
Monday | January 26, 2026

Recap
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Linear Regression

Linear Regression

Linear Regression

Linear Regression

• Linear Model

fθ(x) = θ0 + θ1x0 + θ2x1

Linear Regression

• Linear Model

fθ(x) = θ0 + θ1x0 + θ2x1
Learnable parameters

• Linear Model

• Loss Functions (also called Cost Functions)

 - Mean Squared Error

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) =
1
m

m

∑
i=1

[fθ(xi) − yi]2

Linear Regression

The red lines are called residuals

• Linear Model

• Loss Functions (also called Cost Functions)

 - Mean Squared Error

 - Residual Sum of Squares

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) =
1
m

m

∑
i=1

[fθ(xi) − yi]2

L(θ) =
m

∑
i=1

[fθ(xi) − yi]2

Linear Regression

The red lines are called residuals

• Linear Model

• How do we find the solution to this? How do we find the optimal ?

• We optimize to minimize the loss function

fθ(x) = θ0 + θ1x

θ

θ

L(θ) =
1
m

m

∑
i=1

[fθ(xi) − yi]2

L(θ) =
1
m

m

∑
i=1

[θ0 + θ1 ⋅ x − yi]2

Linear Regression

 f

∇f() = 0

 points in direction of steepest ascent∇f()

Linear Regression

 f

∇f() = 0

 points in direction of steepest ascent∇f()

• How do we find the solution to this? How do we find the optimal ?

• We optimize to minimize the loss function

Find the point where

θ

θ

L(θ) =
1
m

m

∑
i=1

[fθ(xi) − yi]2

L(θ) =
1
m

m

∑
i=1

[θ0 + θ1 ⋅ xi − yi]2

∇L(θ) = 0

∂L(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi) = 0

∂L(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi) = 0

Linear Regression

 f

∇f() = 0

 points in direction of steepest ascent∇f()

Linear Regression

The slope makes sense:

• If and covary strongly (move together), the slope is steeper

• If has high variance (spread out), the slope is gentler

• The sign of covariance determines if the line goes up or down

θ0 = ȳ − θ1x̄

θ1 =
Cov(x, y)
Var(x)

θ1 =
Cov(x, y)
Var(x)

x y

x

θ0

̂y

x

Slope = θ1

fθ(x) = θ0 + θ1x

Linear Regression
Solutions in Matrix Form

Linear Regression
Solutions in Matrix Form

• Let’s look at the matrix formulation of the same problem

But in matrix form, , where has rows of data and columns

of features and

  
 

(think back to system of equations for why this is true)

L(θ) =
1
m ∑

i

(yi − ̂yi)2

fθ(x) = ̂Y = Xθ X ∈ ℝm×d m d

θ = [θ0

θ1] ∈ ℝd×1

L(θ) =
1
m ∑ (Y − Xθ)2

w0

w1

• Consider the equation y = w0x0 + w1x1

 
 

 
 

 
 

(1) ⋅ w0 + (450) ⋅ w1 = 2000

(1) ⋅ w0 + (510) ⋅ w1 = 2100

(2) ⋅ w0 + (980) ⋅ w1 = 2400

(3) ⋅ w0 + (1500) ⋅ w1 = 3000

Systems of Linear Equations - Linear Regression Example

1 450
1 510

2000

2100[]2 980
3 1500

][=
2400

3000
[]

Price #
Rooms Sq. Ft.

2000 1 450

2100 1 510

2400 2 980

3000 3 1500

y x1x0

Quick Recap

X ∈ ℝ4×2 W ∈ ℝ2×1 y ∈ ℝ4×1

Linear Regression
Solution

We want to find the minimum so set gradient to zero

If is invertible, then

∇L(θ) = − 2XTY + 2XTXθ = 0

2XTXθ = 2XTY

XTXθ = XTY

XTX

θ = (XTX)−1XTY

Practical Issues in Linear Regression
Multicollinearity

• When two features are highly correlated or are linearly dependent on each
other

Practical Issues in Linear Regression
Multicollinearity

• When two features are highly correlated or are linearly dependent on each
other

• Why it's a problem:

• becomes nearly singular (ill-conditioned)

