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Optimizing Loss Functions

 For any loss function £(6)

V£ (®) points in direction of steepest ascent

e To find minimum, set VZ = 0 and solve for & 4
e This is called the closed form solution

 But it’s not always possible to find closed form
solutions, especially when there are a large number of

V(o) =0
parameters )

* |nverting a matrix is a costly operation - most
common methods have complexity O(n°>)



Optimizing Loss Functions

 This is where Gradient Descent comes In

V£ (®) points in direction of steepest ascent

e Practical and efficient - has O(mTn) where m is £
number of training points, 1 is number of epochs and

n 1S number of features

 Generally applicable to different loss functions
V£(e) =0
* Convergence guarantees for certain types of loss
functions (e.g., convex functions)
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Look for direction of steepest
descent and take a small step
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Optimizing Loss Functions

 What is gradient descent?

— V(@) points in direction of steepest descent

4

You are here

How do we get this “direction
of steepest descent”?

You want to get here as fast as possible

Ve(e)=0

In the plot above, you have a
single parameter &
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Gradient Descent - Formulation

|
Co(X) = Z 2 O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

This Is going to be your “starting point” on the loss landscape
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Gradient Descent - Formulation

|
Co(X) = Z 2 O — 6y — Hlxi)z

Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)
0,

Negative of partial derivative points
In the direction of steepest descent

6 < fma;
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Optimizing Loss Functions

Gradient Descent - Formulation

a controls how big a step to take fé’(x) — i 2 (yz . 90 o 91 xi)Z
i l

Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6 -a;

a . Learning Rate



Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small?
Say o = 107>

|
Co(X) = Z Z O — 6y — Hlxi)z

o Step 1: Initialize 6,, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6@

a . Learning Rate
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Gradient Descent - Effect of Learning Rate

What happens when « is too small?

Say o = 107>
I 2
Co(x) = . Z (Vi = 6 — 0)x))
e Step 1: Initialize 6, ,
Step 2: Repeat Until Convergence

0t (x

6 -a- =15
0,

a . Learning Rate
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Gradient Descent - Effect of Learning Rate

What happens when « is too small?

Say o = 107>
£y =— Y (5= 6y — Oy
0 m i l 0 1Y
o000y Step 1: Initialize 6, 6,
( 6?.;}> Step 2: Repeat Until Convergence

0C (x

6, -l <2
0,

a . Learning Rate
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Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Say o = 107> Say o = 10
With a small learning rate a, if the loss With a large learning rate «a, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge start diverging and never converge
«

You might not always diverge, but converging might still not be possible
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Optimizing Loss Functions

Gradient Descent - Effect of Learning Rate

What happens when « is too small? What happens when « is too large?
Say o = 107> Say o = 10
With a small learning rate a, if the loss With a large learning rate «a, if the loss function
function is convex, the optimization will is convex, the optimization could possibly
eventually converge start diverging and never converge
Question:

If the gradient here is positive,
taking the negative of the gradient
makes sense to get direction of
steepest descent - i.e., we

\ decrease the value of @




Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
« Maximum lteration

 Each iteration through the training dataset is called
an “epoch”

 Terminate after a fixed number of epochs

* Simple, but provides no guarantees about solution
quality

O <=
-5



Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
* (Gradient Norm Threshold

* Jerminate when the gradient becomes sufficiently
small

IVZp(0)ll, < €

* At this point, if the gradients are small enough,
the parameters won't move much anyway o

-3



Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
* Function Value Change

* [erminate when the loss stops changing
meaningfully

| ?/ﬂet(x) — Lﬂet_l(x) | <e€




Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
 Parameter Value Change

* [erminate when the parameters stop changing
meaningfully

‘Ht_et—l‘ <€




Optimizing Loss Functions

Gradient Descent - Stopping Criterion

 When do you stop your iterations?
» Validation Based Stopping (Early Stopping)

 Monitor performance on a validation set of instances

» Stop when validation loss begins to increase which
signals overfitting

* Serves as both stopping criterion and

regularization
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Gradient Descent - Convexity

» A function fis convex if for all points in its domain
(input) and for all 4 € [0,1] J(x)

JOx + (1 = y) < Hf(x) + (1 = DAY)
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Optimizing Loss Functions

