

Recap

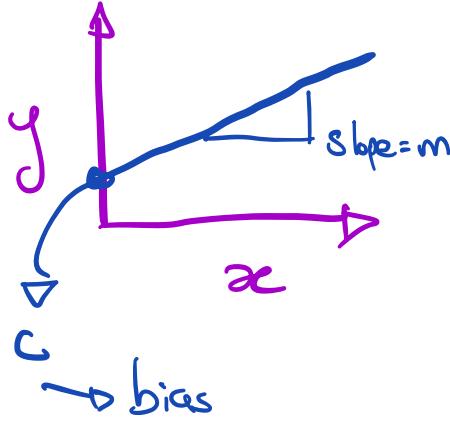
DS 4400 | Machine Learning and Data Mining I

Zohair Shafi

Spring 2026

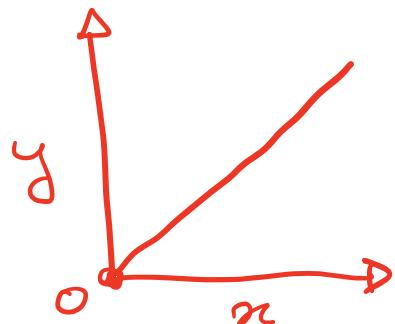
Monday | January 26, 2026

Linear Regression

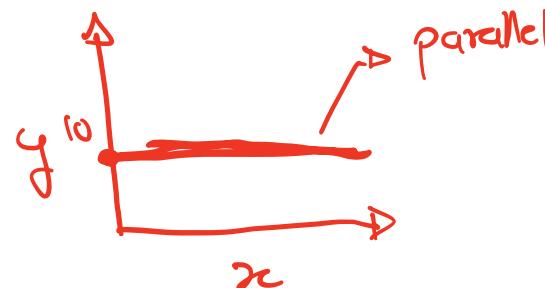


$$y = mx + c$$

↓ ↓
slope intercept.



$$y = mx + c$$
$$(1)x + 0$$



$$y = mx + c$$
$$y = 0 \cdot x + c$$

Linear Regression

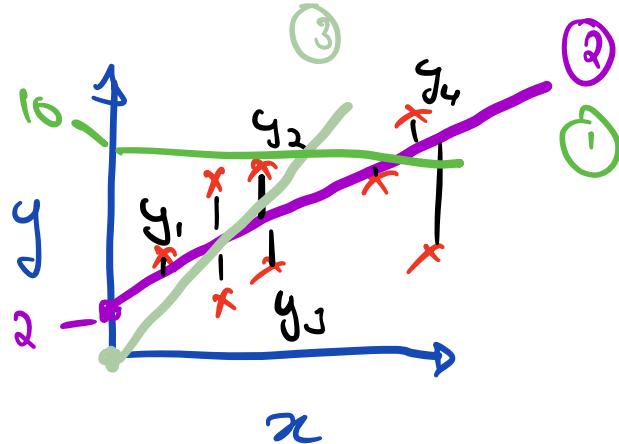
$$\hat{y} = \theta_1 x + \theta_0$$

predicted output

$$\text{Loss: } \frac{1}{m} \sum_{i=0}^{m=9} (y_i - \hat{y}_i)^2$$

Cost J , \mathcal{L} , C

1 ① $\hat{y} = \theta_1 x + \theta_0 - \theta_1 = 0$
 2 ② $\hat{y} = \theta_1 x + \theta_0 - \theta_0 = 10$
 3 ③ $\hat{y} = \theta_1 x + \theta_0 = \theta_0 = 2$
 $\theta_1 = 4$



$$m = 9$$

Linear Regression

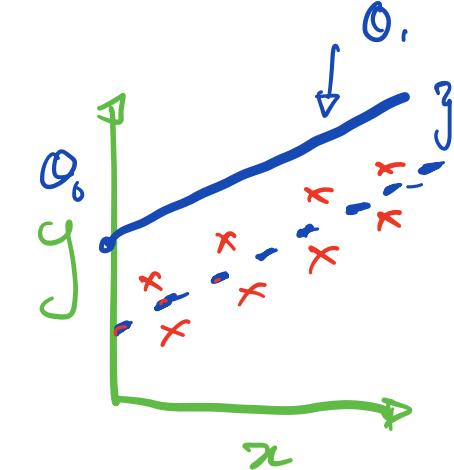
Model: Line \rightarrow function $\hat{y} = \theta_0 + \theta_1 \cdot x$

Minimize

Loss: $L_0(n) = \frac{1}{m} \sum_{i=0}^m (y - \hat{y})^2$

- ① Compute derivative
- ② Set derivative to zero
- ③ Solve for θ

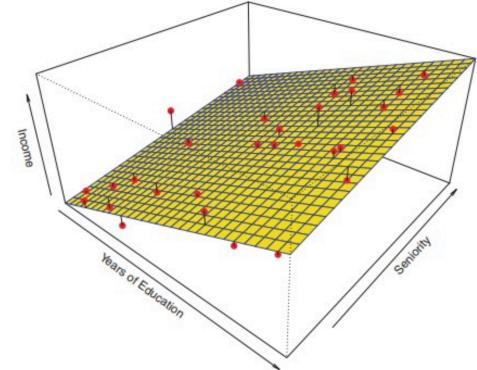
$$= \frac{1}{m} \sum_{i=0}^m (y - (\theta_0 + \theta_1 \cdot x))^2$$



Linear Regression

- Linear Model

$$f_{\theta}(x) = \theta_0 + \theta_1 x_0 + \theta_2 x_1$$

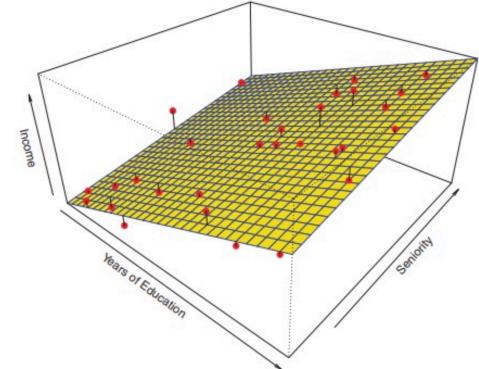


Linear Regression

- Linear Model

$$f_{\theta}(x) = \theta_0 + \theta_1 x_0 + \theta_2 x_1$$

Learnable parameters



Linear Regression

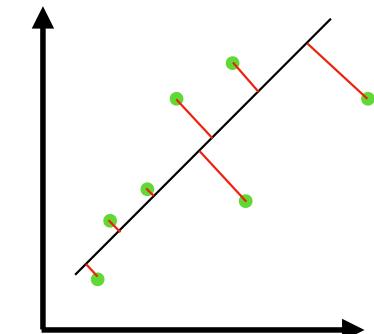
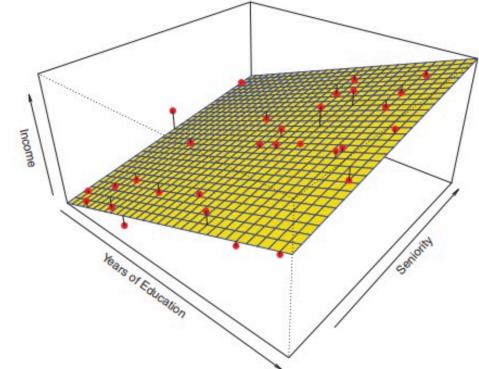
- Linear Model

$$f_{\theta}(x) = \theta_0 + \theta_1 x_0 + \theta_2 x_1$$

- Loss Functions (also called Cost Functions)

The red lines are called **residuals**

$$L(\theta) = \frac{1}{m} \sum_{i=1}^m [f_{\theta}(x_i) - y_i]^2 \text{ - Mean Squared Error}$$



Linear Regression

- Linear Model

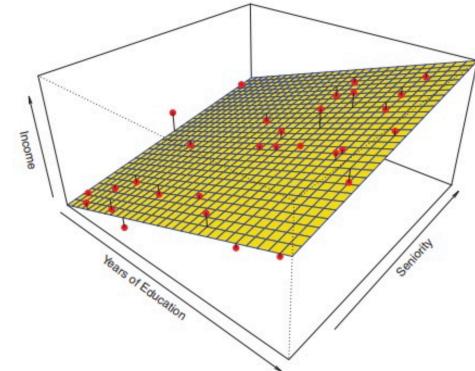
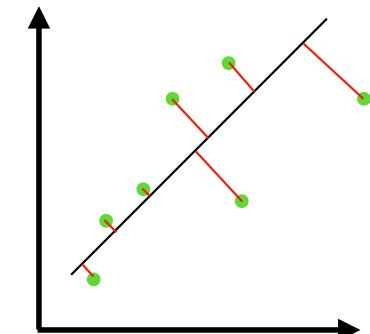
$$f_{\theta}(x) = \theta_0 + \theta_1 x_0 + \theta_2 x_1$$

- Loss Functions (also called Cost Functions)

The red lines are called **residuals**

$$L(\theta) = \frac{1}{m} \sum_{i=1}^m [f_{\theta}(x_i) - y_i]^2 \text{ - Mean Squared Error}$$

$$L(\theta) = \sum_{i=1}^m [f_{\theta}(x_i) - y_i]^2 \text{ - Residual Sum of Squares}$$



Linear Regression

- Linear Model

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

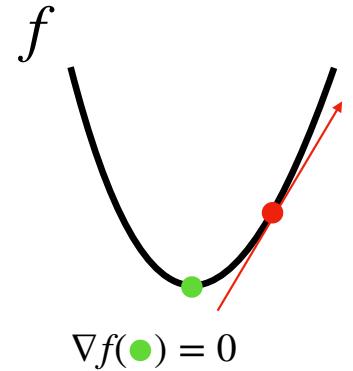
$\nabla f(\bullet)$ points in direction of steepest ascent

- How do we find the solution to this? How do we find the optimal θ ?

- We optimize θ to minimize the loss function

$$L(\theta) = \frac{1}{m} \sum_{i=1}^m [f_{\theta}(x_i) - y_i]^2$$

$$L(\theta) = \frac{1}{m} \sum_{i=1}^m [\theta_0 + \theta_1 \cdot x - y_i]^2$$



Linear Regression

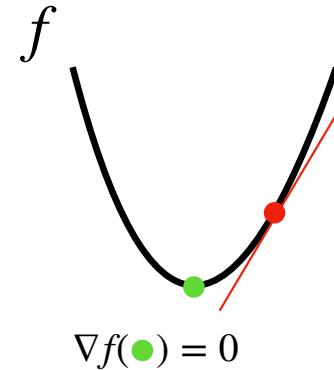
$$L_{\theta}(x) = \frac{1}{m} \sum (y - (\theta_0 + \theta_1 x))^2$$

$$\frac{\partial L}{\partial \theta_0} = 2 \cdot \frac{1}{m} \sum (y - (\theta_0 + \theta_1 x))(-1)$$

$$\frac{\partial L}{\partial \theta_1} = 2 \cdot \frac{1}{m} \sum (y - (\theta_0 + \theta_1 x))(x)$$

$$\theta_0 \quad \theta_1$$
$$\frac{\partial}{\partial \theta_1} (\theta_1 x) = x$$

$\nabla f(\bullet)$ points in direction of steepest ascent



Linear Regression

$$y = \theta_0 + \theta_1 x$$

- How do we find the solution to this? How do we find the optimal θ ?