• Small changes in data cause huge changes in coefficients

• Coefficients become unreliable and hard to interpret

• Standard errors blow up

XTX

θ = (XTX)−1XTY

Practical Issues in Linear Regression
Multicollinearity

• When two features are highly correlated or are linearly dependent on each
other

• Why it's a problem:

• becomes nearly singular (ill-conditioned)

• Small changes in data cause huge changes in coefficients

• Coefficients become unreliable and hard to interpret

• Standard errors blow up

XTX

θ = (XTX)−1XTY Simple Detection: 
If correlation between features ≥ 0.8

Practical Issues in Linear Regression
Quick Aside

θ = (XTX)−1XTY
When else is this not going to be invertible?

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model

m
n

Practical Issues in Linear Regression
Quick Aside

θ = (XTX)−1XTY
When else is this not going to be invertible?

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model 

m
n
rank(X) = min(m, n)

If , then , so need more data
points than number of parameters to get a

unique set of parameters

m < n rank(X) ≤ m

Gradient Descent: Optimizing Loss Functions

• For any loss function

• To find minimum, set and solve for

ℓ(θ)

∇ℓ = 0 θ ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• For any loss function

• To find minimum, set and solve for

• This is called the closed form solution

• But it’s not always possible to find closed form
solutions, especially when there are a large number of
parameters

• Inverting a matrix is a costly operation - most
common methods have complexity

ℓ(θ)

∇ℓ = 0 θ

O(n3)

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• This is where Gradient Descent comes in

• Practical and efficient - has where is
number of training points, is number of epochs and

 is number of features

• Generally applicable to different loss functions

• Convergence guarantees for certain types of loss
functions (e.g., convex functions)

O(mTn) m
T

n

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0
θ1 θ0 θ1

ℓθ(x) ℓθ(x)

Optimizing Loss Functions

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

This is going to be your “starting point” on the loss landscape

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj
Negative of partial derivative points
in the direction of steepest descent

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

 controls how big a step to takeα

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

What happens when is too small? 
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

What happens when is too small? 
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

Maximum Iteration Gradient Norm Threshold Function Value Change Parameter Value Change

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Maximum Iteration

• Each iteration through the training dataset is called
an “epoch”

• Terminate after a fixed number of epochs

• Simple, but provides no guarantees about solution
quality

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Gradient Norm Threshold

• Terminate when the gradient becomes sufficiently
small

• At this point, if the gradients are small enough,  
the parameters won’t move much anyway

∥∇ℓθ(x)∥2 ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Function Value Change

• Terminate when the loss stops changing
meaningfully

|ℓθt
(x) − ℓθt−1

(x) | ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Parameter Value Change

• Terminate when the parameters stop changing
meaningfully

|θt − θt−1 | ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Validation Based Stopping (Early Stopping)

• Monitor performance on a validation set of instances

• Stop when validation loss begins to increase which
signals overfitting

• Serves as both stopping criterion and 
 regularization

Optimizing Loss Functions
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss
landscapes

• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

• Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum

Optimizing Loss Functions
Gradient Descent - Momentum

Optimizing Loss Functions
Gradient Descent - Momentum

Optimizing Loss Functions
Gradient Descent - Momentum

• Standard gradient descent can oscillate in ravines

• Areas where the surface curves more steeply in one dimension than another

• Or they can get stuck in plateau / saddle points

• Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

θt = θt−1 − α∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Velocity Vector

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

 is the momentum coefficient, typically
set to 0.9
β

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

If , you get back standard gradient descentβ = 0

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α What if you set to be large
initially?

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α And keep reducing as
number of epochs increases?

α

• A single global learning rate may be suboptimal

• Some parameters might benefit from larger updates while others need
smaller ones.

• Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.

Optimizing Loss Functions
Gradient Descent - Per Parameter Adaptive Learning Rates

Optimizing Loss Functions
Gradient Descent - AdaGrad

Optimizing Loss Functions
Gradient Descent - AdaGrad + RMSProp

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates

• Parameters with small historical gradients receive larger updates

• The limitation is that the accumulated sum grows monotonically, eventually making the learning rate
vanishingly small.

