Northeastern University
Khoury College of
Computer Sciences

Gradient Descent
DS 4400 | Machine Learning and Data Mining |

Zohair Shafi
Spring 2026

Wednesday | January 21, 2026

Optimizing Loss Functions

 For any loss function £(0)

V(@) points in direction of steepest ascent

e To find minimum, set VZ = (0 and solve for @ 4

—
s \
pCod a4

Ve(e)=0

xe R\, Brtes
Optimizing Loss Functions oxa.h

GZCLK_\}“ XY aTe = [axof

V(@) points in direction of steepest ascent

 For any loss function £(0)

e To find minimum, set ‘Vf = O%md solve for @

r
* This is called the closed form solution \
« But it’s not always possible to find closed form

solutions, especially when there are a large number of

V£(9) =0
parameters (©)

 Inverting a matrix is a costly operation - most 2
common methods have complexity O(n?) —s (0D
—_—

Optimizing Loss Functions

L, 2 Rk

 This is where Gradient Descent\comes in

V(@) points in direction of steepest ascent
« Practical and efficient - has|O(inTn)where m is 4

number of training points, 1T is number of epochs and

n is number of features ‘

« Generally applicable to different loss functions
. V() =0
« Convergence guarantees for certain types of loss
functions (e.g., convex functi‘ans)

S

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

\/

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

Look for direction of steepest
descent and take a small step

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

At the next step, repeat.
Check again what the direction
of steepest descent is

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

At the next step, repeat.
Check again what the direction
of steepest descent is

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

At the next step, repeat.
Check again what the direction
of steepest descent is

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

At the next step, repeat.
Check again what the direction
of steepest descent is

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

At the next step, repeat.
Check again what the direction
of steepest descent is

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?
V (@) points in{direction of steepest ascent

4

You are here

How do we get this “direction
of steepest descent”?

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

* What is gradient descent?

V Z(®) points in direction of steepest ascent

4

You are here

How do we get this “direction
of steepest descent”?

You want to get here as fast as possible

V£(e)=0

Optimizing Loss Functions

b

* What is gradient descent?
— V(@) points in direction of steepest descent
£ 4

How do we get this “direction t
of steepest descent”?

You are here

You want to get here as fast as possible q O

VZ(e) LO

In the plot above, you have a
single parameter 6

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

7 ,'o‘
JI////III "'

Lo(X) \

“ \\\ <

£o) |

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

z o(X)

£ y(x) :

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

<SS
0% 0%
“\\\\‘:“\’o

et tgeteere //I/II;, ' " N
NS5
/]

1T

z o(X)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

““

\\\ “‘
939 'l///////

\

‘
“g

z o(X)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

““

\\\ “‘
939 'l///////

‘
“g

‘ z e(x)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

““

\\\ “‘
939 'l///////

‘
“g

z o(X)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

N
" ;':':“\\\
[OSS
, ,'/".‘ .
h ,' "': >

Zo(x)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

<SS
0% 0%
“\\\\‘:“\’o

et tgeteere //I/II;, ' " N
NS5
/]

1T

z o(X)

Optimizing Loss Functions

 What does the loss landscape look like with multiple learnable parameters?

N
" ;':':“\\\
[OSS
, ,'/".‘ .
h ,' "': >

Zo(x)

Optimizing Loss Functions

Gradient Descent - Formulation N

1 | ~
£o0) = — Z 01 = 0~ elfc»z

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

« @) @ This is going to be your “starting point” on the loss landscape

Optimizing Loss Functions

Gradient Descent - Formulation

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

«f@ Step 2: Repeat Until Convergence
' o¢ e(x)
(_

\)

Optimizing Loss Functions

Gradient Descent - Formulation

=)

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,
Step 2: Repeat Until Convergence

ot
O. — 0. — - Q(X)
J J 6(9]

Negative of partial derivative points
in the direction of steepest descent

Optimizing Loss Functions i

Gradient Descent - Formulation

=)

I

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,
Step 2: Repeat Until Convergence

or
O. — 0. —a- Q(X)

J J ‘-—‘ aej

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Formulation

a controls how big a step to take

To7 (x)
0
_2 00 -a: 50,
lo = J

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

Step 2: Repeat Until Convergence

a : Learning Rate
Q

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

<3

What happens when « is too small? 1D
Saya = 107

L__’_J

1
£o(x) = — Z (y; — 6y — O,x,)°
i
o Step 1: Initialize 6, 0,
(Step 2: Repeat Until Convergence
o0t 5(x)
6@ —5
00.

