
Wednesday | January 21, 2026

Gradient Descent
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Optimizing Loss Functions

• For any loss function

• To find minimum, set and solve for

ℓ(θ)

∇ℓ = 0 θ ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• For any loss function

• To find minimum, set and solve for

• This is called the closed form solution

• But it’s not always possible to find closed form
solutions, especially when there are a large number of
parameters

• Inverting a matrix is a costly operation - most
common methods have complexity

ℓ(θ)

∇ℓ = 0 θ

O(n3)

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• This is where Gradient Descent comes in

• Practical and efficient - has where is
number of training points, is number of epochs and

 is number of features

• Generally applicable to different loss functions

• Convergence guarantees for certain types of loss
functions (e.g., convex functions)

O(mTn) m
T

n

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

Look for direction of steepest
descent and take a small step

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction
of steepest descent is

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction
of steepest descent is

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction
of steepest descent is

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction
of steepest descent is

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction
of steepest descent is

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

How do we get this “direction
of steepest descent”?

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

 points in direction of steepest ascent∇ℓ()

You are here

You want to get here as fast as possible

How do we get this “direction
of steepest descent”?

 points in direction of steepest descent−∇ℓ()

Optimizing Loss Functions

• What is gradient descent?

 ℓ

∇ℓ() = 0

You are here

You want to get here as fast as possible

How do we get this “direction
of steepest descent”?

In the plot above, you have a
single parameter θ

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0
θ1 θ0 θ1

ℓθ(x) ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0
θ1 θ0 θ1

ℓθ(x) ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

This is going to be your “starting point” on the loss landscape

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj
Negative of partial derivative points
in the direction of steepest descent

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

Optimizing Loss Functions
Gradient Descent - Formulation

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

 controls how big a step to takeα

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

What happens when is too small? 
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

What happens when is too small? 
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

What happens when is too small? 
Say

α
α = 10−5

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

You might not always diverge, but converging might still not be possible

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Question: 
If the gradient here is positive,  
taking the negative of the gradient  
makes sense to get direction of
steepest descent - i.e., we
decrease the value of θ

θ
-5 50 1-1 2-2

Optimizing Loss Functions
Gradient Descent - Effect of Learning Rate
What happens when is too small? 
Say

α
α = 10−5

What happens when is too large? 
Say

α
α = 10

With a small learning rate , if the loss
function is convex, the optimization will
eventually converge

α With a large learning rate , if the loss function
is convex, the optimization could possibly
start diverging and never converge

α

Question: 
If the gradient here is positive,  
taking the negative of the gradient  
makes sense to get direction of
steepest descent - i.e., we
decrease the value of θ

θ
-5 50 1-1 2-2

What about at this
point?

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Maximum Iteration

• Each iteration through the training dataset is called
an “epoch”

• Terminate after a fixed number of epochs

• Simple, but provides no guarantees about solution
quality

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Gradient Norm Threshold

• Terminate when the gradient becomes sufficiently
small

• At this point, if the gradients are small enough,  
the parameters won’t move much anyway

∥∇ℓθ(x)∥2 ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Function Value Change

• Terminate when the loss stops changing
meaningfully

|ℓθt
(x) − ℓθt−1

(x) | ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Parameter Value Change

• Terminate when the parameters stop changing
meaningfully

|θt − θt−1 | ≤ ϵ

Optimizing Loss Functions
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations?

• Validation Based Stopping (Early Stopping)

• Monitor performance on a validation set of instances

• Stop when validation loss begins to increase which
signals overfitting

• Serves as both stopping criterion and 
 regularization

• A function is convex if for all points in its domain
(input) and for all

f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

Optimizing Loss Functions
Gradient Descent - Convexity

x
-5 50 1-1 2-2

f(x)

• A function is convex if for all points in its domain
(input) and for all

f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

Optimizing Loss Functions
Gradient Descent - Convexity

x
-5 50 1-1 2-2

f(x)

• A function is convex if for all points in its domain
(input) and for all

• For more complicated functions, a function is convex if
the Hessian matrix is positive semi-definite for all x

f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

f
H(x)

Optimizing Loss Functions
Gradient Descent - Convexity

x
-5 50 1-1 2-2

f(x)

