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• For any loss function 
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Optimizing Loss Functions 

• For any loss function 


• To find minimum, set  and solve for 


• This is called the closed form solution 


• But it’s not always possible to find closed form 
solutions, especially when there are a large number of 
parameters


• Inverting a matrix is a costly operation - most 
common methods have complexity 

ℓ(θ)

∇ℓ = 0 θ

O(n3)

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )



Optimizing Loss Functions 

• This is where Gradient Descent comes in


• Practical and efficient - has  where  is 
number of training points,  is number of epochs and 

 is number of features


• Generally applicable to different loss functions


• Convergence guarantees for certain types of loss 
functions (e.g., convex functions)

O(mTn) m
T

n

 ℓ
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 points in direction of steepest ascent∇ℓ( )
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Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

Look for direction of steepest 
descent and take a small step



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction 
of steepest descent is



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction 
of steepest descent is



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction 
of steepest descent is



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction 
of steepest descent is



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

At the next step, repeat.  
Check again what the direction 
of steepest descent is



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

How do we get this “direction 
of steepest descent”? 



Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

 points in direction of steepest ascent∇ℓ( )

You are here

You want to get here as fast as possible

How do we get this “direction 
of steepest descent”? 



 points in direction of steepest descent−∇ℓ( )

Optimizing Loss Functions 

• What is gradient descent? 

 ℓ

∇ℓ( ) = 0

You are here

You want to get here as fast as possible

How do we get this “direction 
of steepest descent”? 

In the plot above, you have a 
single parameter θ
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Optimizing Loss Functions 

• What does the loss landscape look like with multiple learnable parameters?

θ0 θ1

ℓθ(x)



Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj
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Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

This is going to be your “starting point” on the loss landscape
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Step 1: Initialize 


Step 2: Repeat Until Convergence
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Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj
Negative of partial derivative points 
in the direction of steepest descent
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Optimizing Loss Functions 
Gradient Descent - Formulation 




Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

 : Learning Rate α

 controls how big a step to takeα
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Gradient Descent - Effect of Learning Rate
What happens when  is too small? 
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10

With a small learning rate , if the loss 
function is convex, the optimization will 
eventually converge

α With a large learning rate , if the loss function 
is convex, the optimization could possibly 
start diverging and never converge

α

You might not always diverge, but converging might still not be possible
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Optimizing Loss Functions 
Gradient Descent - Effect of Learning Rate
What happens when  is too small? 
Say 

α
α = 10−5

What happens when  is too large? 
Say 

α
α = 10

With a small learning rate , if the loss 
function is convex, the optimization will 
eventually converge

α With a large learning rate , if the loss function 
is convex, the optimization could possibly 
start diverging and never converge

α

Question: 
If the gradient here is positive,  
taking the negative of the gradient  
makes sense to get direction of 
steepest descent - i.e., we 
decrease the value of  θ

θ
-5 50 1-1 2-2

What about at this 
point?



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Maximum Iteration 


• Each iteration through the training dataset is called 
an “epoch”


• Terminate after a fixed number of epochs 


• Simple, but provides no guarantees about solution 
quality



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Gradient Norm Threshold 


• Terminate when the gradient becomes sufficiently 
small 





• At this point, if the gradients are small enough,  
the parameters won’t move much anyway 

∥∇ℓθ(x)∥2 ≤ ϵ



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Function Value Change


• Terminate when the loss stops changing 
meaningfully 


|ℓθt
(x) − ℓθt−1

(x) | ≤ ϵ



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Parameter Value Change


• Terminate when the parameters stop changing 
meaningfully 


|θt − θt−1 | ≤ ϵ



Optimizing Loss Functions 
Gradient Descent - Stopping Criterion

θ
-5 50 1-1 2-2

• When do you stop your iterations? 


• Validation Based Stopping (Early Stopping)


• Monitor performance on a validation set of instances


• Stop when validation loss begins to increase which 
signals overfitting 


• Serves as both stopping criterion and 
 regularization 




• A function  is convex if for all points in its domain 
(input) and for all 


f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

Optimizing Loss Functions 
Gradient Descent - Convexity 

x
-5 50 1-1 2-2

f(x)
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• A function  is convex if for all points in its domain 
(input) and for all 





• For more complicated functions, a function  is convex if 
the Hessian matrix  is positive semi-definite for all x

f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

f
H(x)

Optimizing Loss Functions 
Gradient Descent - Convexity 

x
-5 50 1-1 2-2

f(x)

Second order derivative or 
derivative of the Jacobian

A matrix is positive semi-definite 
if and only if all of its eigenvalues 

are strictly greater than 0



• A function  is convex if for all points in its domain 
(input) and for all 





• For more complicated functions, a function  is convex if 
the Hessian matrix  is positive semi-definite for all x