J

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

1
£p(x) = — Z (y; — 6y — 01x,)°

Step 1: Initialize 6, 0,

Step 2: Repeat Until Convergence
0F p(x)

0,

6 0-a

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happe_r;s when « is too small? lo’l
Say a = 10 | §,$~
\O 1
Lo(x) = — Z (y; — 6y — O,x,)°
i
o* Zeoo. Step 1: Initialize 6, 6,
(@.}g/} Step 2: Repeat Until Convergence
0f o(x
6 b=
00.

J

a : Learning Rate

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.n:} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.n:} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.:%} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

e %000,
(:.:%} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

e %000,
(:.:%} (

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

e o 0-0.
| ar.ﬁ>

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will

eventually converge
L)

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

\

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?

Saya = 107 Saya = 10
With a small learning rate a, if thg IoS§ With a large learning rate «, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge start diverging and never converge

\

You might not always diverge, but converging might still not be possible

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Saya = 107

With a small learning rate «, if the loss
function is convex, the optimization will
eventually converge

What happens when « is too large?
Saya = 10

With a large learning rate a, if the loss function
is convex, the optimization could possibly
start diverging and never converge

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Saya = 107 Saya = 10
With a small learning rate a, if thg IoS§ With a large learning rate «, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge start diverging and never converge
Question:

If the gradient here is positive,
taking the negative of the gradient
makes sense to get direction of
steepest descent - i.e., we

decrease the value of 6

Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?

Saya = 107 Saya = 10
With a small learning rate a, if thg IoS§ With a large learning rate «, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge start diverging and never converge

Question:

If the gradient here is positive,
taking the negative of the gradient
makes sense to get direction of
steepest descent - i.e., we

decrease the value of 6

A -©

Oy

-5 2 -1 0 1 2

Optimizing Loss Functions ¢ — T
Gradient Descent - Stopping Criterion 56

* When do you stop your iterations?

« Maximum lteration —c
. Each iteration through the training dataset is called \\
n “epoch” —» 100a
« Terminate after a fixed number of epochs
e Simple, but proildes no guarantees about solution

quality

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

0>
* When do you stop your iterations? QJ S @d —@ VQ/Q — ,0"3\
* Gradient Norm Threshold

« Terminate when the gradient becomes sufficiently

small

IVE4@)ll, < e~ 17"

At this point, if the gradients are small enough,

the parameters won’t move much anyway g - —

Los 4
Optimizing Loss Functions

Gradient Descent - Stopping Criterion

* When do you stop your iterations? Qpochs

* Function Value Change

e Terminate when the loss stops changing
meaningfully

| £p(x) — fet_l(x” <€

t

==

-5 2 1 0 1 2

Optimizing Loss Functions

Gradient Descent - Stopping Criterion

* When do you stop your iterations?
e Parameter Value Change

« Terminate when the parameters stop changing
meaningfully

|6, —6,_,] <€
e

T~ Mop-306,)|

2 -1 0 1 2

- . : x —
Optimizing Loss Functions
Gradient Descent - Stopping Criterion]
%5
* When do you stop your iterations? | 5

 Validation Based Stopping (Early Stopping) 6/
» Monitor performance on a validation set of instances
r—\ .

« Stop when validation loss begins to increase which
signals overfitting

* Serves as both stopping criterion and

07| VAo,
L lo'/,.a t@?t—\

regularization

unyee n N4l] L 4bePOC\\S

Optimizing Loss Functions

Gradient Descent - Convexity

« A function fis convex if for all points in its domain
(input) and for all A € [0,1] Jx)

JOx + (1 = A)y) < H(x) + (1 = HAy)

-5 2 1 0 1 2

Optimizing Loss Functions)S@Q(-—

Gradient Descent - Convexity

« A function f'is convex if for all points in its domain
(input) and for all A € [0,1] Jfx)

JOx + (1 = A)y) < H(x) + (1 = HAy)

>

-5 2 1 0 1 2

[] [] [] - 'P (90, O‘ @a\

Optimizing Loss Functions (0:.0,9,)

Gradient Descent - Convexity ng ; c)Q—P c)Qﬁ]
0

—_— S

S, Fby
« A function fis convex if for all points in its domain
(input) and for all A € [0,1] Jx)

JOx + (1 = A)y) < H(x) + (1 = HAy)

 For more complicated functions, a function f'is convex if
the Hessian matrix H(x) is positive semi-definite for all x

Second order derivative or A matrix is positive semi-definite
derivative of the Jacobian if and only if all of its ei%envalues
are strictly greater t
— x <
\ -5 2 -1 0 1 2