- We optimize θ to minimize the loss function

$$\theta_0 \rightarrow \frac{\partial L}{\partial \theta_0} = 0$$
$$\theta_1 \rightarrow \frac{\partial L}{\partial \theta_1} = 0$$

$$L(\theta) = \frac{1}{m} \sum_{i=1}^m [f_{\theta}(x_i) - y_i]^2$$

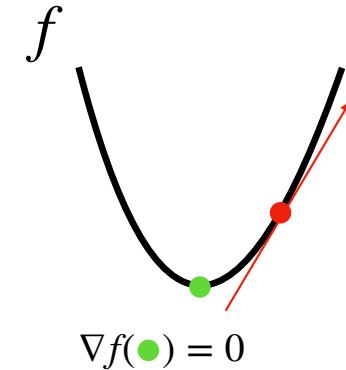
$$L(\theta) = \frac{1}{m} \sum_{i=1}^m [\theta_0 + \theta_1 \cdot x_i - y_i]^2$$

Find the point where $\nabla L(\theta) = 0$

$$\frac{\partial L(\theta)}{\partial \theta_0} = \frac{2}{m} \sum_{i=1}^m (\theta_0 + \theta_1 x_i - y_i) = 0$$

$$\frac{\partial L(\theta)}{\partial \theta_1} = \frac{2}{m} \sum_{i=1}^m x_i \cdot (\theta_0 + \theta_1 x_i - y_i) = 0$$

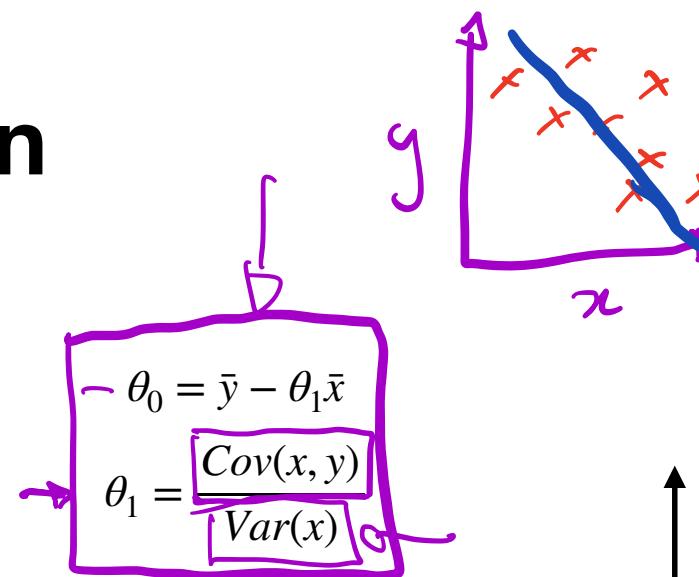
$\nabla f(\bullet)$ points in direction of steepest ascent



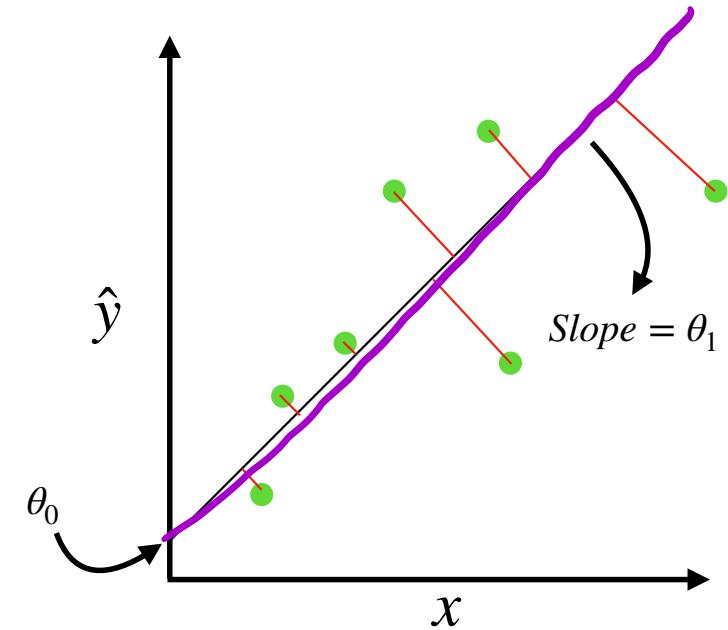
Linear Regression

The slope $\theta_1 = \frac{Cov(x, y)}{Var(x)}$ makes sense:

- If x and y covary strongly (move together), the slope is steeper
- If x has high variance (spread out), the slope is gentler
- The **sign** of covariance determines if the line goes up or down



$$f_{\theta}(x) = \theta_0 + \theta_1 x$$



$$\text{Loss} \rightarrow \frac{1}{m} \sum (y - \hat{y})^2$$

$$\frac{1}{m} \sum (y - x_0)^2 \text{ Predict } y \quad x \quad \text{Input}$$

Linear Regression

Solutions in Matrix Form

$$\hat{y} = \theta_0 + \theta_1 x$$

$$\hat{y} = \theta_0 + \theta_1(3) = 10$$

$$\hat{y} = \theta_0 + \theta_1(5) = 15$$

$$\begin{bmatrix} \hat{y} \\ \hat{y} \end{bmatrix} = \theta_0(1) + \theta_1(3) = 10$$

$$\begin{bmatrix} \hat{y} \\ \hat{y} \end{bmatrix} = \theta_0(1) + \theta_1(5) = 15$$

$$\theta_0(1) + \theta_1(3) = 10$$

$$\theta_0(1) + \theta_1(5) = 15$$

↑
Loss

Train data.

$$\hat{y} = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \end{bmatrix}$$

$x \in m \times n$
train # param

$\theta \sim \# \text{param} \times 1$
 $n \times 1$

$y = \# \text{train} \times 1$
 $m \times 1$

Linear Regression

Solutions in Matrix Form

- Let's look at the matrix formulation of the same problem

$$L(\theta) = \frac{1}{m} \sum_i (y_i - \hat{y}_i)^2$$

But in matrix form, $f_{\theta}(x) = \hat{Y} = X\theta$, where $X \in \mathbb{R}^{m \times d}$ has m rows of data and d columns of features and $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} \in \mathbb{R}^{d \times 1}$

$$L(\theta) = \frac{1}{m} \sum (Y - X\theta)^2$$

(think back to system of equations for why this is true)

Quick Recap

Systems of Linear Equations - Linear Regression Example

- Consider the equation $y = w_0x_0 + w_1x_1$

Price	# Rooms	Sq. Ft.
2000	1	450
2100	1	510
2400	2	980
3000	3	1500

$$\begin{array}{l} (1) \cdot w_0 + (450) \cdot w_1 = 2000 \\ (1) \cdot w_0 + (510) \cdot w_1 = 2100 \\ (2) \cdot w_0 + (980) \cdot w_1 = 2400 \\ (3) \cdot w_0 + (1500) \cdot w_1 = 3000 \end{array}$$

$$\begin{bmatrix} 1 & 450 \\ 1 & 510 \\ 2 & 980 \\ 3 & 1500 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 2000 \\ 2100 \\ 2400 \\ 3000 \end{bmatrix}$$

$$1(w_0) + (450)(w_1) = 2000$$

Linear Regression

Solution

$$L_\theta : \frac{1}{m} \sum (y - x\theta)^2$$

We want to find the minimum so set gradient to zero

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$\nabla L(\theta) = - \boxed{2X^T Y + 2X^T X\theta = 0}$$
$$2X^T X\theta = 2X^T Y$$

$$X^T X\theta = X^T Y$$

$$\theta_1 = \frac{\text{cov}(x, y)}{\text{var}(x)}$$

If $X^T X$ is invertible, then

$$\theta = (X^T X)^{-1} X^T Y$$

Practical Issues in Linear Regression

Multicollinearity

- When two features are highly correlated or are linearly dependent on each other

$$5 \cdot \frac{1}{5} = 1$$

$$A \cdot A^{-1} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

full rank matrix

↳ No linearly dependent rows or columns.

Practical Issues in Linear Regression

Multicollinearity

$x_0 \quad x_1$

- When two features are highly correlated or are linearly dependent on each other
- Why it's a problem:
$$\theta = (X^T X)^{-1} X^T Y$$
 - $X^T X$ becomes nearly singular (ill-conditioned)
 - Small changes in data cause huge changes in coefficients
 - Coefficients become unreliable and hard to interpret
 - Standard errors blow up

Cannot compute
inverse.

Practical Issues in Linear Regression

Multicollinearity

$$x_0 \rightsquigarrow x_{10}$$

- When two features are highly correlated or are linearly dependent on each other

- Why it's a problem:

$$\theta = (X^T X)^{-1} X^T Y$$

Simple Detection:
If correlation between features ≥ 0.8

- $X^T X$ becomes nearly singular (ill-conditioned)
- Small changes in data cause huge changes in coefficients
- Coefficients become unreliable and hard to interpret
- Standard errors blow up

Practical Issues in Linear Regression

Quick Aside

$$\theta = (X^T X)^{-1} X^T Y$$

When else is this not going to be invertible?

$$X \in \mathbb{R}^{m \times n}$$

m : Number of training examples

n : Number of parameters in the model

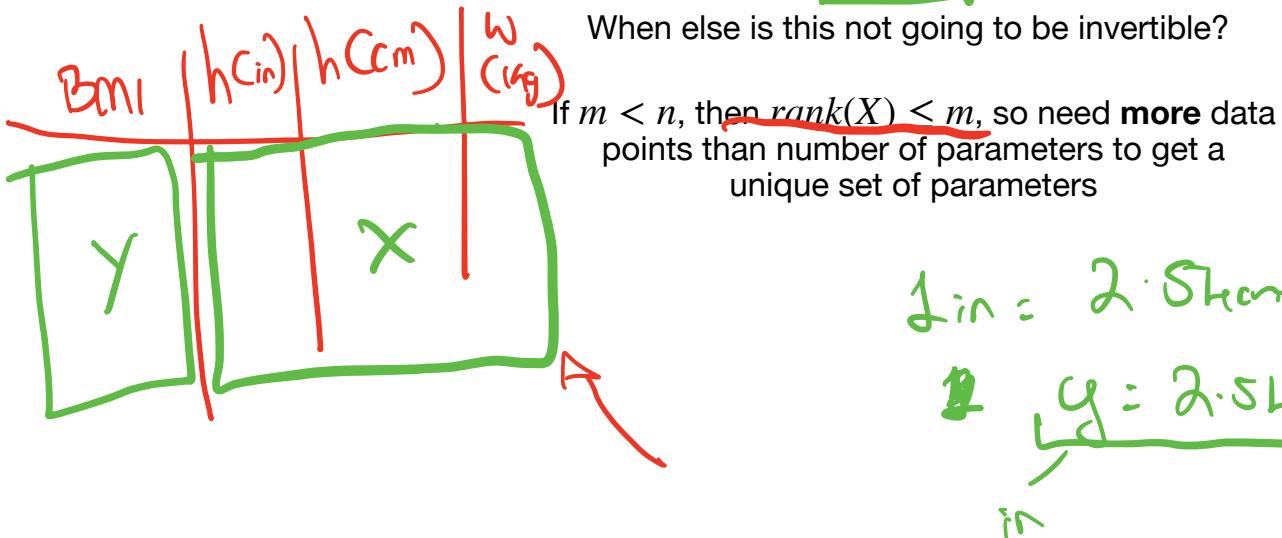
Practical Issues in Linear Regression

Quick Aside

$$x \rightarrow \begin{matrix} x_0 & x_1 & x_2 & \dots & x_n \end{matrix}$$
$$x = \underbrace{5x_0}_{\downarrow}$$

$$\theta = \boxed{(X^T X)^{-1} X^T Y}$$

When else is this not going to be invertible?



$$X \in \mathbb{R}^{m \times n}$$

m : Number of training examples

n : Number of parameters in the model

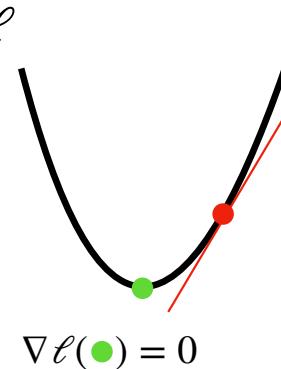
$$\text{rank}(X) = \min(m, n)$$

$$1 \text{ in} = 2.5 \text{ cm}$$
$$1 \text{ in} = 2.5 \text{ cm}$$

Gradient Descent: Optimizing Loss Functions

- For any loss function $\ell(\theta)$
 - To find minimum, set $\nabla \ell = 0$ and solve for θ

$\nabla \ell(\bullet)$ points in direction of steepest ascent



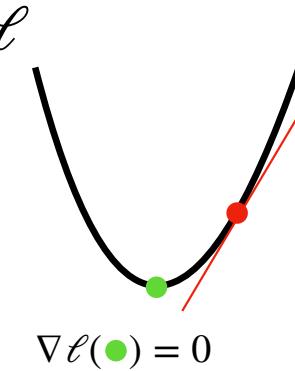
Optimizing Loss Functions

$$(\mathbf{x}^T \mathbf{x})^{-1} \rightarrow O(n^3)$$

Diagram illustrating the computational complexity of inverting a matrix. A green bracket groups the term $(\mathbf{x}^T \mathbf{x})^{-1}$. Above the bracket, a green arrow points to the number 100. To the right of the bracket, another green arrow points to the term $O(n^3)$.