Gt

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates

• Parameters with small historical gradients receive larger updates

• The limitation is that the accumulated sum grows monotonically, eventually making the learning
rate vanishingly small.

Gt

• RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradients

Gt = ρ ⋅ Gt−1 + (1 − ρ) ⋅ (∇ℓθt−1)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - RMSProp

• The decay rate is typically set to 0.9.

• This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

ρ

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

Update:

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α

vt + ϵ
⋅ mt

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

Update:

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α
̂vt + ϵ

⋅ m̂t

Optimizing Loss Functions
Gradient Descent - ADAM

Bias Correction: 
Important for early

iterations when
estimates are biased

towards 0

m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

Update:

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α
̂vt + ϵ

⋅ m̂t

Optimizing Loss Functions
Gradient Descent - ADAM

Bias Correction: 
Important for early

iterations when
estimates are biased

towards 0

m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2

Default Hyperparameters: β1 = 0.9, β2 = 0.999, α = 10−3

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

• Batch Gradient Descent

• Use entire training set per epoch

• The whole training dataset is used to compute a single parameter update

θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

• Batch Gradient Descent

• Use entire training set per epoch

• The whole training dataset is used to compute a single parameter update

• One epoch leads to one parameter update

θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Sum over the whole training dataset

• Stochastic Gradient Descent

• Use one randomly selected training data point at each step

• Parameters are updated after looking at each data point

• One epoch leads to m parameter updates

θt = θt−1 − α∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Train / Test Splits

• Generally data is split into a training dataset and a testing data

• Rough rule of thumb is that this is an 80-20 split

Train / Test Splits

• Generally data is split into a training dataset and a testing data

• Rough rule of thumb is that this is an 80-20 split
y x0 x1 x2

Train / Test Splits

• Generally data is split into a training dataset and a testing data

• Rough rule of thumb is that this is an 80-20 split
y x0 x1 x2

80% of the entire dataset is set aside
for learning parameters - “training”

Train / Test Splits

• Generally data is split into a training dataset and a testing data

• Rough rule of thumb is that this is an 80-20 split
y x0 x1 x2

80% of the entire dataset is set aside
for learning parameters - “training”

20% of the entire dataset is set aside
to test the models

This is unseen data and tells you if
the model can generalize well

Train / Test Splits

• However, in practice, if you are given only one train and test set, its easy to
accidentally pick model architectures that work well on the test set, even
though test set data is unseen

• To counter this, we use two unseen datasets - “validation” set and “test” set

• The split is generally of the form 80-10-10 where 80% is training data, 10% is
validation data and 10% is test data

Practical Issues in Linear Regression
Overfitting vs Underfitting

Practical Issues in Linear Regression
Overfitting vs Underfitting

The blue model is underfitting the data

The orange model is overfitting the data

The green model is a good fit of the data

Practical Issues in Linear Regression
Underfitting

• What is happening?

• The model is too simple to be able to capture the data

• How do you identify it?

• Training loss is high

• Test loss is high

• Solutions

• Add more features

• Add polynomial features ()

• Use a more complex model

x2
1 , x2

2 , x1x2, ⋯

Practical Issues in Linear Regression
Quick Aside

• Add polynomial features ()
x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1

• Add polynomial features ()

What about these models?  
 

x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1

fθ(x) = θx0
0 + θx1

1

fθ(x) = xθ0
0 + xθ1

1

Practical Issues in Linear Regression
Quick Aside

Practical Issues in Linear Regression
Overfitting

• What is happening?

• The model is too complex, so it learns the noise distribution and outliers and hence does not
generalize well to new data points

• How do you identify it?

• Training loss is low

• Test loss is high

• Coefficients have large magnitudes

• Solutions

• Regularization ()

• Cross-validation for model selection

• Reduce number of features

• Get more training data

L1, L2

Practical Issues in Linear Regression
A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias² + Variance + Irreducible Noise

Practical Issues in Linear Regression
A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias² + Variance + Irreducible Noise

Error from wrong assumptions due to the model being too simple

Practical Issues in Linear Regression
A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias² + Variance + Irreducible Noise

Error from high sensitivity to each data point and noise due to the model being too complex

Practical Issues in Linear Regression
A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias² + Variance + Irreducible Noise

Inherent randomness in data. Cannot be removed.

