
Monday | January 26, 2026

Recap
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Linear Regression
y matc

s

1 lopem slope intercept

Δ parallel

Tobias

IF7

y mate

9 0 Rtc
y 9 75

Linear Regression

HI.fifomg 17ᵗʰ
if Qrt 00 I

5 O nt0o 0 0

prediff
it

00 10
j 0 too 01 2

1 8 a
4 0,2 00 00 0

Q 4Cost L J C
Error

Linear Regression T

Model Line 5 00,7 1
funtion

fol
inputMinimize

parameters

to's.tn cy g
Computederivative

Set deviatietozero Cy 00 0 n

Solve for O

Linear Regression

• Linear Model

fθ(x) = θ0 + θ1x0 + θ2x1

Linear Regression

• Linear Model

fθ(x) = θ0 + θ1x0 + θ2x1
Learnable parameters

• Linear Model

• Loss Functions (also called Cost Functions)

 - Mean Squared Error

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) = 1
m

m

∑
i=1

[fθ(xi) − yi]2

Linear Regression

The red lines are called residuals

• Linear Model

• Loss Functions (also called Cost Functions)

 - Mean Squared Error

 - Residual Sum of Squares

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) = 1
m

m

∑
i=1

[fθ(xi) − yi]2

L(θ) =
m

∑
i=1

[fθ(xi) − yi]2

Linear Regression

The red lines are called residuals

O

• Linear Model

• How do we find the solution to this? How do we find the optimal ?

• We optimize to minimize the loss function

fθ(x) = θ0 + θ1x

θ

θ

L(θ) = 1
m

m

∑
i=1

[fθ(xi) − yi]2

L(θ) = 1
m

m

∑
i=1

[θ0 + θ1 ⋅ x − yi]2

Linear Regression

 f

∇f() = 0

 points in direction of steepest ascent∇f()

Linear Regression

 f

∇f() = 0

 points in direction of steepest ascent∇f()

Do 0

n Coot
or a

2 2 tn y cooton I

2 tn y Cooton z

• How do we find the solution to this? How do we find the optimal ?

• We optimize to minimize the loss function

Find the point where

θ

θ

L(θ) = 1
m

m

∑
i=1

[fθ(xi) − yi]2

L(θ) = 1
m

m

∑
i=1

[θ0 + θ1 ⋅ xi − yi]2

∇L(θ) = 0
∂L(θ)
∂θ0

= 2
m

m

∑
i=1

(θ0 + θ1xi − yi) = 0

∂L(θ)
∂θ1

= 2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi) = 0

Linear Regression

 f

∇f() = 0

 points in direction of steepest ascent∇f()

g QQ

00 2 0

0

onto FI
w

Linear Regression

The slope makes sense:

• If and covary strongly (move together), the slope is steeper

• If has high variance (spread out), the slope is gentler

• The sign of covariance determines if the line goes up or down

θ0 = ȳ − θ1x̄

θ1 = Cov(x, y)
Var(x)

θ1 = Cov(x, y)
Var(x)

x y

x

θ0

̂y

x

Slope = θ1

fθ(x) = θ0 + θ1x
6

Do

2

Linear Regression
Solutions in Matrix Form

Loss istnE Y 712 In t xoppred.it

fmpt
Got 0,2 is

Loss g

do 3 10 y

5
00 0 5 156

That.pO

j 0.4 0 co 8381 0
g 0061 0 s 15 0

0 ci 0 3 10 Iparam t.hn
xOoCD0 5 15

Linear Regression
Solutions in Matrix Form

• Let’s look at the matrix formulation of the same problem

But in matrix form, , where has rows of data and columns

of features and

  
 

(think back to system of equations for why this is true)

L(θ) = 1
m ∑

i
(yi − ̂yi)2

fθ(x) = ̂Y = Xθ X ∈ ℝm×d m d
θ = [θ0

θ1] ∈ ℝd×1

L(θ) = 1
m ∑ (Y − Xθ)2

w0
w1

• Consider the equation y = w0x0 + w1x1

 
 

 
 

 
 

(1) ⋅ w0 + (450) ⋅ w1 = 2000

(1) ⋅ w0 + (510) ⋅ w1 = 2100

(2) ⋅ w0 + (980) ⋅ w1 = 2400

(3) ⋅ w0 + (1500) ⋅ w1 = 3000

Systems of Linear Equations - Linear Regression Example

1 450
1 510

2000

2100[]2 980
3 1500

][=
2400
3000
[]

Price #
Rooms Sq. Ft.