- For any loss function $\ell(\theta)$
 - To find minimum, set $\nabla \ell = 0$ and solve for θ
 - This is called the **closed form solution**
 - But it's not always possible to find closed form solutions, especially when there are a large number of parameters
 - Inverting a matrix is a costly operation - most common methods have complexity $O(n^3)$

$\nabla \ell(\bullet)$ points in direction of steepest ascent



Optimizing Loss Functions

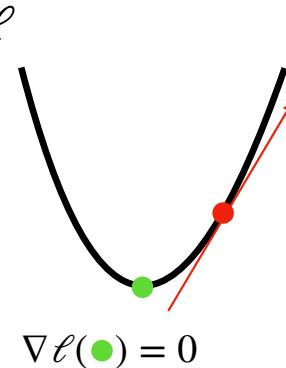
$$\text{MSE} \cdot \frac{1}{m} \sum (y - \hat{y})^2$$

$$O(mTn) \quad \begin{matrix} \# \text{params} \\ \# \text{data} \\ \# \text{iterations} \end{matrix}$$

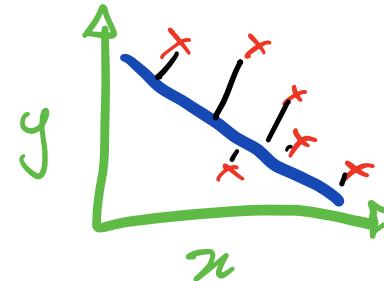
$$n^3$$

- This is where Gradient Descent comes in
 - Practical and efficient - has $O(mTn)$ where m is number of training points, T is number of epochs and n is number of features
 - Generally applicable to different loss functions
 - Convergence guarantees for certain types of loss functions (e.g., convex functions)

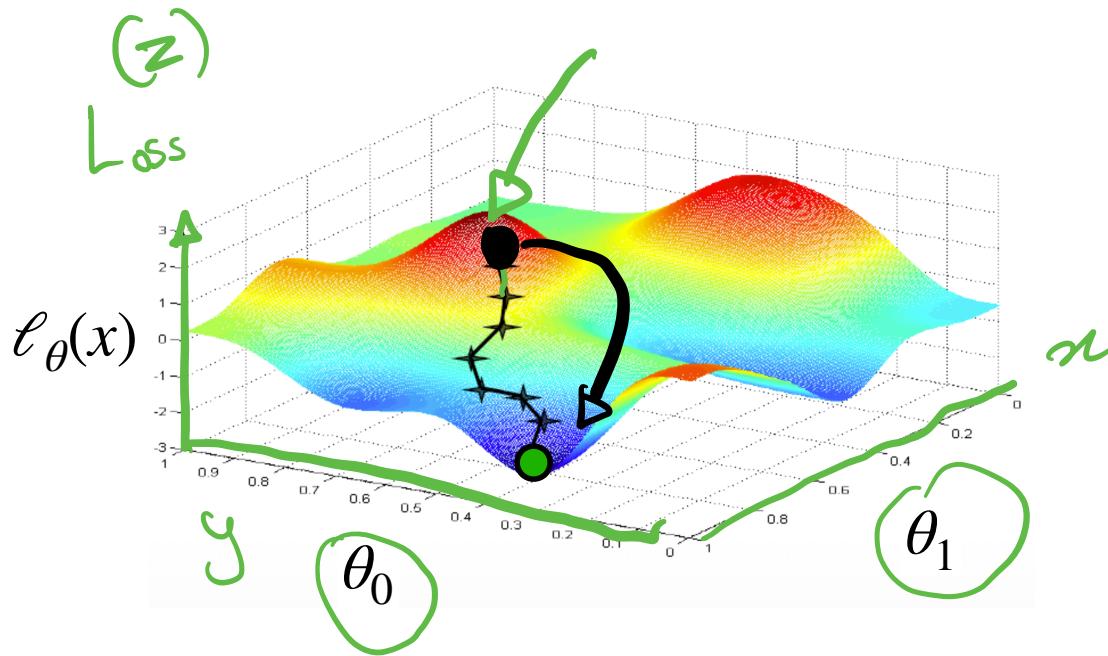
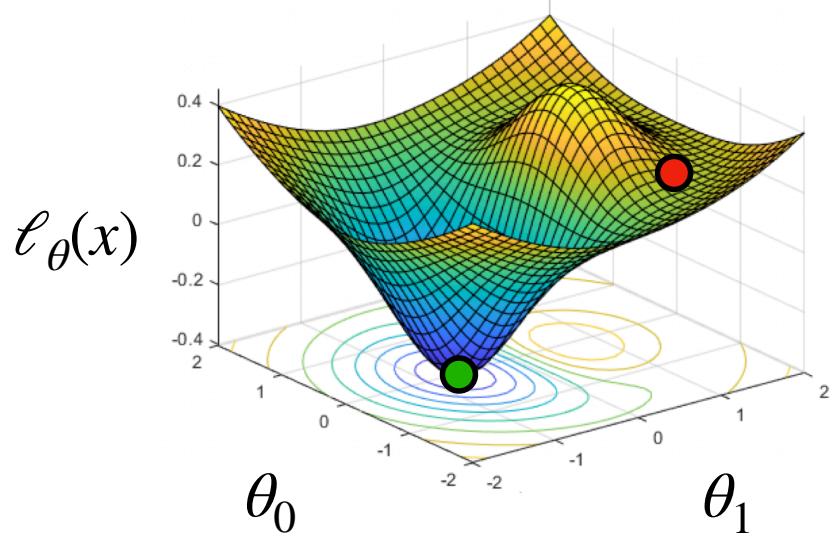
$\nabla \ell(\bullet)$ points in direction of steepest ascent



Optimizing Loss Functions



- What does the loss landscape look like with multiple learnable parameters?

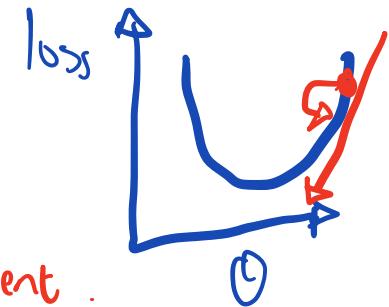


Optimizing Loss Functions

① Define loss function

② Compute derivative.

③ Take a single step in the direction of the gradient.



$$\textcircled{1} \quad L_{\theta_0}(x) = \frac{1}{m} \sum (y - \underbrace{(0_0 + \theta_0 \cdot x)}_{\text{true}})^2$$

$$\textcircled{2} \quad \frac{\partial L_{\theta_0}(x)}{\partial \theta_0} = \nabla_{\theta_0} L(x) \quad \begin{cases} \nabla_{\theta_0} L(x) = \frac{-2}{m} \sum (y - (0_0 + \theta_0 \cdot x)) \\ \nabla_{\theta_1} L(x) = \frac{-2}{m} \sum (y - (0_0 + \underbrace{\theta_1 \cdot x}_{\text{theta}})) \end{cases}$$

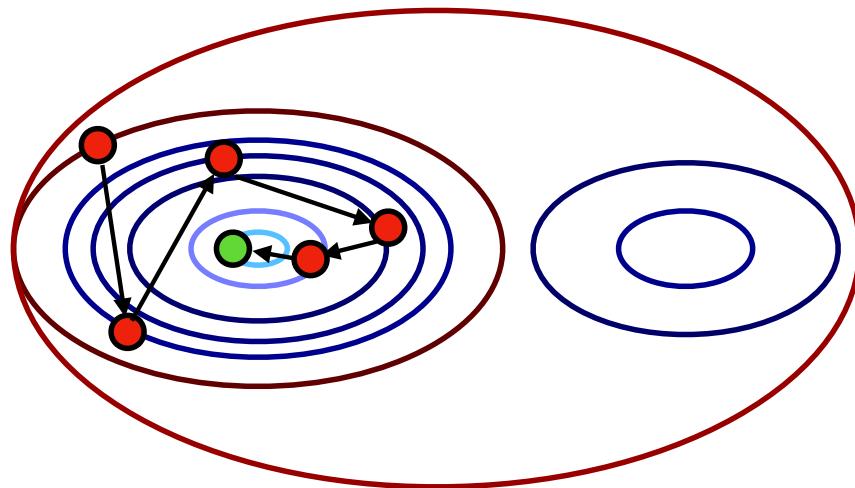
$$\textcircled{3} \quad \begin{aligned} \theta_0 &\leftarrow \theta_0 - \alpha \cdot \nabla_{\theta_0} L(x) \\ \theta_1 &\leftarrow \theta_1 - \alpha \cdot \nabla_{\theta_1} L(x) \end{aligned}$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} \rightarrow \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \nabla_{\theta_{t-1}} L(x)$$

for t in range $(0, 100)$
theta: $\boxed{\text{theta}}$ - alpha - deriv.