Practical Issues in Linear Regression
Bias / Variance Tradeoff

Why is it called a tradeof?

Practical Issues in Linear Regression
Bias / Variance Tradeoff

Why is it called a tradeof?

Model Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Practical Issues in Linear Regression
Bias / Variance Tradeoff

Why is it called a tradeof?

Model Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Too Complex Low High Low High

Practical Issues in Linear Regression
Bias / Variance Tradeoff

Why is it called a tradeof?

Model Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

Practical Issues in Linear Regression
Bias / Variance Tradeoff

Why is it called a tradeof?

Model
Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

Practical Issues in Linear Regression
Regularization

• Regularization explicitly trades bias for variance.

L(θ) =
1
m ∑ (Y − Xθ)2

Practical Issues in Linear Regression
Regularization

• Regularization explicitly trades bias for variance.

L(θ) =
1
m ∑ (Y − Xθ)2

L(θ) =
1
m ∑ (Y − Xθ)2 + λ∥θ∥2

Practical Issues in Linear Regression
Regularization

• Regularization explicitly trades bias for variance.

L(θ) =
1
m ∑ (Y − Xθ)2

L(θ) =
1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

Practical Issues in Linear Regression
Regularization

• Regularization explicitly trades bias for variance.

• As increases:

• Coefficients shrink toward zero

• Bias increases (we're constraining the model)

• Variance decreases (less sensitive to data)

• At some , test error is minimized

L(θ) =
1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

λ

λ*

Practical Issues in Linear Regression
Regularization

• Regularization explicitly trades bias for variance.

• As increases:

• Coefficients shrink toward zero

• Bias increases (we're constraining the model)

• Variance decreases (less sensitive to data)

• At some , test error is minimized

L(θ) =
1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

λ

λ*

These sort of parameters
are usually called  
hyper-parameters

They are not learnable
but are human defined

Feature Normalization
Why Normalize?

• If feature ranges from 0 to 1 and feature ranges from 0 to 1,000,000, this
could lead to numerical instability in the solving process

• This is particular relevant to gradient descent

• Regularization unfairness

• If is much larger, must be much smaller to produce similar predictions.

• The regularization penalty then affects features unequally based on arbitrary
scale choices.

• Distance-based algorithms

x1 x2

x2 θ2

Feature Normalization
Normalization Methods

1. Min-Max Normalization

2. Mean-Variance Normalization

3. Max-Absolute Normalization

4. Robust Normalization

Feature Normalization
Min-Max Normalization

• For every column in the input data, i.e., for each etc., this
normalization method will scale each column to 0 and 1

• This method preserves zero entries in sparse data

• But is very sensitive to outliers

x0, x1, x2, x4

x′￼ =
x − min(x)

max(x) − min(x)

Feature Normalization
Mean-Variance Normalization

• For every column in the input data, i.e., for each etc., this
normalization method will scale to have mean 0 and standard deviation 1

• Most common in practice

• Less sensitive to outliers than min-max

• Does not bound the range to 0 and 1

x0, x1, x2, x4

x′￼ =
x − μ(x)

σ(x)

Feature Normalization
Max-Absolute Normalization

• For every column in the input data, i.e., for each etc., this
normalization method will scale each column to -1 and 1

• Good for sparse data since it preserves sparsity (zeros stay zero)

x0, x1, x2, x4

x′￼ =
x

|max(x) |

Feature Normalization
Robust Normalization

• For every column in the input data, i.e., for each etc., this
normalization method will scale each column as

• Robust to outliers

• Use when data has many outliers

x0, x1, x2, x4

x′￼ =
x − median(x)

IQR(x)

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

This dramatically
accelerates the optimization
process

This also allows having one
single learning rate for all
parameters

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

This dramatically
accelerates the optimization
process

This also allows having one
single learning rate for all
parameters

NOTE: Scaling parameters (mean, standard deviation, min, max) must be
computed only on training data and then applied to validation and test data
to prevent data leakage.

Questions