Gradient Descent - Convexity

» A function fis convex if for all points in its domain
(input) and for all 4 € [0,1] J(x)

JOx + (1 = y) < Hf(x) + (1 = DAY)

» For more complicated functions, a function fis convex if
the Hessian matrix H(x) is positive semi-definite for all x

Second order derivative or A matrix is positive semi-definite

derivative of the Jacobian if and only if all of its eigenvalues
are strictly greater than 0

x4
-9



Optimizing Loss Functions

Gradient Descent - Convexity

» A function fis convex if for all points in its domain
(input) and for all 4 € [0,1] J(x)

JOx + (1 = y) < Hf(x) + (1 = DAY)

» For more complicated functions, a function fis convex if
the Hessian matrix H(x) is positive semi-definite for all x

* |f a function is convex, gradient descent Is
guaranteed to converge given the right learning . -

rate since every local minimum is a global minimum



Optimizing Loss Functions

Gradient Descent - More Complicated Functions

* Most deep learning models however have highly non-convex loss
landscapes

f@(x) * Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

» Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

000"

Plateau / Saddle Point

\

Local Minimum Global
Minimum



Optimizing Loss Functions

Gradient Descent - More Complicated Functions

* Most deep learning models however have highly non-convex loss
landscapes

zf@(x) * Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to
the global minimum

» Saddle points, where the gradient is zero but the point is neither a
minimum nor maximum, pose a more significant practical challenge.

000"

Plateau / Saddle Point

\

Initialization is an issue.

We will talk about it when
we get to neural networks

Local Minimum Global
Minimum



Optimizing Loss Functions

Gradient Descent - Convergence Issues

* Oscillation: When the learning rate is too large or the loss surface has
regions of high curvature, the algorithm oscillates around the minimum rather
than converging smoothly.

 Slow convergence in flat regions: When gradients are small, parameter
updates become negligible, leading to extremely slow progress.

* Divergence: If the learning rate exceeds a certain value for convex functions,
the algorithm can diverge entirely, with the loss increasing without bound.

» Saddle points: In high dimensions, saddle points are ubiquitous. The gradient
at a saddle point is zero, causing standard gradient descent to stall.
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* Feature Scaling

« Remember we want all input features x;, x,---x, to be in similar ranges

 When features have different scales, the loss surface becomes elongated
(Ill-conditioned).
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Gradient Descent - Practical Fixes

* Feature Scaling

« Remember we want all input features x;, x,---x, to be in similar ranges

 When features have different scales, the loss surface becomes elongated
(Ill-conditioned).

0 10,000 0 1



Optimizing Loss Functions

Gradient Descent - Practical Fixes

* Feature Scaling

« Remember we want all input features x;, x,---x, to be in similar ranges

 When features have different scales, the loss surface becomes elongated
(Ill-conditioned).

This dramatically
accelerates the optimization
Process

This also allows having one
single learning rate for all
parameters

0 10,000




Optimizing Loss Functions

Gradient Descent - Practical Fixes

NOTE: Scaling parameters (mean, standard deviation, min, max) must be
computed only on training data and then applied to validation and test data

e Feature Scaling to prevent data leakage.

« Remember we want all input features x;, x,---x, to be in similar ranges

 When features have different scales, the loss surface becomes elongated
(Ill-conditioned).

This dramatically
accelerates the optimization
Process

This also allows having one
single learning rate for all
parameters

0 10,000




Optimizing Loss Functions

Gradient Descent - Momentum

e Standard gradient descent can oscillate in ravines
* Areas where the surface curves more steeply in one dimension than another
* Or they can get stuck in plateau / saddle points

* Momentum helps accelerate gradient descent by accumulating velocity in directions
of consistent gradient

0C y(x)
00

G 6=

Hl‘ — Hl‘—l — anet—l
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Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum

Velocity Vector Vt — ﬁ ) Vt—l T Vfé’t_l



Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum

f is the momentum coefficient, typically Vt — ﬁ [ Vt—l T Vf@ i
set to 0.9 =



Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum

If # = 0, you get back standard gradient descent V; — ﬁ " Vie1 T Vfé’t_l



Optimizing Loss Functions

Gradient Descent - Momentum

» Momentum helps accelerate gradient descent by accumulating velocity in
directions of consistent gradient

91‘ — Hl‘—l — angt—l
With Momentum
Vt — ﬁ I Vt—l + Vf@t—l

Think of momentum as gravity pulling a ball down a hill, the
momentum will carry the ball through any flat or even small
uphill regions
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Gradient Descent - Adaptive Step Sizes

| o Is too large
a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

What if you set a to be large
initially?