Optimizing Loss Functions

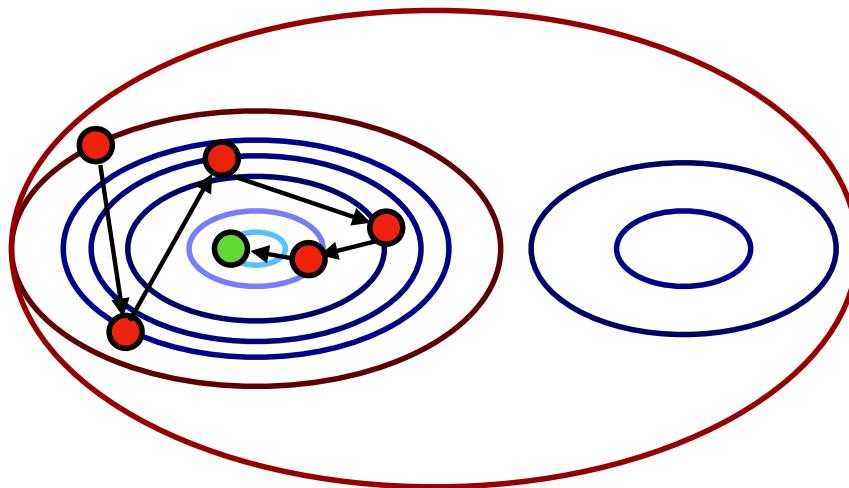
Gradient Descent - Formulation



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Optimizing Loss Functions

Gradient Descent - Formulation

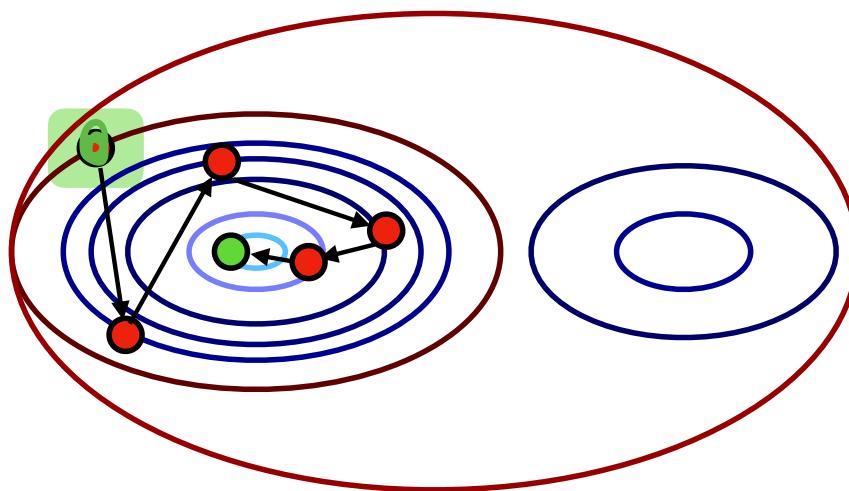


$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

Optimizing Loss Functions

Gradient Descent - Formulation



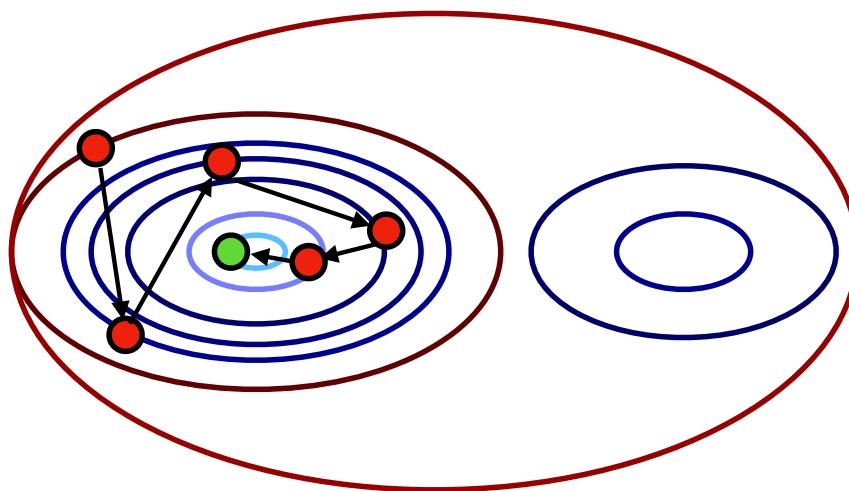
$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

This is going to be your “starting point” on the loss landscape

Optimizing Loss Functions

Gradient Descent - Formulation



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

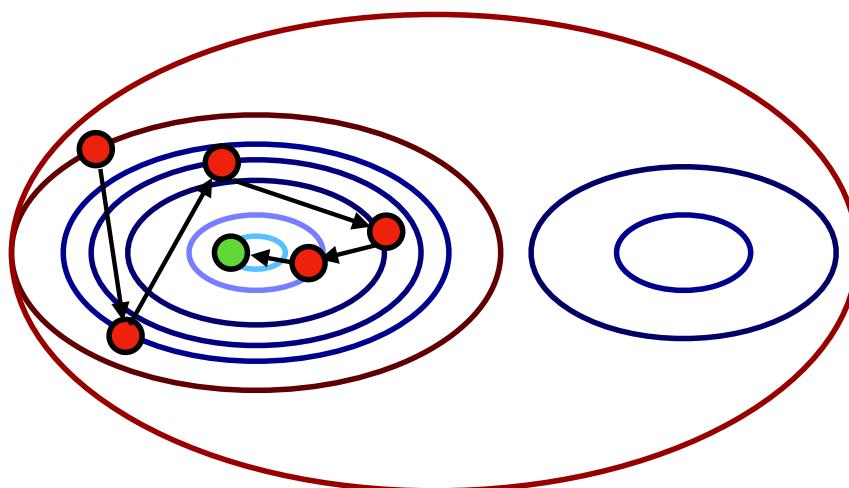
Step 1: Initialize θ_0, θ_1

Step 2: Repeat Until Convergence

$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial \ell_{\theta}(x)}{\partial \theta_j}$$

Optimizing Loss Functions

Gradient Descent - Formulation



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

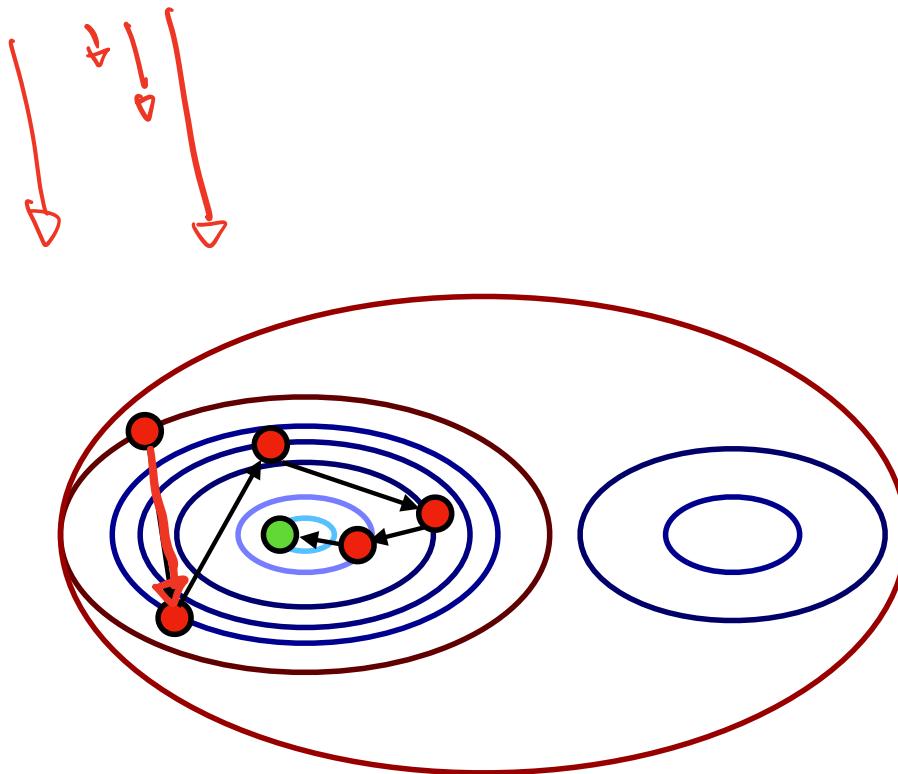
Step 2: Repeat Until Convergence

$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial \ell_{\theta}(x)}{\partial \theta_j}$$

Negative of partial derivative points
in the direction of steepest descent

Optimizing Loss Functions

Gradient Descent - Formulation



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

Step 2: Repeat Until Convergence

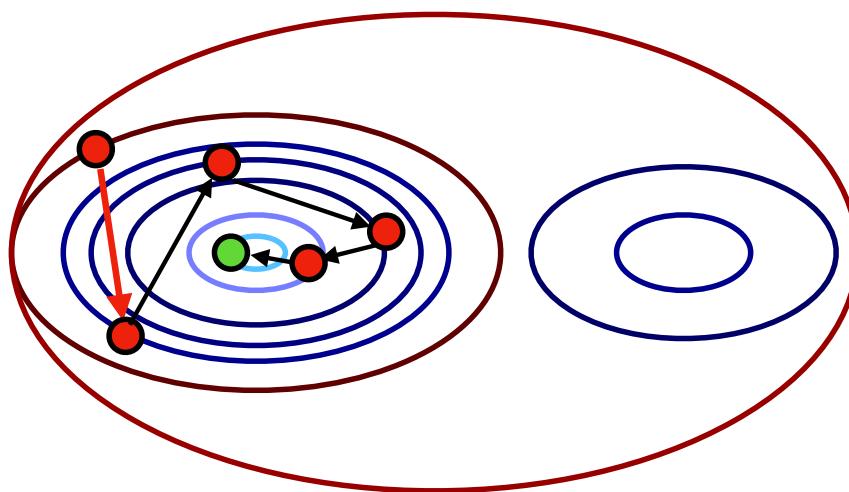
$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial \ell_{\theta}(x)}{\partial \theta_j}$$

α : Learning Rate

Optimizing Loss Functions

Gradient Descent - Formulation

α controls how big a step to take



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

Step 2: Repeat Until Convergence

$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial \ell_{\theta}(x)}{\partial \theta_j}$$

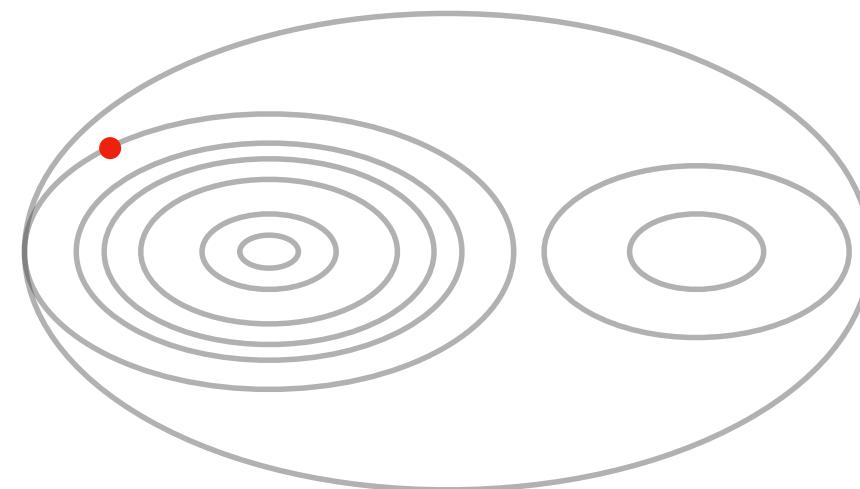
α : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when α is too small?

Say $\alpha = 10^{-5}$



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

Step 2: Repeat Until Convergence

$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial \ell_{\theta}(x)}{\partial \theta_j}$$

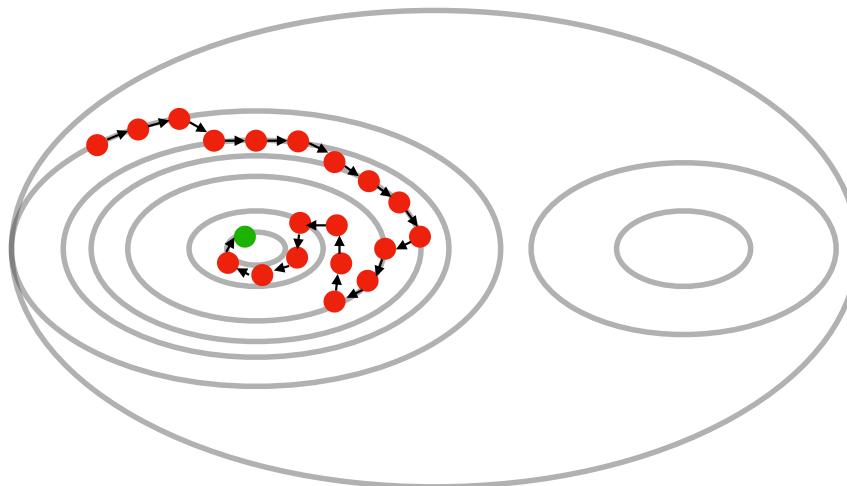
α : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when α is too small?

