Northeastern University
Khoury College of
Computer Sciences

Recap

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Monday | January 26, 2026

Linear Regression

Linear Regression

Linear Regression

Linear Regression

e Linear Model

fé(X) — H() + Hle + Hle

-~

Linear Regression

e Linear Model

fé(X) — HO + Hl'x() + Hle

Learnable parameters

-~

Linear Regression

e Linear Model

fé(X) — 9() + QIXO + 92)(:1

e Loss Functions (also called Cost Functions)

The red lines are called residuals

1 ,
L(O) = — Z | Jo(x:) — ¥:]° - Mean Squared Error
iz

Linear Regression

e Linear Model
]%)(X) — HO + ‘9le + 92)61

e Loss Functions (also called Cost Functions)

The red lines are called residuals

l « ,
L(O) = — Z | fo(x;) — ¥:]* - Mean Squared Error
Mz

L(O) = Z [f,(x;) — v:]* - Residual Sum of Squares
i=1

Linear Regression

* Linear Model
fg(x) — 9() + 91)6 V f(®) points in direction of steepest ascent

« How do we find the solution to this? How do we find the optimal 67

« We optimize @ to minimize the loss function

1 m
L) =—) [fyx) = y?
M Vf(®) =0

1 m
L©O) =—) [0+ 0, - x =y
m =1

Linear Regression

V f(®) points in direction of steepest ascent

f

\/

Vi®) =0

Linear Regression

« How do we find the solution to this? How do we find the optimal 67

« We optimize @ to minimize the loss function S
V f(®) points in direction of steepest ascent

L(6) = %i [fo(x;) — yi]z f
i=1

1 m
L) =— D [6p+06, x5,y
m =1

Find the point where VL(6) = 0

OLO) 2 o Vie) =0
” _m§(90+91xi) =0 f
oL@ 2

691 m i

Linear Regression

Cov(x,y)
91 —
Var(x)
Cov(x,
The slope 0, = ‘iv()(c)y) makes sense:
ar(x

 |f x and y covary strongly (move together), the slope is steeper

 |If x has high variance (spread out), the slope is gentler

* The sign of covariance determines if the line goes up or down

Jfo(x) =6, + 0,x

Linear Regression

Solutions in Matrix Form

Linear Regression

Solutions in Matrix Form

» |et’s look at the matrix formulation of the same problem

1 A
L(O) = — Z (i — 9

Vo

But in matrix form, f,(x) = Y = X0, where X € | mXd has m rows of data and d columns

O
0,

of features and @ =

_ 1 a2
L(O) = — D (Y —X0)

(think back to system of equations for why this is true)

Quick Recap

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

X X
y O 1 X e R4X2 W e RZXI y E R4X1
Price # Sqg. Ft.
Rooms (1) - wy+ (450) - w; = 2000 1 450 2000
2000 | 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wp + (980) - wy = 2400 2 9380 [wl] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000

Linear Regression

Solution

We want to find the minimum so set gradient to zero
VLO) = -2X'Y+2X'X0 =0
2X'X0 = 2X"'Y
X'X0=X"Y
if X' X is invertible, then

0=X'X)"xTy

Practical Issues in Linear Regression

Multicollinearity

 When two features are highly correlated or are linearly dependent on each
other

Practical Issues in Linear Regression

Multicollinearity

 When two features are highly correlated or are linearly dependent on each
other

» Why it's a problem: 0=X'X)"'x"y
+ X' X becomes nearly singular (ill-conditioned)
 Small changes in data cause huge changes in coefficients

» Coefficients become unreliable and hard to interpret

e Standard errors blow up

Practical Issues in Linear Regression

Multicollinearity

 When two features are highly correlated or are linearly dependent on each
other

o Why it's g problem: 0 = XTX)_1XTY Simple Detection:

If correlation between features > 0.8

+ X' X becomes nearly singular (ill-conditioned)
 Small changes in data cause huge changes in coefficients
» Coefficients become unreliable and hard to interpret

e Standard errors blow up

Practical Issues in Linear Regression
Quick Aside

X = Rm)(n

I'y\—1vyT
0 = (X X) XY m: Number of training examples

, , | _ | n: Number of parameters in the model
When else is this not going to be invertible?