2000 1 450

2100 1 510

2400 2 980

3000 3 1500

y x1x0

Quick Recap

X ∈ ℝ4×2 W ∈ ℝ2×1 y ∈ ℝ4×1

do 0

00 To

009 000000
0

Wo 650 W 2000

Linear Regression
Solution

We want to find the minimum so set gradient to zero

If is invertible, then

∇L(θ) = − 2XTY + 2XTXθ = 0
2XTXθ = 2XTY

XTXθ = XTY

XTX

θ = (XTX)−1XTY

Lo I E x xo

A

o To

on

p

Practical Issues in Linear Regression
Multicollinearity

• When two features are highly correlated or are linearly dependent on each
other

5 f 1
D Exty

A A I

f Econ
matrix

D No linearly dependent

rows or columns

Practical Issues in Linear Regression
Multicollinearity

• When two features are highly correlated or are linearly dependent on each
other

• Why it's a problem:

• becomes nearly singular (ill-conditioned)

• Small changes in data cause huge changes in coefficients

• Coefficients become unreliable and hard to interpret

• Standard errors blow up

XTX

θ = (XTX)−1XTY

No 2

µ
Cannotcomple

inverse

Practical Issues in Linear Regression
Multicollinearity

• When two features are highly correlated or are linearly dependent on each
other

• Why it's a problem:

• becomes nearly singular (ill-conditioned)

• Small changes in data cause huge changes in coefficients

• Coefficients become unreliable and hard to interpret

• Standard errors blow up

XTX

θ = (XTX)−1XTY Simple Detection: 
If correlation between features ≥ 0.8

No 210

Practical Issues in Linear Regression
Quick Aside

θ = (XTX)−1XTY
When else is this not going to be invertible?

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model

m
n

Practical Issues in Linear Regression
Quick Aside

θ = (XTX)−1XTY
When else is this not going to be invertible?

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model 

m
n
rank(X) = min(m, n)

If , then , so need more data
points than number of parameters to get a

unique set of parameters

m < n rank(X) ≤ m

EFFI sic

In 2 5ham

11Eur

Gradient Descent: Optimizing Loss Functions

• For any loss function

• To find minimum, set and solve for

ℓ(θ)
∇ℓ = 0 θ ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• For any loss function

• To find minimum, set and solve for

• This is called the closed form solution

• But it’s not always possible to find closed form
solutions, especially when there are a large number of
parameters

• Inverting a matrix is a costly operation - most
common methods have complexity

ℓ(θ)
∇ℓ = 0 θ

O(n3)

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

1100

GII
0cm

Optimizing Loss Functions

• This is where Gradient Descent comes in

• Practical and efficient - has where is
number of training points, is number of epochs and

 is number of features

• Generally applicable to different loss functions

• Convergence guarantees for certain types of loss
functions (e.g., convex functions)

O(mTn) m
T

n

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Ofm
params

ᵗ P

y

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0
θ1 θ0 θ1

ℓθ(x) ℓθ(x)