Say $\alpha = 10^{-5}$



$$\ell_{\theta}(x) = \frac{1}{m} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

Step 1: Initialize θ_0, θ_1

Step 2: Repeat Until Convergence

$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial \ell_{\theta}(x)}{\partial \theta_j}$$

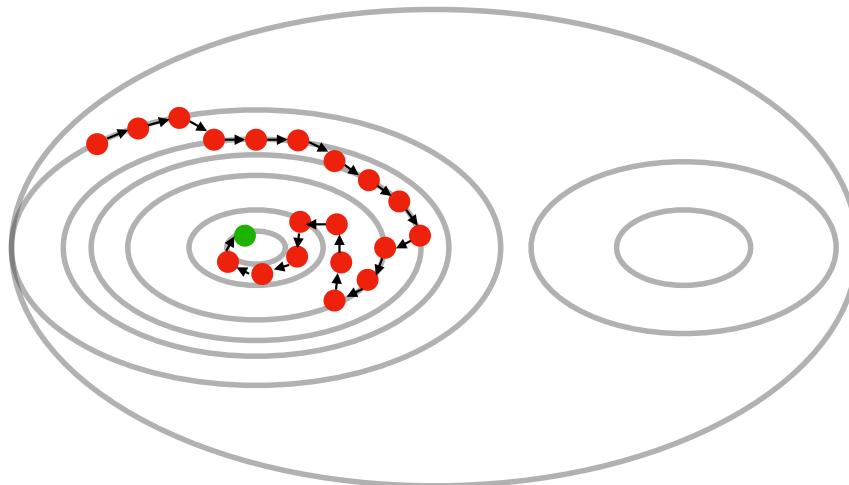
α : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

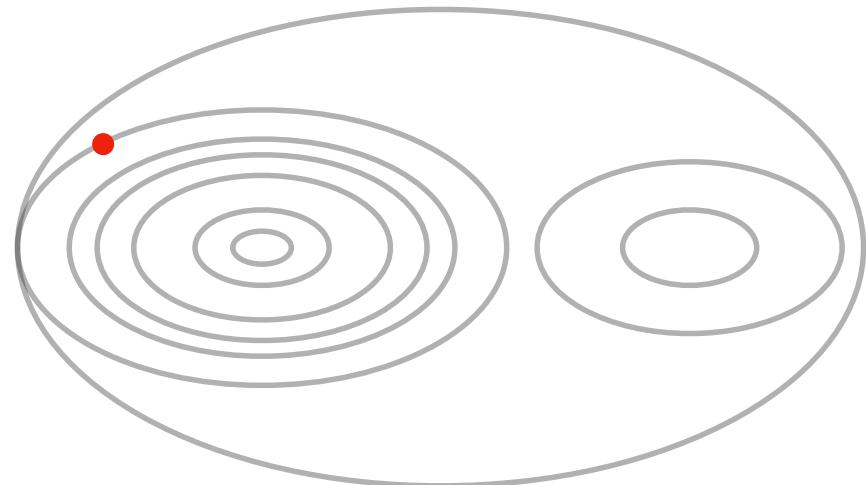
What happens when α is too small?

Say $\alpha = 10^{-5}$



What happens when α is too large?

Say $\alpha = 10$

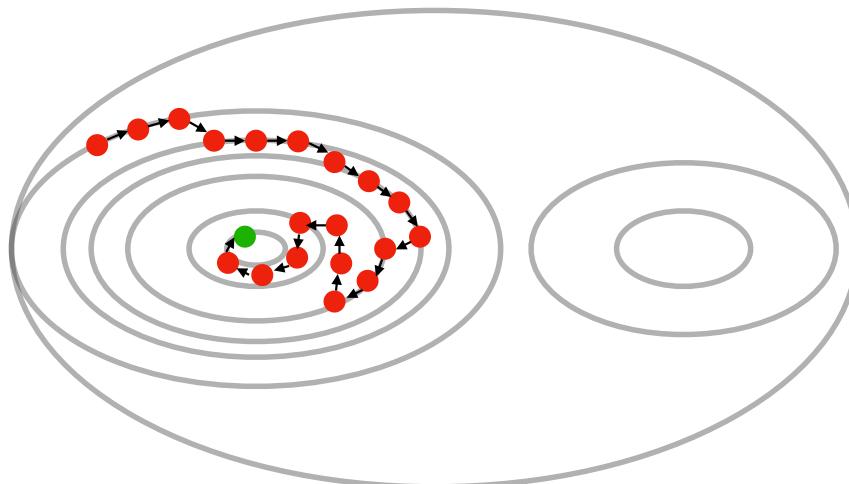


Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

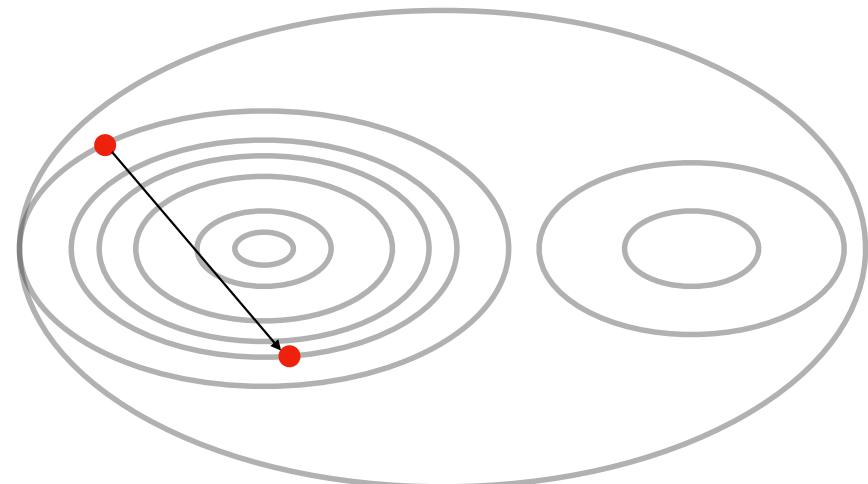
What happens when α is too small?

Say $\alpha = 10^{-5}$



What happens when α is too large?

Say $\alpha = 10$

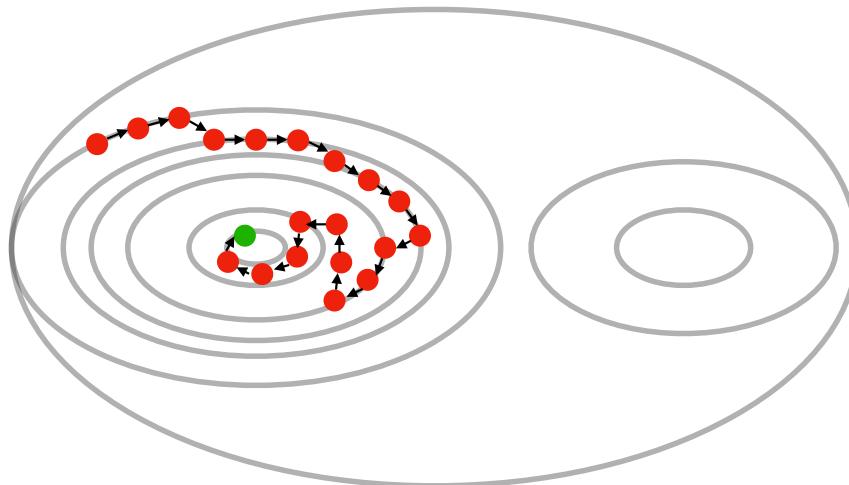


Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

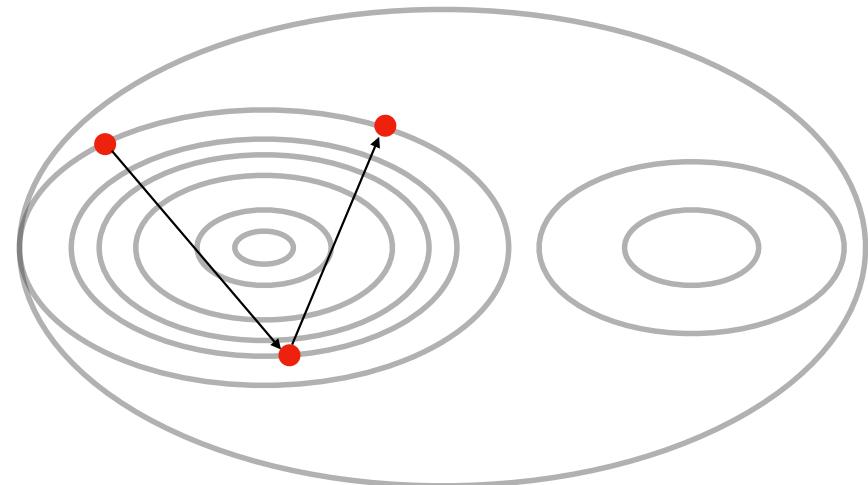
What happens when α is too small?

Say $\alpha = 10^{-5}$



What happens when α is too large?

Say $\alpha = 10$

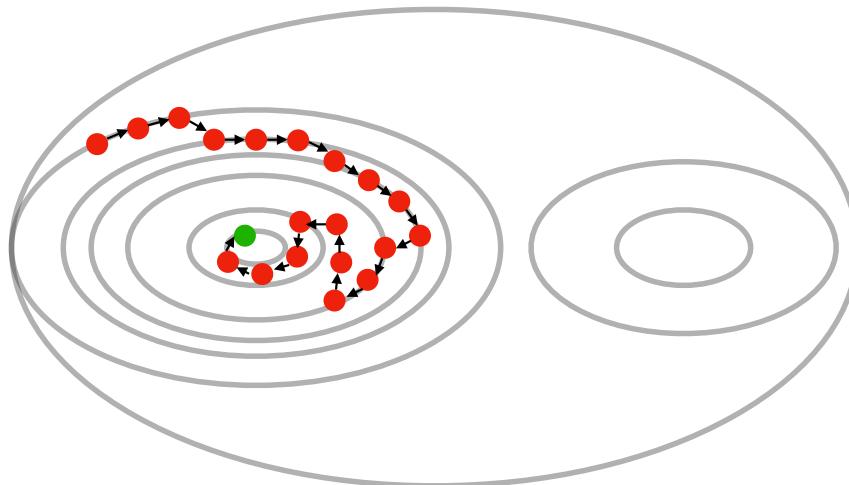


Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

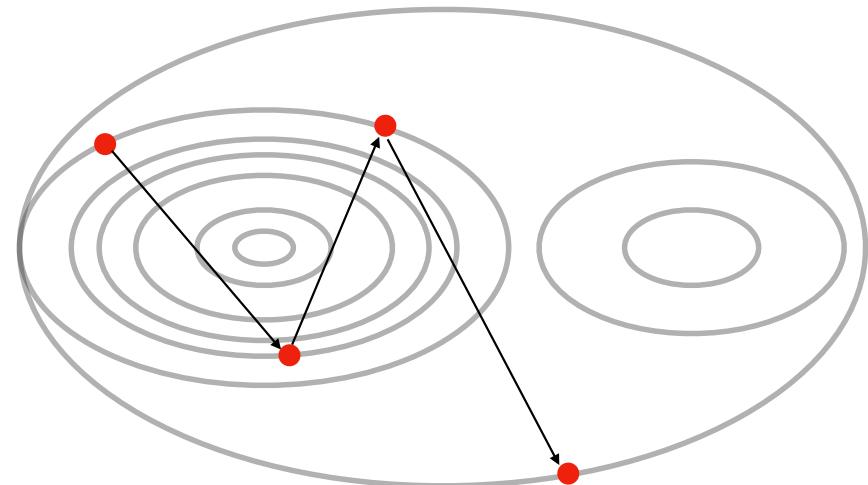
What happens when α is too small?

Say $\alpha = 10^{-5}$



What happens when α is too large?

Say $\alpha = 10$



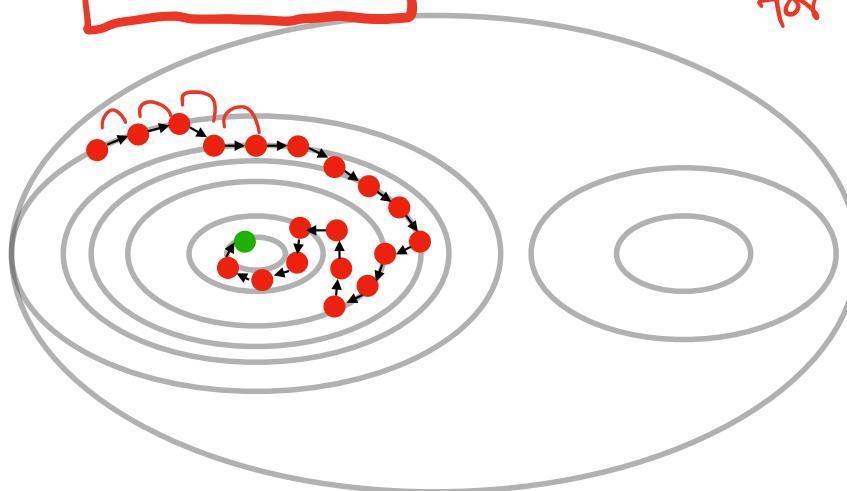
Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when α is too small?