Practical Issues in Linear Regression
Quick Aside

X = Rm)(n

I'xN\—1vyT
0 = (X X) XY m: Number of training examples

- | | | n: Number of parameters in the model
When else is this not going to be invertible? rank(X) = min(m, n)
If m < n, then rank(X) < m, so need more data
points than number of parameters to get a
unique set of parameters

Gradient Descent: Optimizing Loss Functions

 For any loss function £(6)

V£ (®) points in direction of steepest ascent

\/

V(o) =0

e To find minimum, set VZ = 0 and solve for &

Optimizing Loss Functions

 For any loss function £(6)

V£ (®) points in direction of steepest ascent

e To find minimum, set VZ = 0 and solve for & 4
e This is called the closed form solution

 But it’s not always possible to find closed form
solutions, especially when there are a large number of

V(o) =0
parameters)

* |nverting a matrix is a costly operation - most
common methods have complexity O(n°>)

Optimizing Loss Functions

 This is where Gradient Descent comes In

V£ (®) points in direction of steepest ascent

e Practical and efficient - has O(mTn) where m is £
number of training points, 1 is number of epochs and

n 1S number of features

 Generally applicable to different loss functions
V£(e) =0
* Convergence guarantees for certain types of loss
functions (e.g., convex functions)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

f o(X)

Optimizing Loss Functions

Optimizing Loss Functions

Gradient Descent - Formulation

|
Co(X) = Z Z O — 6y — Hlxi)z

Optimizing Loss Functions

Gradient Descent - Formulation

|
Co(X) = Z Z O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

Optimizing Loss Functions

Gradient Descent - Formulation

|
Co(X) = Z 2 O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

This Is going to be your “starting point” on the loss landscape

Optimizing Loss Functions

Gradient Descent - Formulation

|
Co(X) = Z 2 O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6-a;

Optimizing Loss Functions

Gradient Descent - Formulation

|
Co(X) = Z 2 O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)
0,

Negative of partial derivative points
In the direction of steepest descent

6 < fma;

Optimizing Loss Functions

Gradient Descent - Formulation

|
Co(X) = Z 2 O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6 -a;

a . Learning Rate

Optimizing Loss Functions

Gradient Descent - Formulation

a controls how big a step to take fé’(x) — i 2 (yz . 90 o 91 xi)Z
i l

Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6 -a;

a . Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Say o = 107>

|
Co(X) = Z Z O — 6y — Hlxi)z

o Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6@

a . Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?

Say o = 107>
£y =— Y (5= 6y — Oy
0 m i l 0 1Y
o000y Step 1: Initialize 6, 6,
(6?.;}> Step 2: Repeat Until Convergence

0C (x

6, -l <2
0,

a . Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Say o = 107 Saya = 10
o® To-0-0. o

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Say o = 107 Saya = 10
o® To-0-0.

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Say o = 107 Saya = 10
e® o-0-0. O

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Say o = 107 Saya = 10
e® o-0-0. O

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?

Say o = 107> Say o = 10
With a small learning rate a, if the loss With a large learning rate «a, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

Maximum Iteration Gradient Norm Threshold Function Value Change Parameter Value Change

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
« Maximum lteration

 Each iteration through the training dataset is called
an “epoch”

 Terminate after a fixed number of epochs

* Simple, but provides no guarantees about solution
quality

O <=
-5

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
* (Gradient Norm Threshold

* Jerminate when the gradient becomes sufficiently
small

IVZp(0)ll, < €

* At this point, if the gradients are small enough,
the parameters won't move much anyway o

-3

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
* Function Value Change

* [erminate when the loss stops changing
meaningfully

| ?/ﬂet(x) — Lﬂet_l(x) | <e€

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
 Parameter Value Change

* [erminate when the parameters stop changing
meaningfully

‘Ht_et—l‘ <€

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
» Validation Based Stopping (Early Stopping)

 Monitor performance on a validation set of instances

» Stop when validation loss begins to increase which
signals overfitting

* Serves as both stopping criterion and

regularization

Optimizing Loss Functions

Gradient Descent - More Complicated Functions

* Most deep learning models however have highly non-convex loss
landscapes

f@(x) * Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

» Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

000"

Plateau / Saddle Point

\

Local Minimum Global
Minimum

Optimizing Loss Functions

Gradient Descent - Momentum

Optimizing Loss Functions

Gradient Descent - Momentum

Optimizing Loss Functions

Gradient Descent - Momentum

e Standard gradient descent can oscillate in ravines
* Areas where the surface curves more steeply in one dimension than another
* Or they can get stuck in plateau / saddle points

* Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient

0C y(x)
00

G 6=

Hl‘ — Hl‘—l — anet—l

Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum
Vt — ﬁ . Vt—l + Vf@t—l

Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum

Velocity Vector Vt — ﬁ) Vt—l T Vfé’t_l

Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum

f is the momentum coefficient, typically Vt — ﬁ [Vt—l T Vf@ i
set to 0.9 =

Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum

If # = 0, you get back standard gradient descent V; — ﬁ " Vie1 T Vfé’t_l

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

a Is too small
Finds the optimal but too slow

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

| o Is too large
| a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

| o Is too large
a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

What if you set a to be large
initially?