Optimizing Loss Functions
loss

I
DefinelossfunctionlGapaeteaderisatngde.step in the directionofthegradient

L
Land I

yticok.in

2g oct 1942
y Cooto

a

V0 un 2m y 0052 2

G α Do.cn for tin rargeCo 100
theta Efa alpha deriv

0 0 α To L n

8 o_O Q α

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

0.5
10

l

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

This is going to be your “starting point” on the loss landscape

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

Negative of partial derivative points
in the direction of steepest descent

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

1

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

 controls how big a step to takeα

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

What happens when is too small?  
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) = 1
m ∑

i
(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

 : Learning Rate α

What happens when is too small?  
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small?  
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small?  
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small?  
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small?  
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small?  
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

for in one
non

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

Maximum Iteration Gradient Norm Threshold Function Value Change Parameter Value Change

a
ontfn.FI

6 6
LossT.fslliflq 4 IEotilsEforiinvarge1000

epochs 102
10 2

1whole passthrough
dataset

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Maximum Iteration

• Each iteration through the training dataset is called
an “epoch”

• Terminate after a fixed number of epochs

• Simple, but provides no guarantees about solution
quality

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Gradient Norm Threshold

• Terminate when the gradient becomes sufficiently
small

• At this point, if the gradients are small enough,  
the parameters won’t move much anyway

∥∇ℓθ(x)∥2 ≤ ϵ

I

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Function Value Change

• Terminate when the loss stops changing
meaningfully

|ℓθt
(x) − ℓθt−1

(x) | ≤ ϵ

g
n

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Parameter Value Change

• Terminate when the parameters stop changing
meaningfully

|θt − θt−1 | ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Validation Based Stopping (Early Stopping)

• Monitor performance on a validation set of instances

• Stop when validation loss begins to increase which
signals overfitting

• Serves as both stopping criterion and 
 regularization

a

Optimizing Loss Functions
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss
landscapes

• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

• Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum

Of a α Tof

fin
1 gional 0

0 1
of

1104712boffo
in

Optimizing Loss Functions
Gradient Descent - Momentum position at t 1

GD Of α 74420 gebsm.tt

Problem

of
a gets toosmall

p paper pay me a name

1 D Of a Q α I
does not gettoosmall

iYt Let
sgmeenofs.atagmdient

0.9 hyperparameter

Optimizing Loss Functions
Gradient Descent - Momentum

Optimizing Loss Functions
Gradient Descent - Momentum

• Standard gradient descent can oscillate in ravines

• Areas where the surface curves more steeply in one dimension than another

• Or they can get stuck in plateau / saddle points

• Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient

θj ← θj − α ⋅ ∂ℓθ(x)
∂θj

θt = θt−1 − α∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

ft
ofbones

I

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Velocity Vector

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

 is the momentum coefficient, typically
set to 0.9
β

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

If , you get back standard gradient descentβ = 0

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α What if you set to be large
initially?

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small  
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α And keep reducing as
number of epochs increases?

α

• A single global learning rate may be suboptimal

• Some parameters might benefit from larger updates while others need
smaller ones.

• Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.

Optimizing Loss Functions
Gradient Descent - Per Parameter Adaptive Learning Rates

5 8 0

Optimizing Loss Functions
Gradient Descent - AdaGrad

momentum

GD Of a 0 1 MED
Sitting 7 want tochange

Q Q of
always

incesE o Gt.it FLOE
We always positive

Optimizing Loss Functions
Gradient Descent - AdaGrad + RMSProp

Q aims 1
Get βGe B am

decayrate 0.9

Gt 0.9.9 1 qn

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 − α
Gt + ϵ

⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates

• Parameters with small historical gradients receive larger updates

• The limitation is that the accumulated sum grows monotonically, eventually making the learning rate
vanishingly small.

Gt

L

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1)2

θt = θt−1 − α
Gt + ϵ

⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates

• Parameters with small historical gradients receive larger updates

• The limitation is that the accumulated sum grows monotonically, eventually making the learning
rate vanishingly small.

Gt

• RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradients

Gt = ρ ⋅ Gt−1 + (1 − ρ) ⋅ (∇ℓθt−1)2

θt = θt−1 − α
Gt + ϵ

⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - RMSProp

• The decay rate is typically set to 0.9.

• This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

ρ
-

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Optimizing Loss Functions
Gradient Descent - ADAM

GD Of Q Watmomentum

want decay 4 βUt Not
Or Ot 1

7 Ut Ge Page C B