Say $\alpha = 10^{-5}$

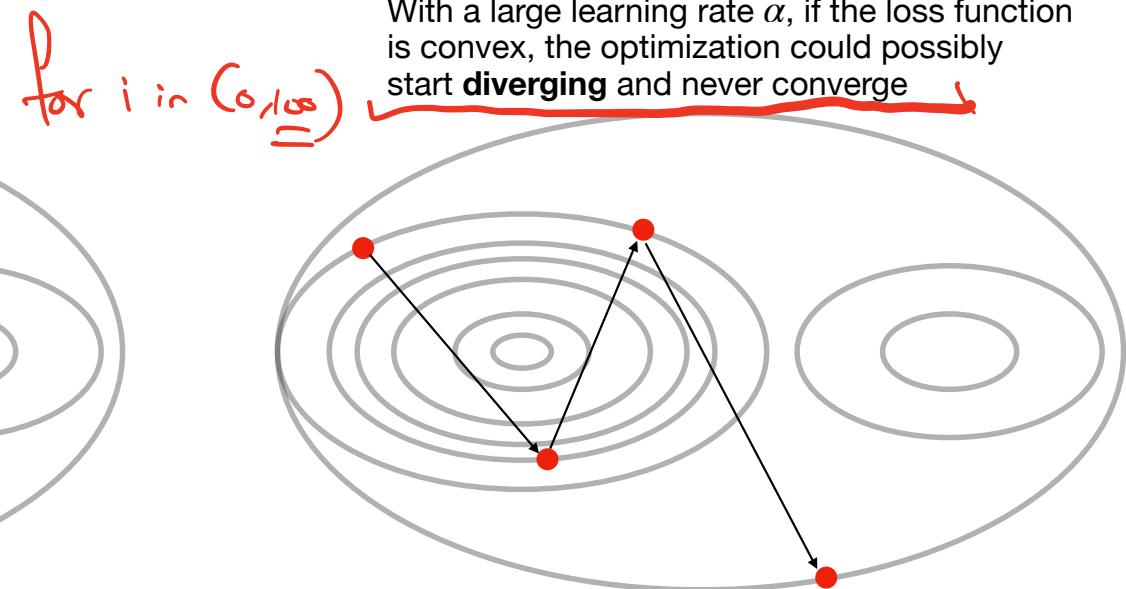
With a small learning rate α , if the loss function is convex, the optimization will eventually **converge**



What happens when α is too large?

Say $\alpha = 10$

With a large learning rate α , if the loss function is convex, the optimization could possibly start **diverging** and never converge



$$\theta_t \leftarrow \theta_{t-1} \left[-\alpha \cdot \frac{\nabla L_{\theta_{t-1}}(x)}{10^{-3}} \right]$$

Optimizing Loss Functions

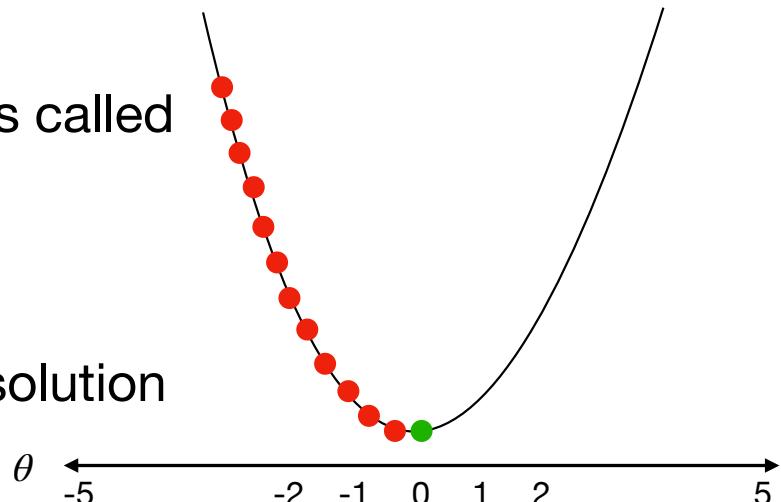
Gradient Descent - Stopping Criterion

- Maximum Iteration
- for i in range (1000)
- epochs
- 1 whole pass through
- data
- Gradient Norm Threshold
- $\|\nabla L_{\theta_{t-1}}(x)\|_2 < \epsilon$
- Function Value Change
- $|L_{\theta_t} - L_{\theta_{t-1}}| < \epsilon$
- Parameter Value Change
- $|\theta_t - \theta_{t-1}| < \epsilon$

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

- When do you stop your iterations?
 - Maximum Iteration
 - Each iteration through the training dataset is called an “epoch”
 - Terminate after a fixed number of epochs
 - Simple, but provides no guarantees about solution quality



Optimizing Loss Functions

Gradient Descent - Stopping Criterion

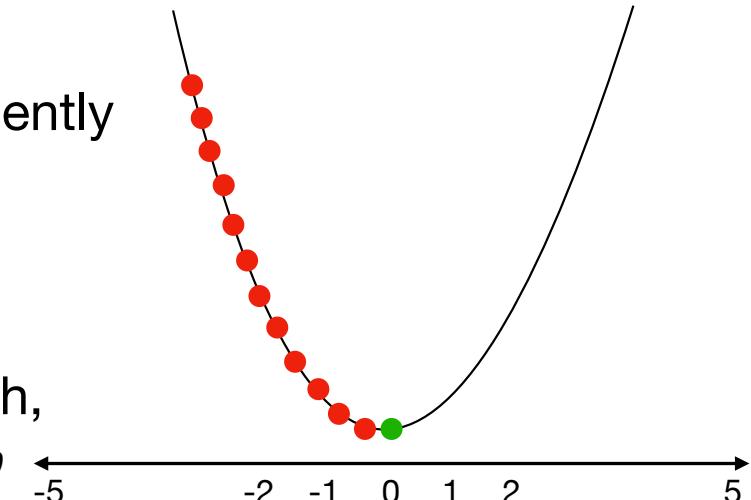
- When do you stop your iterations?

- Gradient Norm Threshold

- Terminate when the gradient becomes sufficiently small

$$\|\nabla \ell_\theta(x)\|_2 \leq \epsilon$$

- At this point, if the gradients are small enough, the parameters won't move much anyway

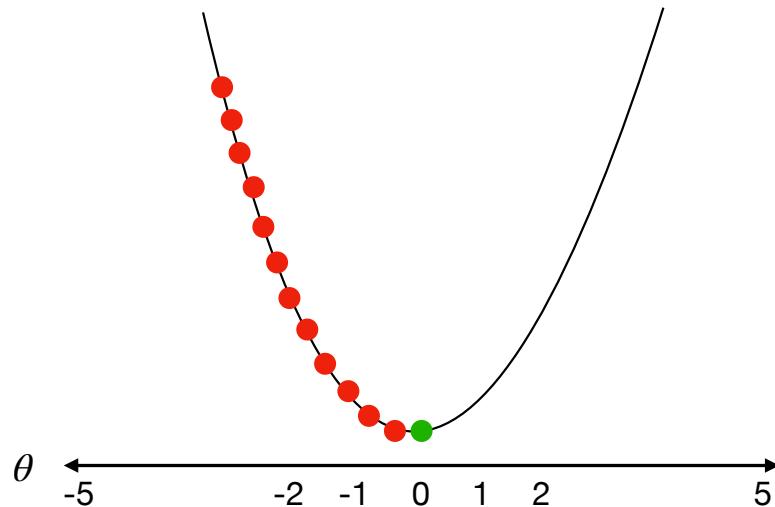


Optimizing Loss Functions

Gradient Descent - Stopping Criterion

- When do you stop your iterations?
 - Function Value Change
 - Terminate when the loss stops changing meaningfully

$$|\ell_{\theta_t}(x) - \ell_{\theta_{t-1}}(x)| \leq \epsilon$$

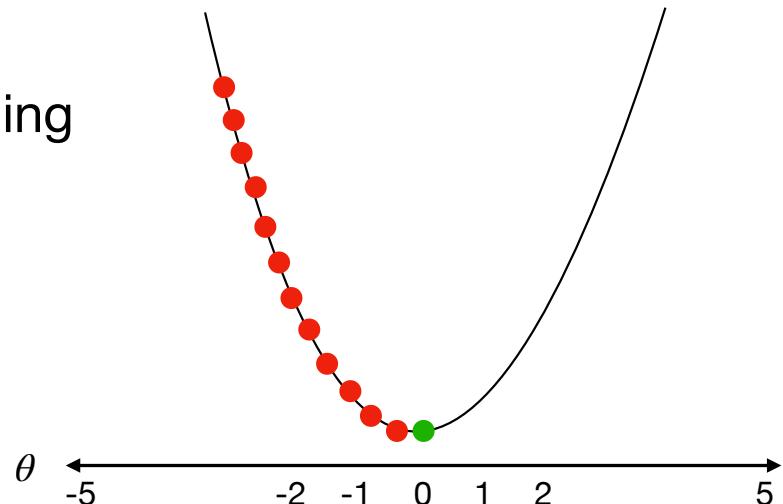


Optimizing Loss Functions

Gradient Descent - Stopping Criterion

- When do you stop your iterations?
 - Parameter Value Change
 - Terminate when the parameters stop changing meaningfully

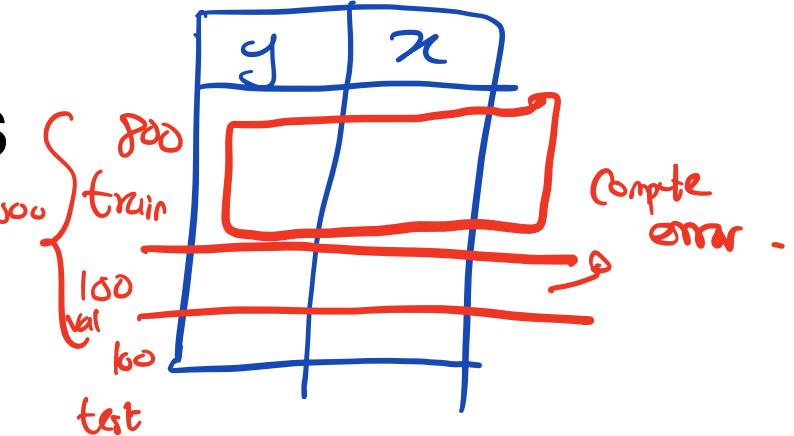
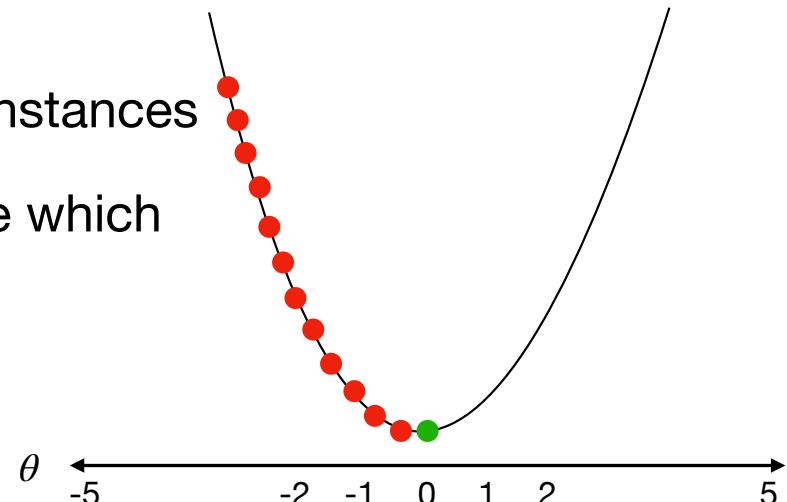
$$|\theta_t - \theta_{t-1}| \leq \epsilon$$