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

| o Is too large
a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

And keep reducing o as
number of epochs increases?

Optimizing Loss Functions

Gradient Descent - Per Parameter Adaptive Learning Rates

* A single global learning rate may be suboptimal

 Some parameters might benefit from larger updates while others need
smaller ones.

* Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.

Optimizing Loss Functions
Gradient Descent - AdaGrad

Optimizing Loss Functions
Gradient Descent - AdaGrad + RMSProp

Optimizing Loss Functions
Gradient Descent - AdaGrad

 AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt — Gt—l + (Vf‘gt—l)z

01
0=0_,————— - VO
! —1 \/a+€ 0.4

 Parameters with large historical gradients receive smaller updates

 Parameters with small historical gradients receive larger updates

e The limitation is that the accumulated sum G, grows monotonically, eventually making the learning rate
vanishingly small.

Optimizing Loss Functions
Gradient Descent - AdaGrad

 AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

G, =G, + (Vfé’t—l)z

01
0=0_,————— - VC
! —1 \@+€ 0.4

 Parameters with large historical gradients receive smaller updates

 Parameters with small historical gradients receive larger updates

e The limitation is that the accumulated sum G, grows monotonically, eventually making the learning
rate vanishingly small.

Optimizing Loss Functions
Gradient Descent - RMSProp

« RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradients

G=p-G_+(1—=p)-(VEy_)*

04
0=0_,————— -V
t —1 \@4‘6 0,_,

* The decay rate p is typically set to 0.9.

* This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Second Moment (variance): v, = f,v,_; + (1 — ﬂz)(Vz/”@t_l)z

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Second Moment (variance): v, = f,v,_; + (1 — ﬂz)(Vz/”@t_l)z

0
Update: 0, =60, —— - m
[—1 \ﬁt‘l‘e [

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Bias Correction:
Important for early

terations when ~ Second Moment (variance): v, = p,v,_ + (1 — p,)(VZ Qt_l)z

estimates are biased
towards O

0/
o m Update: 6, = 0, | — —— - 7,

R \ﬁt+€
. W
Vt_l—ﬁé

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Bias Correction:
Important for early

terations when ~ Second Moment (variance): v, = p,v,_ + (1 — p,)(VZ Qt_l)z

estimates are biased
towards O

0/
o m Update: 6, = 0, | — —— - 7,

Ay VD + e

. Vi
=T
_ﬁZ

Default Hyperparameters: 5, = 0.9, 5, = 0.999, a = 1073

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

 Batch Gradient Descent
 Use entire training set per epoch

 The whole training dataset is used to compute a single parameter update

1 m
Hl‘ — Hl‘—l - OJZ Zl Vf@t_l(xi, yl)

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

 Batch Gradient Descent
 Use entire training set per epoch
 The whole training dataset is used to compute a single parameter update

 One epoch leads to one parameter update

1 m
0,=0_, — az Zl sz@t_l(xi, y,)

Sum over the whole training dataset

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

« Stochastic Gradient Descent
 Use one randomly selected training data point at each step
 Parameters are updated after looking at each data point

 One epoch leads to m parameter updates

0, =0,_,— angt_l(xi, %),

Train / Test Splits

* (Generally data is split into a training dataset and a testing data

 Rough rule of thumb is that this is an 80-20 split

Train / Test Splits

* (Generally data is split into a training dataset and a testing data

 Rough rule of thumb is that this is an 80-20 split
y X0 X1 X

Train / Test Splits

* (Generally data is split into a training dataset and a testing data

 Rough rule of thumb is that this is an 80-20 split
y X0 X1 X

80% of the entire dataset is set aside
for learning parameters - “training”

Train / Test Splits

* (Generally data is split into a training dataset and a testing data

 Rough rule of thumb is that this is an 80-20 split
y X0 X1 X

80% of the entire dataset is set aside
for learning parameters - “training”

20% of the entire dataset is set aside This is unseen data and tells you if
to test the models the model can generalize well

Train / Test Splits

 However, In practice, if you are given only one train and test set, its easy to
accidentally pick model architectures that work well on the test set, even

though test set data is unseen

e Jo counter this, we use two unseen datasets - “validation” set and “test” set

* The split is generally of the form 80-10-10 where 80% is training data, 10% is
validation data and 10% is test data

Practical Issues in Linear Regression
Overfitting vs Underfitting

Practical Issues in Linear Regression
Overfitting vs Underfitting

The blue model is underfitting the data
The orange model is the data

The green model is a good fit of the data

Practical Issues in Linear Regression
Underfitting

 What is happening?
* The model is too simple to be able to capture the data
* How do you identify it?

