e)=0

e To find minimum, set VZ = 0 and solve for @

Optimizing Loss Functions

 For any loss function £(0)

V(@) points in direction of steepest ascent

e To find minimum, set VZ = 0 and solve for @ 4
* This is called thellclosed form solution

« But it’s not always possible to find closed form

solutions, especially when there are a large number of

V£(9) =0
parameters (©)

 Inverting a matrix is a costly operation - most
common methods have complexity O(n?)

Optimizing Loss Functions

 This is where Gradient Descent comes in

V(@) points in direction of steepest ascent

« Practical and efficient - has|O(mTn) |where m is 4
number of training points, 7T is number of epochs and
n is number of features

« Generally applicable to different loss functions
V() =0
« Convergence guarantees for certain types of loss
functions (e.g., convex functions)

a x
Optimizing Loss Functions |
|

e
\\\\\\““:‘3:‘
SSEEE LAY

S

LX)

'bbs
Optimizing Loss Functions g
o Dotoe b~ furdar

Conpte w?@e hep 11y o ek Lde gudy O
Towe &
_C@ +Q. 90)
0, Lthb- 1 ZCCEB V@L("‘) - écé C@o'\-@&")}
@5\,®cm) '“3 'EZ ®LC7\3 ,9\ ZC% (90«*(9 >
(b, >
@ *Q—— ®D_ A Vo L.Cx) Qo-‘%i {%- q\?\>&w
O, +— O —of Vg LC”’) O

\ v—®@?v~(9 ‘o(V LC")

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

=)

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

=)

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

This is going to be your “starting point” on the loss landscape

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

«@ @ Step 2: Repeat Until Convergence

or
. — 0. —\a\- Q(X)

J J aej

Optimizing Loss Functions

Gradient Descent - Formulation

=)

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,
Step 2: Repeat Until Convergence

ot
H. — 0.= - Q(X)
J J 6(9]

Negative of partial derivative points
in the direction of steepest descent

Optimizing Loss Functions

Gradient Descent - Formulation

VY

1
v £o0) = — Z (; = 6 — 01%)

Step 1: Initialize 6, 0,

(‘@ @ Step 2: Repeat Until Convergence

0F p(x)

)

6 0-a

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Formulation

a controls how big a step to take Lﬂe(x) — i Z (yz . 80 _ elxi)Z
m [

Step 1: Initialize 6, 0,

«@ @ Step 2: Repeat Until Convergence

0F p(x)

)

6 0-a

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

Step 2: Repeat Until Convergence
0F p(x)

0,

6 0-a

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

e* o0,
| ar.ﬁ>

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

Step 2: Repeat Until Convergence
0F p(x)

0,

6 0-a

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.n:} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.n:} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.:%} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.:%} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?

Say ¢ = 107> Saya = 10
With a small learning rate a, if thg IoS§ With a large learning rate «, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge Vo i i
‘ y g | \ i CéAm) \itart diverging and never converge

R
(e.:%} (

__.b@ v———(9“\ X - VL(vJ 7

I N (
Optimizing Loss Functions ', [)
Gradient Descent - Stopping Criterion é
é 4
Maximum lteration Gradient Norm Threshold Function Value Change Parameter Value Change]
é N Loss . |
70D |4 -0, [3¢
&0(L I eme C(GQOB \l O lg\i IL@“ L@ ‘SE 6{7 (9*'—"
b L |
QNS o | ,;
AR o

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

* When do you stop your iterations?
 Maximum Iteration}

e Each iteration through the training dataset is called
an “epoch”
i

« Terminate after a fixed number of epochs

e Simple, but provides no guarantees about solution
quality

O <
-5

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

* When do you stop your iterations?

T N
* |Gradient Norm Threshold l

« Terminate when the gradient becomes sufficiently
small

IVZll, <e <

At this point, if the gradients are small enough,
the parameters won’t move muchanyway o -«

-5

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

* When do you stop your iterations?
* Function Value Change

e Terminate when the loss stops changing
meaningfully

| fet(x) — fet_l(x” <€

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

* When do you stop your iterations?
e Parameter Value Change

« Terminate when the parameters stop changing
meaningfully

|‘9t_9t—1| <€

3
Optimizing Loss Functions ¢ » E_ T

i _ T | .
Gradient Descent - Stopping Criterion /«- G “""“f
l?b)
w qu—
* When do you stop your iterations? J:J
3

 Validation Based Stopping (Early Stopping)
A g

» Monitor performance on a validation set of instances

« Stop when validation loss begins to increase which
signals overfitting

* Serves as both stopping criterion and
‘regularization

Optimizing Loss Functions

Gradient Descent - More Complicated Functions

'b'»f?