Optimizing Loss Functions

Gradient Descent - Stopping Criterion

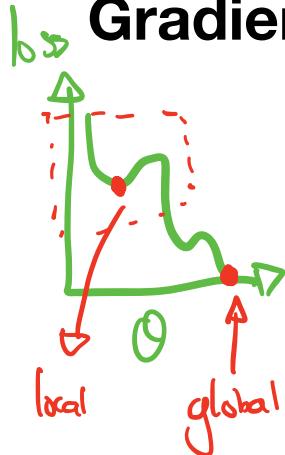
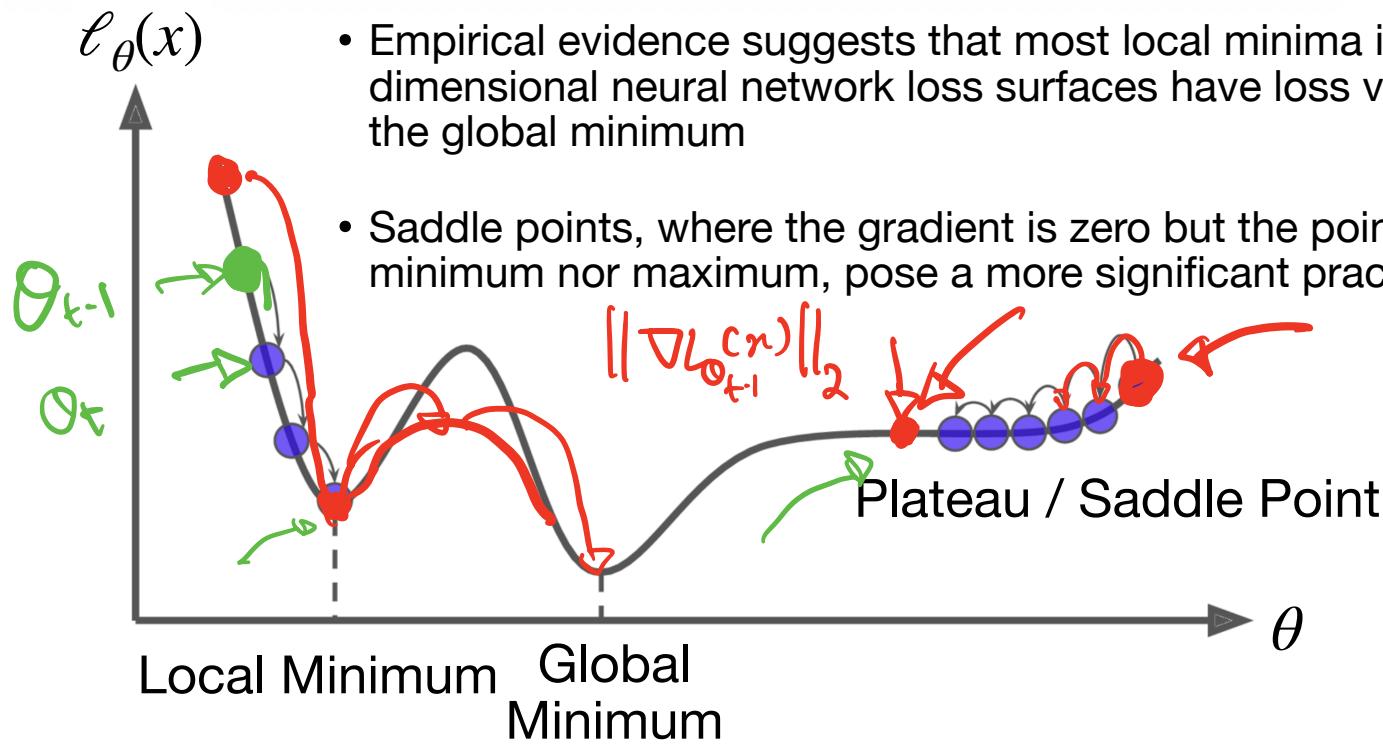
- When do you stop your iterations?
 - Validation Based Stopping (Early Stopping)
 - Monitor performance on a validation set of instances
 - Stop when validation loss begins to increase which signals overfitting
 - Serves as both stopping criterion and regularization



$$\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \nabla_{\theta} L(\mathbf{x})$$

Optimizing Loss Functions

Gradient Descent - More Complicated Functions



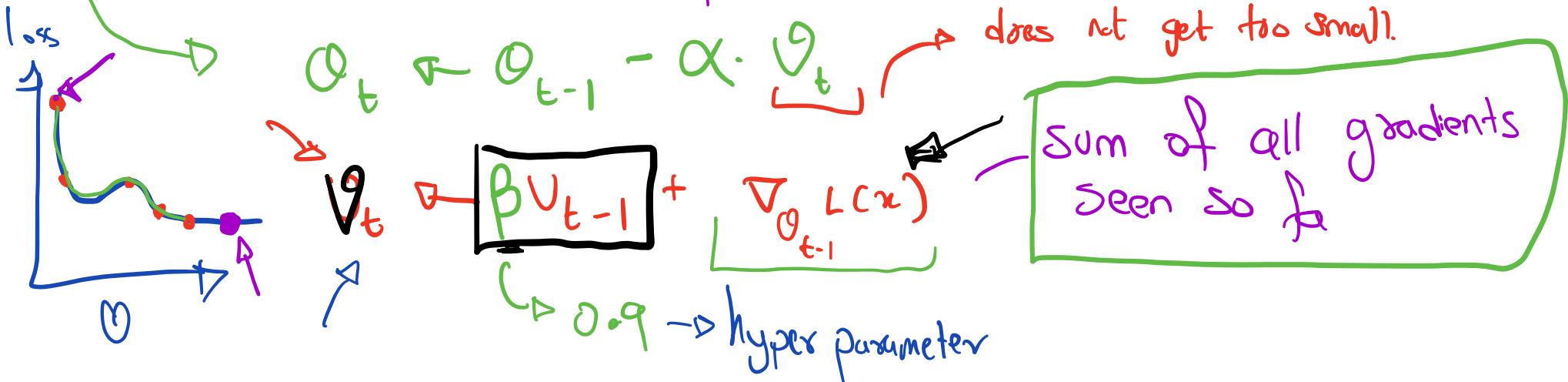
Optimizing Loss Functions

Gradient Descent - Momentum

① G.D $\rightarrow \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \nabla_{\theta_{t-1}} L(x)$ — position at $t-1$ gets too small

② Problem $\rightarrow \nabla_{\theta_{t-1}} L(x)$ gets too small.

③ Fix \rightarrow Remember previous values and velocities.



Optimizing Loss Functions

Gradient Descent - Momentum

Optimizing Loss Functions

Gradient Descent - Momentum

- Standard gradient descent can oscillate in ravines
 - Areas where the surface curves **more steeply in one dimension** than another
 - Or they can get stuck in plateau / saddle points
- Momentum helps accelerate gradient descent by accumulating velocity in **directions of consistent gradient**

$$\theta_j \leftarrow \theta_j - \alpha \left[\frac{\partial \ell_{\theta}(x)}{\partial \theta_j} \right]$$
$$\theta_t = \theta_{t-1} - \alpha \nabla \ell_{\theta_{t-1}}$$

Optimizing Loss Functions

Gradient Descent - Momentum

- Momentum helps accelerate gradient descent by accumulating velocity in **directions of consistent gradient** out of bounds.

$$\rightarrow \theta_t = \theta_{t-1} - \boxed{\alpha \nabla \ell_{\theta_{t-1}}}$$

With Momentum

$$\rightarrow v_t = \boxed{\beta \cdot v_{t-1} + \nabla \ell_{\theta_{t-1}}}$$

$$\rightarrow \theta_t = \theta_{t-1} - \alpha \cdot \boxed{v_t}$$

Optimizing Loss Functions

Gradient Descent - Momentum

- Momentum helps accelerate gradient descent by accumulating velocity in **directions of consistent gradient**

$$\theta_t = \theta_{t-1} - \alpha \nabla \ell_{\theta_{t-1}}$$

With Momentum

Velocity Vector $v_t = \beta \cdot v_{t-1} + \nabla \ell_{\theta_{t-1}}$

$$\theta_t = \theta_{t-1} - \alpha \cdot v_t$$

Optimizing Loss Functions

Gradient Descent - Momentum

- Momentum helps accelerate gradient descent by accumulating velocity in **directions of consistent gradient**

$$\theta_t = \theta_{t-1} - \alpha \nabla \ell_{\theta_{t-1}}$$

With Momentum

β is the momentum coefficient, typically set to 0.9

$$v_t = \beta \cdot v_{t-1} + \nabla \ell_{\theta_{t-1}}$$

$$\theta_t = \theta_{t-1} - \alpha \cdot v_t$$

Optimizing Loss Functions

Gradient Descent - Momentum

- Momentum helps accelerate gradient descent by accumulating velocity in **directions of consistent gradient**

$$\theta_t = \theta_{t-1} - \alpha \nabla \ell_{\theta_{t-1}}$$

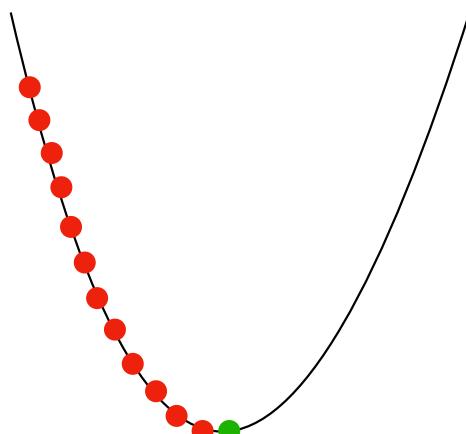
With Momentum

If $\beta = 0$, you get back standard gradient descent $v_t = \beta \cdot v_{t-1} + \nabla \ell_{\theta_{t-1}}$