Second order derivative or
derivative of the Jacobian

A matrix is positive semi-definite
if and only if all of its eigenvalues

are strictly greater than 0

• A function is convex if for all points in its domain
(input) and for all

• For more complicated functions, a function is convex if
the Hessian matrix is positive semi-definite for all x

• If a function is convex, gradient descent is  
guaranteed to converge given the right learning 
rate since every local minimum is a global minimum

f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

f
H(x)

Optimizing Loss Functions
Gradient Descent - Convexity

x
50 1-1 2-2

f(x)

Optimizing Loss Functions
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss
landscapes

• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

• Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum

Optimizing Loss Functions
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss
landscapes

• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

• Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum

Initialization is an issue.

We will talk about it when
we get to neural networks

Optimizing Loss Functions
Gradient Descent - Convergence Issues

• Oscillation: When the learning rate is too large or the loss surface has
regions of high curvature, the algorithm oscillates around the minimum rather
than converging smoothly.

• Slow convergence in flat regions: When gradients are small, parameter
updates become negligible, leading to extremely slow progress.

• Divergence: If the learning rate exceeds a certain value for convex functions,
the algorithm can diverge entirely, with the loss increasing without bound.

• Saddle points: In high dimensions, saddle points are ubiquitous. The gradient
at a saddle point is zero, causing standard gradient descent to stall.

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

This dramatically
accelerates the optimization
process

This also allows having one
single learning rate for all
parameters

Optimizing Loss Functions
Gradient Descent - Practical Fixes

• Feature Scaling

• Remember we want all input features to be in similar ranges

• When features have different scales, the loss surface becomes elongated
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

This dramatically
accelerates the optimization
process

This also allows having one
single learning rate for all
parameters

NOTE: Scaling parameters (mean, standard deviation, min, max) must be
computed only on training data and then applied to validation and test data
to prevent data leakage.

Optimizing Loss Functions
Gradient Descent - Momentum

• Standard gradient descent can oscillate in ravines

• Areas where the surface curves more steeply in one dimension than another

• Or they can get stuck in plateau / saddle points

• Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

θt = θt−1 − α∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Velocity Vector

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

 is the momentum coefficient, typically
set to 0.9
β

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

If , you get back standard gradient descentβ = 0

Optimizing Loss Functions
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

With Momentum

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Think of momentum as gravity pulling a ball down a hill, the
momentum will carry the ball through any flat or even small

uphill regions

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α What if you set to be large
initially?

α

Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α And keep reducing as
number of epochs increases?

α

• A single global learning rate may be suboptimal

• Some parameters might benefit from larger updates while others need
smaller ones.

• Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.

Optimizing Loss Functions
Gradient Descent - Per Parameter Adaptive Learning Rates

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates

• Parameters with small historical gradients receive larger updates

• The limitation is that the accumulated sum grows monotonically, eventually making the learning rate
vanishingly small.

Gt

• AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt = Gt−1 + (∇ℓθt−1)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates

• Parameters with small historical gradients receive larger updates

• The limitation is that the accumulated sum grows monotonically, eventually making the learning
rate vanishingly small.

Gt

• RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradients

Gt = ρ ⋅ Gt−1 + (1 − ρ) ⋅ (∇ℓθt−1)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions
Gradient Descent - RMSProp

• The decay rate is typically set to 0.9.

• This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

ρ

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

Update:

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α

vt + ϵ
⋅ mt

Optimizing Loss Functions
Gradient Descent - ADAM

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

Update:

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α
̂vt + ϵ

⋅ m̂t

Optimizing Loss Functions
Gradient Descent - ADAM

Bias Correction: 
Important for early

iterations when
estimates are biased

towards 0

m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2

• Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean):

Second Moment (variance):

Update:

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α
̂vt + ϵ

⋅ m̂t

Optimizing Loss Functions
Gradient Descent - ADAM

Bias Correction: 
Important for early

iterations when
estimates are biased

towards 0

m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2

Default Hyperparameters: β1 = 0.9, β2 = 0.999, α = 10−3

• Batch Gradient Descent

• Use entire training set per epoch

• The whole training dataset is used to compute a single parameter update

θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

• Batch Gradient Descent

• Use entire training set per epoch

• The whole training dataset is used to compute a single parameter update

• One epoch leads to one parameter update

θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Sum over the whole training dataset