QS'J ot

Optimizing Loss Functions

Gradient Descent - Convexity

« A function fis convex if for all points in its domain
(input) and for all A € [0,1] Jx)

JOx + (1 = A)y) < H(x) + (1 = HAy)

 For more complicated functions, a function f'is convex if
the Hessian matrix H(x) is positive semi-definite for all x

« If a function is convex, gradient descent is
guaranteed to converge given the right learning , .

rate since every local minimum is a global minimum

Optimizing Loss Functions

Gradient Descent - More Complicated Functions

* Most deep learning models however have highly non-convex loss

landscapes
fe(x) * Empirical evidence suggests that most local minima in high-
A dimensional neural network loss surfaces have loss values close to

the global minimum

» Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

| | > 9
Local Minimum _Global
Minimum

Optimizing Loss Functions

Gradient Descent - More Complicated Functions

* Most deep learning models however have highly non-convex loss

Y landscapes
fe(x) * Empirical evidence suggests that most local minima in high-
A dimensional neural network loss surfaces have loss values close to

the global minimum

» Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

e

Plateau / Saddle Point

Initialization is an issue.

We will talk about it when
we get to neural networks

| | > 9
Local Minimum _Global
Minimum

o
Optimizing Loss Functions ‘w\

Gradient Descent - Convergence Issues

* Oscillation: When the learning rate is too large or the loss surface has
regions of high curvature, the algorithm oscillates around the minimum rather
than converging smoothly.

* Slow convergence in flat regions: When gradients are small, parameter
updates become negligible, leading to extremely slow progress.

. Dive_@nce: If the learning rate exceeds a certain value for convex functions,
the algorithm can diverge entirely, with the loss increasing without bound.

« Saddle points: In high dimensions, saddle points are ubiquitous. The gradient
at a erro, causing standard gradient descent to stall.

Mag

Optimizing Loss Functions /
Gradient Descent - Practical Fixes » o 2¢t=4>

G~
((>\o\v\' o~

« Remember we want all input features x,, x,---x, to be in similar ranges

» Feature Scaling

* When features have different scales, the loss surface becomes elongated
(ill-conditioned).

Optimizing Loss Functions

Gradient Descent - Practical Fixes

» Feature Scaling

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated
(ill-conditioned).

0 10,000

Optimizing Loss Functions

Gradient Descent - Practical Fixes

» Feature Scaling

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated
(ill-conditioned).

0 10,000

Optimizing Loss Functions

Gradient Descent - Practical Fixes

» Feature Scaling

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated
(ill-conditioned).

0 10,000 0 1

Optimizing Loss Functions

Gradient Descent - Practical Fixes

» Feature Scaling

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated
(ill-conditioned).

This dramatically

10 ° —y 1 . accelerates the optimization
s L process
¢ o . ®
HO o7 . 90
0 0 This also allows having one
> > single learning rate for all
0 10,000 0 1

parameters

Qt A %‘Q—Zﬁwﬁ}
2011,

Optimizing Loss Functions =
Gradient Descent - Practical Fixes A e = 2= Lmin

NOTE: Scaling parameters (mean, standard deviation, min, max; must%’é‘m
computed only on training data and then applied to validation and test data

° Feature SCa”ng to prevent data leakage.

« Remember we want all input features x,, x,---x, to be in similar ranges

* When features have different scales, the loss surface becomes elongated

(ill-conditioned). A= nin
7”‘““&[\(\. N
This dramatically
10 — T = 1 = accelerates the optimization
s » process
00 ‘e .. o .. 90 ¢
0 0 This also allows having one
> > single learning rate for all
0 10,000 0 1

parameters

Optimizing Loss Functions

Gradient Descent - Momentum

=

« Standard gradient descent can oscillate in ravines

* Areas where the surface curves more steeply in one dimension than another

* Orthey can get stuck in plateau / saddle points

« Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient -

b 0L (x)
j <~]_ a - m
L

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in

directions of consistent gradient > \/ v
—

With Momentum

Optimizing Loss Functions
Gradient Descent - Momentum \/_ 79\101 VY o
) 9

« Momentum helps accelerate gradient descent by accumulating velocity in

directions of consistent gradient
\g = pNg V}l0
\,I :'a\ng-vﬂo o 0,=0_,—aVey
\,.: RV, ¥ 1, With Momentum

g\ FC%\I \-W) VeIomtyVector V, = ﬁ Vi 1+Vf9
0, —H_ —-a- vt

\q :
Vor B Vgt B(%e g PG -))