$$\theta_t = \theta_{t-1} - \alpha \cdot v_t$$

Optimizing Loss Functions

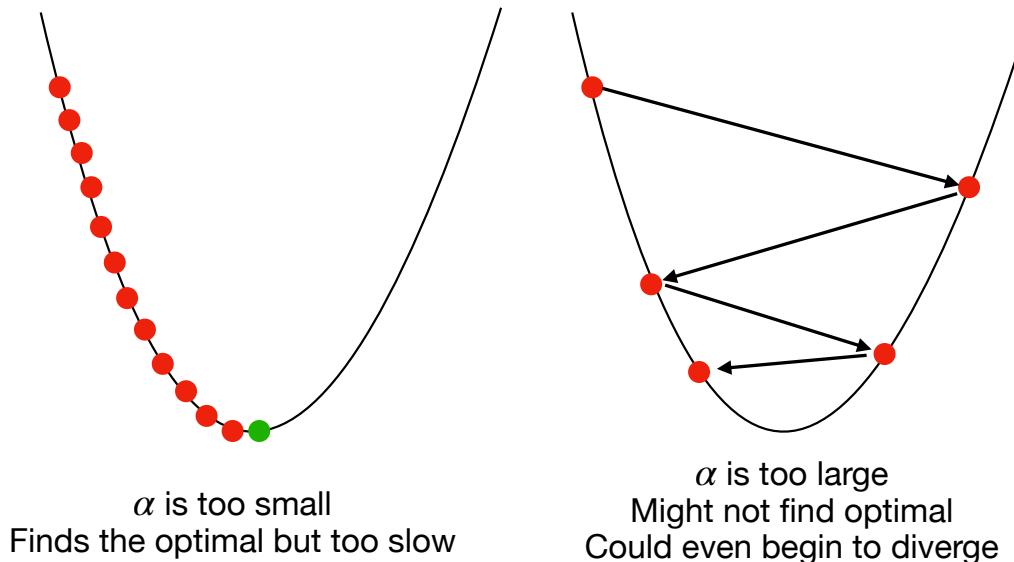
Gradient Descent - Adaptive Step Sizes



α is too small
Finds the optimal but too slow

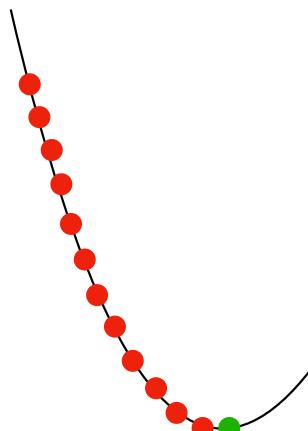
Optimizing Loss Functions

Gradient Descent - Adaptive Step Sizes

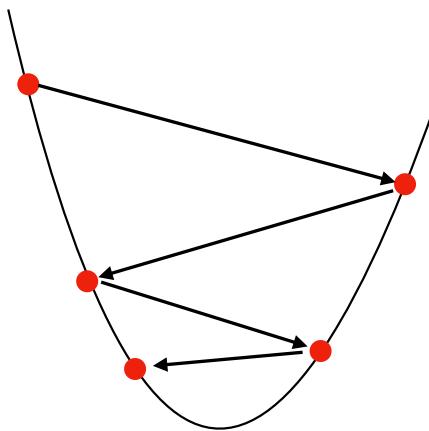


Optimizing Loss Functions

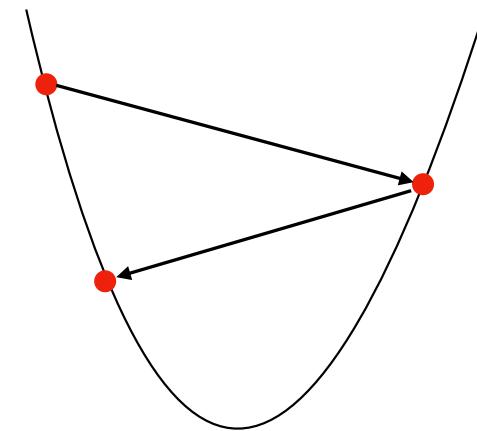
Gradient Descent - Adaptive Step Sizes



α is too small
Finds the optimal but too slow



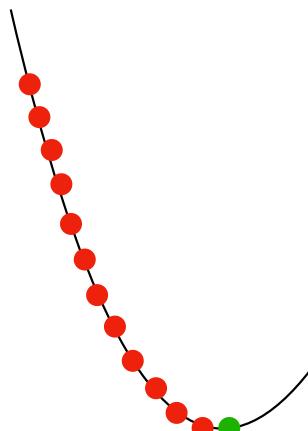
α is too large
Might not find optimal
Could even begin to diverge



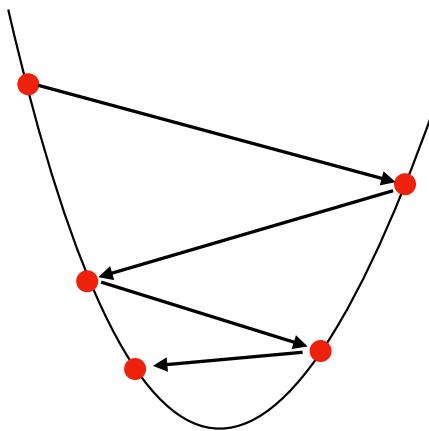
What if you set α to be large
initially?

Optimizing Loss Functions

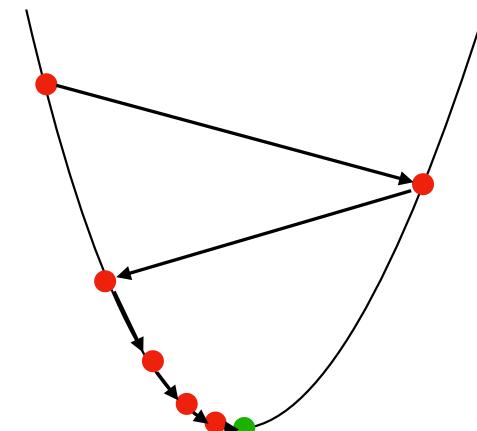
Gradient Descent - Adaptive Step Sizes



α is too small
Finds the optimal but too slow



α is too large
Might not find optimal
Could even begin to diverge

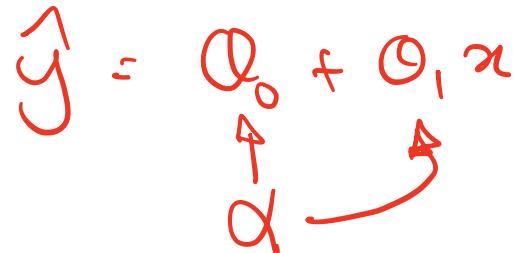


And keep reducing α as
number of epochs increases?

Optimizing Loss Functions

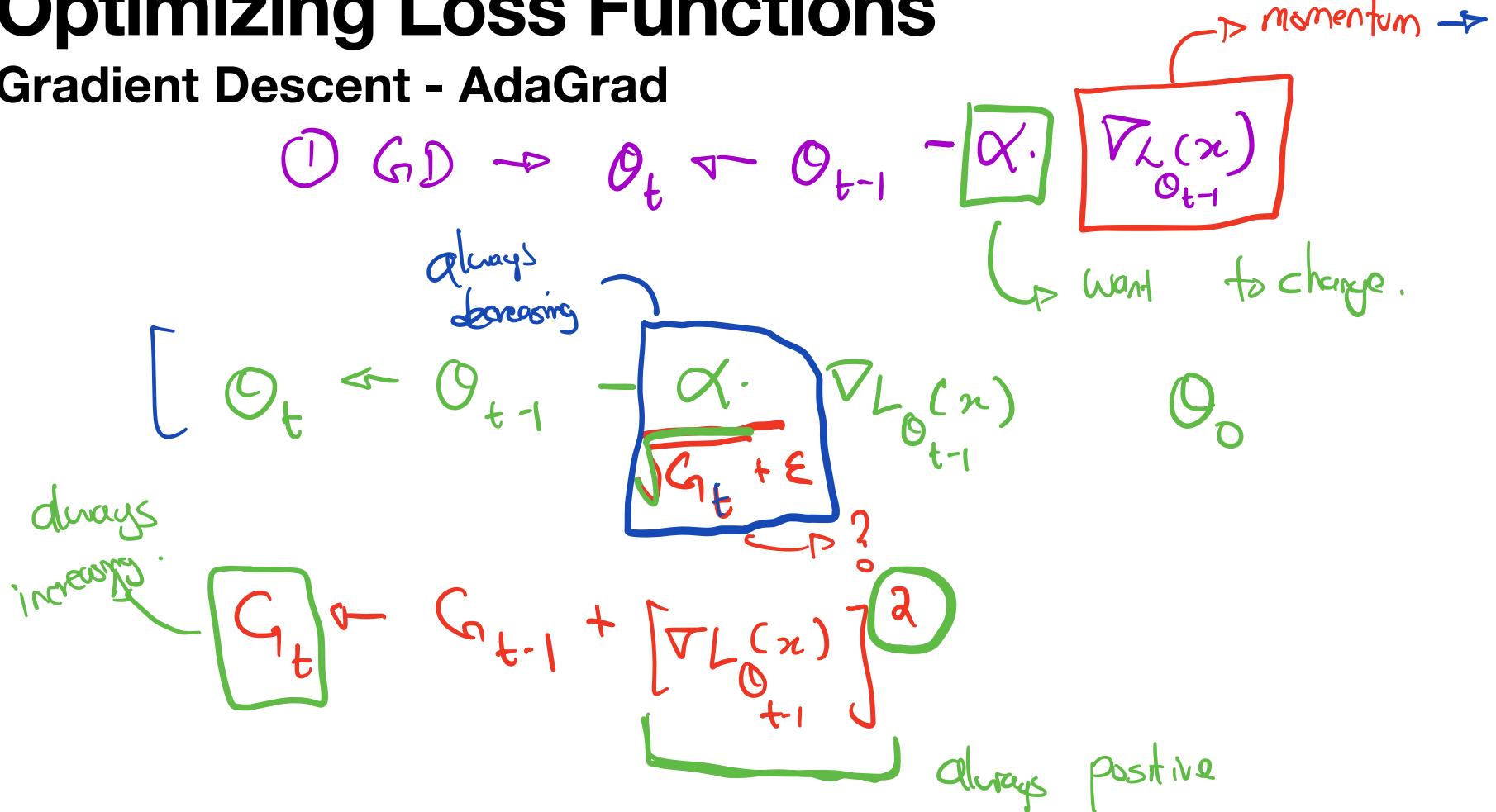
Gradient Descent - Per Parameter Adaptive Learning Rates

- A single global learning rate may be suboptimal
 - Some parameters might benefit from larger updates while others need smaller ones.
 - Adaptive methods adjust the learning rate for each parameter individually based on historical gradient information.

$$\hat{y} = \theta_0 + \theta_1 x$$


Optimizing Loss Functions

Gradient Descent - AdaGrad



Optimizing Loss Functions

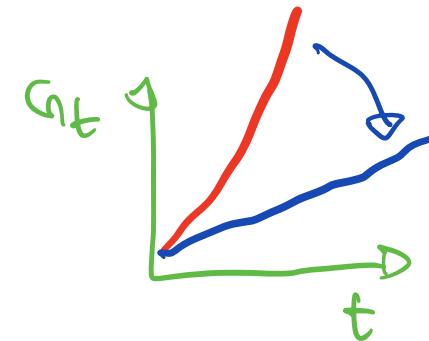
Gradient Descent - **AdaGrad + RMSProp**

$$\theta_t \leftarrow \theta_{t-1} - \frac{\alpha}{\sqrt{G_t} + \epsilon} \cdot \nabla_{\theta_{t-1}} L(x)$$

$$G_t \leftarrow \beta G_{t-1} + (1-\beta) [\nabla_{\theta_{t-1}} L(x)]^2$$

↳ decay rate = 0.9

$$G_t \leftarrow 0.9 \cdot G_{t-1} + (0.1) [\nabla_{\theta_{t-1}} L(x)]^2$$



Optimizing Loss Functions

Gradient Descent - AdaGrad

- AdaGrad adapts the learning rate for **each parameter** based on the sum of squared historical gradients

$$G_t = G_{t-1} + (\nabla \ell_{\theta_{t-1}})^2$$

$$\theta_t = \theta_{t-1} - \frac{\alpha}{\sqrt{G_t + \epsilon}} \cdot \nabla \ell_{\theta_{t-1}}$$

- Parameters with large historical gradients receive smaller updates
- Parameters with small historical gradients receive larger updates
- The limitation is that the accumulated sum G_t grows monotonically, eventually making the learning rate vanishingly small.

Optimizing Loss Functions

Gradient Descent - AdaGrad

- AdaGrad adapts the learning rate for **each parameter** based on the sum of squared historical gradients

$$G_t = G_{t-1} + (\nabla \ell_{\theta_{t-1}})^2$$

$$\theta_t = \theta_{t-1} - \frac{\alpha}{\sqrt{G_t} + \epsilon} \cdot \nabla \ell_{\theta_{t-1}}$$

- Parameters with large historical gradients receive smaller updates
- Parameters with small historical gradients receive larger updates
- The limitation is that the accumulated sum G_t grows monotonically, eventually making the learning rate vanishingly small.

Optimizing Loss Functions

Gradient Descent - RMSProp

- RMSprop addresses AdaGrad's diminishing learning rate by using an exponentially decaying average of squared gradients

$$G_t = \rho \cdot G_{t-1} + (1 - \rho) (\nabla \ell_{\theta_{t-1}})^2$$
$$\theta_t = \theta_{t-1} - \frac{\alpha}{\sqrt{G_t} + \epsilon} \cdot \nabla \ell_{\theta_{t-1}}$$

- The decay rate ρ is typically set to 0.9.
- This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

Optimizing Loss Functions

Gradient Descent - ADAM

- Adam (Adaptive Moment Estimation) combines the benefits of **momentum** (first moment) with the adaptive learning rates of **RMSProp** (second moment)

$$GD \rightarrow \theta_t \leftarrow \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} L(x)$$

Want momentum

want decay

$$\theta_t \leftarrow \theta_{t-1} - \frac{\alpha}{\sqrt{G_t} + \epsilon} \cdot g_t$$

$$v_t \leftarrow \beta_1 v_{t-1} + (1-\beta_1) \nabla_{\theta_{t-1}} L(x)$$
$$G_t \leftarrow \beta_2 G_{t-1} + (1-\beta_2) [\nabla_{\theta_{t-1}} L(x)]^2$$