Optimizing Loss Functions
Gradient Descent - Adaptive Step Sizes

| o Is too large
a is too small Might not find optimal
Finds the optimal but too slow Could even begin to diverge

And keep reducing o as
number of epochs increases?



Optimizing Loss Functions

Gradient Descent - Per Parameter Adaptive Learning Rates

* A single global learning rate may be suboptimal

 Some parameters might benefit from larger updates while others need
smaller ones.

* Adaptive methods adjust the learning rate for each parameter individually
based on historical gradient information.



Optimizing Loss Functions
Gradient Descent - AdaGrad

 AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt — Gt—l + (Vf‘gt—l)z

0, =0,_, _L‘V&ﬂe 1
VG, + ¢ "
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Gradient Descent - AdaGrad

 AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

Gt — Gt—l + (Vf‘gt—l)z

01
0=0_,————— - VO
! —1 \/a+€ 0.4

 Parameters with large historical gradients receive smaller updates

 Parameters with small historical gradients receive larger updates

e The limitation is that the accumulated sum G, grows monotonically, eventually making the learning rate
vanishingly small.



Optimizing Loss Functions
Gradient Descent - AdaGrad

 AdaGrad adapts the learning rate for each parameter based on the sum of
squared historical gradients

G, =G, + (Vfé’t—l)z

01
0=0_,————— - VC
! —1 \@+€ 0.4

 Parameters with large historical gradients receive smaller updates

 Parameters with small historical gradients receive larger updates

e The limitation is that the accumulated sum G, grows monotonically, eventually making the learning
rate vanishingly small.



Optimizing Loss Functions
Gradient Descent - RMSProp

« RMSprop addresses AdaGrad's diminishing learning rate by using an
exponentially decaying average of squared gradients

G=p-G_+(1—=p)-(VEy_)*

04
0=0_,————— -V
t —1 \@4‘6 0,_,

* The decay rate p is typically set to 0.9.

* This prevents the learning rate from decaying to zero while still adapting to the gradient scale.
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Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Second Moment (variance): v, = f,v,_; + (1 — ﬂz)(Vz/”@t_l)z



Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Second Moment (variance): v, = f,v,_; + (1 — ﬂz)(Vz/”@t_l)z

0
Update: 0, =60, —— - m
[ —1 \ﬁt‘l‘e [



Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Bias Correction:
Important for early

terations when  ~ Second Moment (variance): v, = p,v,_ + (1 — p,)(VZ Qt_l)z

estimates are biased
towards O

0/
o m Update: 6, = 0, | — —— - 7,

R \ﬁt+€
. W
Vt_l—ﬁé




Optimizing Loss Functions
Gradient Descent - ADAM

 Adam (Adaptive Moment Estimation) combines the benefits of momentum
(first moment) with the adaptive learning rates of RMSProp (second moment)

Adam maintains two moving averages

First Moment (mean): m, = ﬁ1mt—1 + (1 — ﬁ1) V’/ﬂ@_l

Bias Correction:
Important for early

terations when  ~ Second Moment (variance): v, = p,v,_ + (1 — p,)(VZ Qt_l)z

estimates are biased
towards O

0/
o m Update: 6, = 0, | — —— - 7,

Ay VD + e

. Vi
=T
_ﬁZ

Default Hyperparameters: 5, = 0.9, 5, = 0.999, a = 1073



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

 Batch Gradient Descent
 Use entire training set per epoch

 The whole training dataset is used to compute a single parameter update

1 m
Hl‘ — Hl‘—l - OJZ Zl Vf@t_l(xi, yl)



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

 Batch Gradient Descent
 Use entire training set per epoch
 The whole training dataset is used to compute a single parameter update

 One epoch leads to one parameter update

1 m
0,=0_, — az Zl sz@t_l(xi, y,)

Sum over the whole training dataset



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

« Stochastic Gradient Descent
 Use one randomly selected training data point at each step
 Parameters are updated after looking at each data point