9 -\
Ox

(9{_) Q\-L@ﬂ ~ X- %;C")

* Most deep learning models however have highly non-convex loss
landscapes
fe(x) * Empirical evidence suggests that most local minima in high-
A dimensional neural network loss surfaces have loss values close to

the global minimum

» Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

[l

/%Iateau / Saddle Point

1 > 0
Local Minimum _Global
Minimum

Optimizing Loss Functions

t-
Gradient Descent - Momentum

— . : _/- o R
Oc> = 6, [0 o« [BL]~ w5

@f\)w\o'\w\ > G L) gk & el
G)t.l 4
AT Rememver Plovek \Alug om Wi,
rs b @b dio Sma)l

| d
A ®b F— @l:.-l . O({_‘?g_’ﬁ r
. o |sim o al 8}0&‘@“&5
\9 g\)t'l + Y LC’*—') - ofen o /)\J
o I l | O,

@,‘l\f, C D = -

cistan at

>0 'C‘ - »‘BPQ:(ecmm\ev

Optimizing Loss Functions

Gradient Descent - Momentum

Optimizing Loss Functions

Gradient Descent - Momentum

« Standard gradient descent can oscillate in ravines

* Areas where the surface curves more steeply in one dimension than another

* Orthey can get stuck in plateau / saddle points

« Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient
0f)(x) |

|

> 0.« 0. —
NQJ t9ja

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient des ﬁnt by accumulating velocity in
directions of consistent gradient

— 0,=6’t_1—‘a

With Momentum

Vs ='ﬁ V1 + Vfgt_l

— 9t=ﬁt_1—ai_v:;:

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

Qt — Ht—l — anet—l
With Momentum

Velocity Vector Vt — ,B) Vt—l + Vf@_l

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

Qt — Ht—l — anet—l
With Momentum

P is the momentum coefficient, typically Vt — ﬂ i Vt—l + Vfg .
set t0 0.9 =

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

Qt — Ht—l — anet—l
With Momentum

If # = 0, you get back standard gradient descent Vt — ﬂ i Vt—l + V f@t_l

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

a is too small
Finds the optimal but too slow

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

. a is too large
. @ is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

. a is too large
. @ is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

What if you set a to be large
initially?

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

. a is too large
a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

And keep reducing a as
number of epochs increases?

Optimizing Loss Functions

Gradient Descent - Per Parameter Adaptive Learning Rates

e A single global learning rate may be suboptimal

« Some parameters might benefit from larger updates while others need
smaller ones.

« Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.

8: {-@’7(

v

Optimizing Loss Functions

> Mamentury >

Gradient Descent - AdaGrad (
D ep = 6,v 0, X i%&?:)/
AT L oo fo cheng
€ t-
dsmoss C%LP?
‘\d@h : o

Optimizing Loss Functions
Gradient Descent -[AdaGrad + RMSProp

_ . VL0
(9’0 v @%—l S_G_,D:(;E 0t—l
o]
Q,:— (‘%Qeq 4-Cf‘(‘>[%t_'(.md]
Q‘Ddﬂa@ e = OCI

b\ — i N

Qg 9

/>

Optimizing Loss Functions
Gradient Descent - AdaGrad

« AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients /

G,=G_ + (V&)
0 =0 A v
t — V-1~ ’ 0,
(VG +¢

» Parameters with large historical gradients receive smaller updates

» Parameters with small historical gradients receive larger updates

« The limitation is that the accumulated sum G, grows monotonically, eventually making the learning rate
vanishingly small.

Optimizing Loss Functions
Gradient Descent - AdaGrad

« AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

G,=G_; + (erz—l)z

a
et = Ht—l — ,—Gt np) Vf@,_l

» Parameters with large historical gradients receive smaller updates

« Parameters with small historical gradients receive larger updates

« The limitation is that the accumulated sum G, grows monotonically, eventually making the learning
rate vanishingly small. ~

Optimizing Loss Functions
Gradient Descent - RMSProp

 RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradients

6 ¥ (I V00

a
0=0_,— -V
t — U1 \/5,+€ 0,

» The decay rate p is typically set to 0.9.

—

» This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

L= 0O +0, - X

\J

LO Coant, dea‘ﬂ
b S|
\'EJQ ¢

7 L0 | ot moneriom {