* Training loss is high

* Testloss is high
* Solutions
* Add more features
« Add polynomial features (xlz, x22, XXy, ***)

 Use a more complex model

Practical Issues in Linear Regression
Quick Aside

« Add polynomial features (xlz, xzz, X1 X,)

Practical Issues in Linear Regression
Quick Aside

« Add polynomial features (xlz, xzz, X1 X,)

What about these models?
YA %% X
Jox) =60+ 6"

— 6’0 6)1
Jo(x) = X, + X

Practical Issues in Linear Regression
Overfitting

 What is happening?

* The model is too complex, so it learns the noise distribution and outliers and hence does not
generalize well to new data points

 How do you identify it?
* Training loss is low

* Jest loss is high

» Coefficients have large magnitudes
e Solutions

« Regularization (L, L,)

e Cross-validation for model selection

e Reduce number of features

* Get more training data

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Error from wrong assumptions due to the model being too simple

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Error from high sensitivity to each data point and noise due to the model being too complex

Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + lrreducible Noise

Inherent randomness in data. Cannot be removed.

Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Too Complex Low High Low High

Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model Complexity Bias Variance Train Error Test Error
Too Simple High Low High High
Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model

Complexity Bias Variance Train Error Test Error
Too Simple High Low High High
Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

Error

Optimum Model Complexity

o

Total Error

Variance

Model Complexity

Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

1 Cum2
L(O) = — Z(Y X0)

Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

1 Cum2
L(O) = — Z(Y X0)

_ LN v _ xor :
L(O) = —), (¥ = X0 + 0]

Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

1 Cum2
L(O) = — Z(Y X0)

_ LN v _ xor :
L(O) = —), (¥ = X0 + 0]

0=X"'X+A)"'X"Y

Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.
1
LO) =—) (Y — X0)* + A]|0]°
m

0=X'X+1)'XTY

e As A increases:

* Coefficients shrink toward zero
* Bias increases (we're constraining the model)

» Variance decreases (less sensitive to data)

o At some A%, test error is minimized

Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

I R T
L(O) =—) (Y = XO7 +2]10]

These sort of parameters
are usually called

O = (XTX + Al)_1XTY hyper-parameters

e As A increases: They are not learnable
but are human defined

e (Coefficients shrink toward zero

* Bias increases (we're constraining the model)

» Variance decreases (less sensitive to data)

o At some A%, test error is minimized

Feature Normalization

Why Normalize?

» |f feature x, ranges from 0 to 1 and feature x, ranges from 0 to 1,000,000, this
could lead to numerical instabllity in the solving process

* This Is particular relevant to gradient descent

* Regularization unfairness

» If X, is much larger, 6, must be much smaller to produce similar predictions.

* The regularization penalty then affects features unequally based on arbitrary
scale choices.

* Distance-based algorithms

Feature Normalization

Normalization Methods

1. Min-Max Normalization
2. Mean-Variance Normalization
3. Max-Absolute Normalization

4. Robust Normalization

Feature Normalization

Min-Max Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column to O and 1

, X — min(x)

X=—
max(x) — min(x)

 This method preserves zero entries In sparse data

* But Is very sensitive to outliers

Feature Normalization

Mean-Variance Normalization

 For every column in the input data, i.e., for each X, x;, x,, x, etc., this
normalization method will scale to have mean 0 and standard deviation 1

, _ X~ HW)
o(x)

X

 Most common in practice
e |Less sensitive to outliers than min-max

* Does not bound the range to 0 and 1

Feature Normalization

Max-Absolute Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column to -1 and 1

X

X' = ——
| max(x) |

 (Good for sparse data since it preserves sparsity (zeros stay zero)

Feature Normalization

Robust Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column as

- x — median(x)
X=—

IQR(x)
 Robust to outliers

 Use when data has many outliers

Optimizing Loss Functions

Gradient Descent - Practical Fixes

* Feature Scaling

« Remember we want all input features x;, x,---x, to be in similar ranges

 When features have different scales, the loss surface becomes elongated
(Ill-conditioned).

This dramatically
accelerates the optimization
Process

This also allows having one
single learning rate for all
parameters

0 10,000

Optimizing Loss Functions

Gradient Descent - Practical Fixes

NOTE: Scaling parameters (mean, standard deviation, min, max) must be
computed only on training data and then applied to validation and test data

e Feature Scaling to prevent data leakage.

« Remember we want all input features x;, x,---x, to be in similar ranges

 When features have different scales, the loss surface becomes elongated
(Ill-conditioned).

This dramatically
accelerates the optimization
Process

This also allows having one
single learning rate for all
parameters

0 10,000

Questions