 One epoch leads to m parameter updates

0, =0,_,— angt_l(xi, %),



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

 Mini-Batch Gradient Descent
A compromise between batch and stochastic variants

 Use a small batch of randomly sampled training data points

» Typical batch sizes are B = 32, 64, 128, 256, 512, 1024

| B
0,=06_,— aE l_zl Vf@t_l(xi, y:)



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

r o(X)

123 45 6 7 8 9 10 11

Epochs
Batch GD

C o(X)

123 45 6 7 8 9 10 11

Epochs
Mini-Batch GD

?/ﬂ o(X)

123 45 6 7 8 9 10 11

Epochs
SGD



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch
Pros:

Stable Convergence: No noise in gradient estimates means
smooth, predictable progress toward the minimum

Guaranteed Descent: Each update is guaranteed to reduce the
loss (with appropriate learning rate)

Simple learning rate selection: The lack of noise means you
can often use larger learning rates without instability

Parallelizable Gradient Computation: The sum over all
samples can be computed in parallel across multiple processors

Stochastic
Pros:

Fast Updates: Each parameter update is computationally
cheap, allowing rapid initial progress.

Memory Efficient: Only one sample needs to be in memory at
a time.

Escapes Local Minima: The inherent noise helps the algorithm
escape shallow local minima and saddle points. The
stochasticity acts as implicit regularization

Online Learning: Can naturally incorporate new data as it
arrives - just perform an update on each new sample

Better Generalization: The noise can prevent overfitting to the
training set.



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch
cons:

Computationally Expensive: For large datasets, computing the
full gradient is very slow. A dataset with 10 million samples
requires processing all 10 million before a single update.

Memory Intensive: The entire dataset must fit in memory.

Redundant Computation: Many datasets contain redundant or
similar samples. BGD computes gradients for all of them even
when a subset would provide nearly the same information.

Poor Escape From Local Minima: The deterministic nature
means the algorithm follows the same path every time and can
get permanently stuck in local minima or saddle points.

Slow for Online Learning: Cannot incorporate new data without
reprocessing everything.

Stochastic
cons:

High Variance: Individual gradient estimates can be very noisy,
causing erratic updates.

Unstable Convergence: The loss curve is noisy. The algorithm
may step away from the minimum even when near it.

Requires Learning Rate Decay: To converge to a minimum
(rather than oscillating around it), the learning rate must
decrease over time, adding hyperparameters.

Poor Hardware Utilization: Modern GPUs are optimized for
parallel operations on batches, not sequential single-sample
operations. SGD fails to exploit this.

Sensitive to Sample Ordering: The order in which samples are
presented can affect results, requiring careful shuffling.



Gradient Descent

Batch vs Mini-Batch vs Stochastic Gradient Descent

Mini-Batch

Variance Reduction: Averaging over B samples reduces

gradient variance by a factor of B compared to pure SGD, while
still maintaining some beneficial noise

Hardware Efficiency: GPUs perform matrix operations in
parallel. A batch size of 64 is nearly as fast as a batch size of 1
on modern hardware, giving essentially 64x speedup over SGD

Memory-Computation Tradeoff: Batch size can be tuned to
maximize GPU memory utilization without requiring the full
dataset

Balances Exploration and Exploitation: Enough noise to
escape poor regions, enough signal to make consistent
progress.



Gradient Descent

Gradient Descent vs Closed Form

Closed Form

Gradient Descent 0= (xT X)—l xTy

+ Linear increase in m (# training data) and » (# features)

+ Generally applicable to multiple models _
+ No parameter tuning

+ Guaranteed to reach global optimum for convex functions _ _
and appropriate learning rate + Gives global optimum

- Need to choose learning rate o and stopping conditions - Not generally applicable to any learning algorithm

- Need to choose optimization method (Adam, RMSProp - Slow computation - scales with n> where 7 is number of
etc..) features

- Might get stuck in local optima / saddle point

- Needs feature scaling



Summary and Next Class

e Summary
 \We saw how gradient descent works
 We saw issues with gradient descent and how to address them
 We saw multiple optimizers commonly used in gradient descent
 We saw types of gradient descent (batch, mini-batch, stochastic)

* Next Class - Classification, cross-validation and logistic regression