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

9l= Ht—l _angt—l M,F
With Momentum | t

O

P is the momentum coefficient, typically Vt — ﬂ i Vt—l + Vfg .
set t0 0.9 =

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

0p=0_1— a

With Momentum

If # = 0, you get back standard gradient descent Vt ﬂ [Vt—l)
/
0,=0_ Vi

—d

Optimizing Loss Functions

Gradient Descent - Momentum

« Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

Qt — Qt_l — angt—l
With Momentum
_—b Vt — ﬂ I Vl‘—l + Vf@t—l

0,=0_, _@' VtC(

Think of momentum as gravity pulling a ball down a hill, the
momentum will carry the ball through any flat or even small
uphill regions

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

a is too small
Finds the optimal but too slow

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

. a is too large
. @ is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

. a is too large
. @ is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

What if you set a to be large
initially?

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

. a is too large
a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

And keep reducing a as
number of epochs increases?

Optimizing Loss Functions

Gradient Descent - Per Parameter Adaptive Learning Rates

e A single global learning rate may be suboptimal

« Some parameters might benefit from larger updates while others need
smaller ones.

« Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.

O\ -

% X

©
G

Optimizing Loss Functions
Gradient Descent - AdaGrad

« AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients {

—Gl= G+ (VEy) <—

0,=0,_1— i -V,
VG, +e) L3

Optimizing Loss Functions
Gradient Descent - AdaGrad

 AdaGrad adapts the learning rate for each parameter based on the sum of

squared historical gradients \6
e | op.] 1.
C% 7([C\b-| G, = G,_ 1*\gi9 GO‘ [W,
_ 0, Vo, |-
9 —
G + e -1

A}
» Parameters with large historical gradients receive smaller updates

» Parameters with small historical gradients receive larger updates
T ——

« The limitation is that the accumulated sum G, grows monotonically, eventually making the learning rate
. . N
vanishingly small. -

Optimizing Loss Functions
Gradient Descent - AdaGrad

« AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

G,=G_; + (erz—l)z

et = Ht—l — np Vf@,_l

» Parameters with large historical gradients receive smaller updates

« Parameters with small historical gradients receive larger updates

« The limitation is that the accumulated sum G, grows monotonically, eventually making the learning
rate vanishingly small. -

Optimizing Loss Functions
Gradient Descent - RMSProp

 RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradlents

o= CHET)

t—l

l\/ngJ

» The decay rate p is typically set to 0.9.

[——

» This prevents the learning rate from decaying to zero while still adapting to the gradient scale.
- eem—

Optimizing Loss Functions
Gradient Descent - ADAM

4

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

/

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):&= ‘—ﬂ—l.mt_l + (1 - ﬂl)iV b”gt_l? a— Vi

Second Moment (variance): v, = ﬂ;{/,_l + (1 - ﬂz)(er 1)2 G Q\N&?ﬂp
2 =

\
/

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean)@= pim_,+ {1 —=p)

Second Moment (variance)?‘E: Povii +(L=B)(VE,) ~
(4

Update: 9 - s m<
Vite Lo

bT

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

§> First Moment (mean): m, =@mt_1 + (1 =p)VZ,
Bias Correction: B =1
Important for early

terations when - Second Moment (variance): v, =t_1 + (1 — ,32)(%24 et_l)z

estimates are biased
L)
a
Update: 0, = 0,_; — — @

towards O

~ My
m, = l—ﬁ{
B 1—/35'&

Vi

Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = pym,_; + (1 — p)) V&,

Bias Correction:

Important for early 1 V f o)

iterati h —_
ferationswhen - Second Moment (variance): v, = f,v,_ + (1 = fr)(VEy)

towards O
a A
m, Update: 0, = 0,_, — - m,

ity = —— =
1-p Vv, + €

Vi

Ny

A

VvV, =

Default Hyperparameters: #; = 0.9, 3, = 0.999, a = 1073

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent
x- |

« Batch Gradient Descent 009

« Use entire training set per epoch
 The whole training dataset is used to compute a single parameter update

1 m
0=0_—a—Y VZ, (x,y,
t —1 am Z I Qt_l(’xl yl)