• Stochastic Gradient Descent

• Use one randomly selected training data point at each step

• Parameters are updated after looking at each data point

• One epoch leads to m parameter updates

θt = θt−1 − α∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

• Mini-Batch Gradient Descent

• A compromise between batch and stochastic variants

• Use a small batch of randomly sampled training data points

• Typical batch sizes are

B = 32, 64, 128, 256, 512, 1024

θt = θt−1 − α
1
B

B

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

ℓθ(x) ℓθ(x)

Epochs Epochs
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

ℓθ(x)

Epochs
1 2 3 4 5 6 7 8 9 10 11

Batch GD Mini-Batch GD SGD

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch 
Pros:

Stochastic 
Pros:

Stable Convergence: No noise in gradient estimates means
smooth, predictable progress toward the minimum

Guaranteed Descent: Each update is guaranteed to reduce the
loss (with appropriate learning rate) 
 
Simple learning rate selection: The lack of noise means you
can often use larger learning rates without instability

Parallelizable Gradient Computation: The sum over all
samples can be computed in parallel across multiple processors

Fast Updates: Each parameter update is computationally
cheap, allowing rapid initial progress.

Memory Efficient: Only one sample needs to be in memory at
a time.

Escapes Local Minima: The inherent noise helps the algorithm
escape shallow local minima and saddle points. The
stochasticity acts as implicit regularization

Online Learning: Can naturally incorporate new data as it
arrives - just perform an update on each new sample

Better Generalization: The noise can prevent overfitting to the
training set.

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch 
Cons:

Stochastic 
Cons:

Computationally Expensive: For large datasets, computing the
full gradient is very slow. A dataset with 10 million samples
requires processing all 10 million before a single update.

Memory Intensive: The entire dataset must fit in memory.

Redundant Computation: Many datasets contain redundant or
similar samples. BGD computes gradients for all of them even
when a subset would provide nearly the same information.

Poor Escape From Local Minima: The deterministic nature
means the algorithm follows the same path every time and can
get permanently stuck in local minima or saddle points.

Slow for Online Learning: Cannot incorporate new data without
reprocessing everything.

High Variance: Individual gradient estimates can be very noisy,
causing erratic updates.

Unstable Convergence: The loss curve is noisy. The algorithm
may step away from the minimum even when near it.

Requires Learning Rate Decay: To converge to a minimum
(rather than oscillating around it), the learning rate must
decrease over time, adding hyperparameters.

Poor Hardware Utilization: Modern GPUs are optimized for
parallel operations on batches, not sequential single-sample
operations. SGD fails to exploit this.

Sensitive to Sample Ordering: The order in which samples are
presented can affect results, requiring careful shuffling.

Gradient Descent
Batch vs Mini-Batch vs Stochastic Gradient Descent

Mini-Batch

Variance Reduction: Averaging over samples reduces
gradient variance by a factor of compared to pure SGD, while
still maintaining some beneficial noise

Hardware Efficiency: GPUs perform matrix operations in
parallel. A batch size of 64 is nearly as fast as a batch size of 1
on modern hardware, giving essentially 64× speedup over SGD

Memory-Computation Tradeof: Batch size can be tuned to
maximize GPU memory utilization without requiring the full
dataset

Balances Exploration and Exploitation: Enough noise to
escape poor regions, enough signal to make consistent
progress.

B
B

Gradient Descent
Gradient Descent vs Closed Form

Gradient Descent Closed Form 
θ = (XTX)−1XTY

+ Linear increase in (# training data) and (# features)

+ Generally applicable to multiple models

+ Guaranteed to reach global optimum for convex functions
and appropriate learning rate

- Need to choose learning rate and stopping conditions

- Need to choose optimization method (Adam, RMSProp
etc..)

- Might get stuck in local optima / saddle point

- Needs feature scaling

m n

α

+ No parameter tuning

+ Gives global optimum

- Not generally applicable to any learning algorithm

- Slow computation - scales with where is number of
features

n3 n

• Summary

• We saw how gradient descent works

• We saw issues with gradient descent and how to address them

• We saw multiple optimizers commonly used in gradient descent

• We saw types of gradient descent (batch, mini-batch, stochastic)

• Next Class - Classification, cross-validation and logistic regression

Summary and Next Class