. L an ‘)
=1

L -

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

» Batch Gradient Descent
« Use entire training set per epoch
 The whole training dataset is used to compute a single parameter update
* One epoch leads to one parameter update
1 &
0, =0_,— a% Z Ve, (%)

l =1

Sum over fhe whole training dataset

U\)k &~ “b’l +A - VJ’U*.(

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

x C [0
» Stochastic Gradient Descent

 Use one randomly selected training data point at each step

« Parameters are updated after looking at each data point

* One epoch leads t% Darameter updates

4 Lal

Yo 0=0_,—aVe, () J

H 000
(5o

Tt%00
X000

r
sq-ft
"“&WW: -
k
|

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

* Mini-Batch Gradient Descent
* A compromise between batch and stochastic variants

e Usea ﬂnall batch of randomly sampled training data points

» Typical batch sizes are B = 32, 64, 128, 256, 512, 1024

looo

—_—)

1 B
0,= 0. —a— Y Ve, ()

m/[5 4 (000
3= (oo

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent
/ J

A A \7/ ;

£o(x) £o(x) £ o(x) MLW

™
Diass o
>

>
1234567 89 10 11 1234567 89 10 11 1234567 89 10 11

Epochs Epochs Epochs

Batch GD Mini-Batch GD

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch
Pros:

Stable Convergence:&No noiselin gradient estimates means
smooth, predictable progress toward the minimum

Guaranteed Descent: Each update is guaranteed to reduce the
loss (with appropriate learning rate)

Simple learning rate selection: The lack of noise means you
can often use larger learning rates without instability

Parallelizable Gradient Computationf The sum over all
n be COmMpute ross multiple processors

Stochastic
Pros:

Fast Updates: Each parameter update is computationally
cheap, allowing rapid initial progress.

Memory Efficient: Only one sample needs to be in memory at

atime. /
Escapes Local Minima: The inherent noise helps the algorithm
escape shallow local minima and saddle points. The

stochasticity acts as implicit reqularization

inine Learning: Can naturally incorporate new data as it

arrives - just perform an update on each new sample

Better Generalization: The noise can prevent overfitting to the
training set.——

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch . Stochastic
l Cons: Cons:

CComputationaIIy Expensive: For large datasets, computing the igh Variance:)ndividual gradient estimates can be very noisy,
cau@

full gradient is very slow. A dataset with 10 million samples updates.
requires processing all 10 million before a single update.
—Unstable . The loss curve is noisy. The algorithm
Gllemory Intensive: The entire dataset must fit in memory. may step away from the minimum even when near it.

Redundant Computation: Many datasets contain redundant or —Fﬂequires Learning Rate Decay: To converge to a minimum
similar samples. BGD computes gradients for all of them even (rather than oscillating around it), the learning rate must
when a subset would provide nearly the same information. decrease over time, adding hyperparameters.

G‘-‘oor Escape From Local%llinima: The deterministic nature *"DPoor Hardware Utilization: Modern GPUs are optimized for
means the algorithm follows the same path every time and can parallel operations on batches, not sequential single-sample
get permanently stuck in local minima or saddle points. operations. SGD fails to exploit this.

Slow for Online Learning: Cannot incorporate new data without —%Sensitive to Sample Ordering: The order in which samples are
reprocessing everything. < presented can affect results, requiring careful shuffling.

Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Mini-Batch

Variance Reduction: Averaging over B samples reduces

gradient variance by a factor of 5 compared to pure SGD, while
still maintaining some beneficial noise

Hardware Efficiency: GPUs perform matrix operations in
parallel. A batch size of 64 is nearly as fast as a batch size of 1
on modern hardware, giving essentially 64x speedup over SGD

—>Memory-Computation Tradeoff: Batch size can be tuned to

maximize GPU memory utilization without requiring the full
dataset

Balances Exploration and Exploitation: Enough noise to

escape poor regions, enough signal to make consistent
progress.

Gradient Descent o< >
Gradient Descent vs Closed Form @

Closed Form

(_Gradient Descent 50 = (XTX)—IXTY

+ Linear increase in m (# training data) and n (# features)
S

+ Generally applicable to multiple models)
+ No parameter tumngj

+ Guaranteed to reach global optimum for convex functions . .
and appropriate learning rate =~ ~—— + Gives global optlmumj

- Not generally applicable to any learning algorithm

———————————————

Need to choose learning rate o gnd stopping conditions

. . 2 .
Need to choose optimization method lAdaB RMSProp - Slow computation - scales wﬂl@here n is number of
etc..) B — features (

Might get stuck in local optima / saddle point

——————

Needs feature scaling

Summary and Next Class

e Summary

We saw how gradient descent works

We saw issues with gradient descent and how to address them

We saw multiple optimizers commonly used in gradient descent

We saw types of gradient descent (batch, mini-batch, stochastic)

* Next Class - Classification, cross-validation and logistic regression