• If a function is convex, gradient descent is  
guaranteed to converge given the right learning 
rate since every local minimum is a global minimum

f
λ ∈ [0,1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

f
H(x)

Optimizing Loss Functions 
Gradient Descent - Convexity 

x
50 1-1 2-2

f(x)



Optimizing Loss Functions 
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss 
landscapes 


• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to 
the global minimum


• Saddle points, where the gradient is zero but the point is neither a 
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum



Optimizing Loss Functions 
Gradient Descent - More Complicated Functions

ℓθ(x)

θ

• Most deep learning models however have highly non-convex loss 
landscapes 


• Empirical evidence suggests that most local minima in high-
dimensional neural network loss surfaces have loss values close to 
the global minimum


• Saddle points, where the gradient is zero but the point is neither a 
minimum nor maximum, pose a more significant practical challenge.

Plateau / Saddle Point

Local Minimum Global 
Minimum

Initialization is an issue.  

We will talk about it when 
we get to neural networks 



Optimizing Loss Functions 
Gradient Descent - Convergence Issues

• Oscillation: When the learning rate is too large or the loss surface has 
regions of high curvature, the algorithm oscillates around the minimum rather 
than converging smoothly.


• Slow convergence in flat regions: When gradients are small, parameter 
updates become negligible, leading to extremely slow progress.


• Divergence: If the learning rate exceeds a certain value for convex functions, 
the algorithm can diverge entirely, with the loss increasing without bound.


• Saddle points: In high dimensions, saddle points are ubiquitous. The gradient 
at a saddle point is zero, causing standard gradient descent to stall.



Optimizing Loss Functions 
Gradient Descent - Practical Fixes

• Feature Scaling 


• Remember we want all input features  to be in similar ranges 


• When features have different scales, the loss surface becomes elongated 
(ill-conditioned).

x1, x2⋯xn
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Optimizing Loss Functions 
Gradient Descent - Practical Fixes

• Feature Scaling 


• Remember we want all input features  to be in similar ranges 


• When features have different scales, the loss surface becomes elongated 
(ill-conditioned).

x1, x2⋯xn

θ0

θ1

0

10

10,0000

θ0

θ1

0

1

0 1

This dramatically 
accelerates the optimization 
process


This also allows having one 
single learning rate for all 
parameters 

NOTE: Scaling parameters (mean, standard deviation, min, max) must be 
computed only on training data and then applied to validation and test data 
to prevent data leakage.



Optimizing Loss Functions 
Gradient Descent - Momentum

• Standard gradient descent can oscillate in ravines


• Areas where the surface curves more steeply in one dimension than another


• Or they can get stuck in plateau / saddle points


• Momentum helps accelerate gradient descent by accumulating velocity in directions 
of consistent gradient 

 

 

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

θt = θt−1 − α∇ℓθt−1
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Velocity Vector



Optimizing Loss Functions 
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

 is the momentum coefficient, typically 
set to 0.9
β
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Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

If , you get back standard gradient descentβ = 0



Optimizing Loss Functions 
Gradient Descent - Momentum

• Momentum helps accelerate gradient descent by accumulating velocity in 
directions of consistent gradient 

  

With Momentum 

 

θt = θt−1 − α∇ℓθt−1

vt = β ⋅ vt−1 + ∇ℓθt−1

θt = θt−1 − α ⋅ vt

Think of momentum as gravity pulling a ball down a hill, the 
momentum will carry the ball through any flat or even small 

uphill regions 
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Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α What if you set  to be large 
initially? 

α



Optimizing Loss Functions 
Gradient Descent - Adaptive Step Sizes

 is too small 
Finds the optimal but too slow

α
 is too large 

Might not find optimal 
Could even begin to diverge

α And keep reducing  as 
number of epochs increases?

α



• A single global learning rate may be suboptimal


• Some parameters might benefit from larger updates while others need 
smaller ones. 


• Adaptive methods adjust the learning rate for each parameter individually 
based on historical gradient information.

Optimizing Loss Functions 
Gradient Descent - Per Parameter Adaptive Learning Rates



• AdaGrad adapts the learning rate for each parameter based on the sum of 
squared historical gradients



Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - AdaGrad



• AdaGrad adapts the learning rate for each parameter based on the sum of 
squared historical gradients



Gt = Gt−1 + (∇ℓθt−1
)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates


• Parameters with small historical gradients receive larger updates


• The limitation is that the accumulated sum  grows monotonically, eventually making the learning rate 
vanishingly small.

Gt



• AdaGrad adapts the learning rate for each parameter based on the sum of 
squared historical gradients



Gt = Gt−1 + (∇ℓθt−1)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - AdaGrad

• Parameters with large historical gradients receive smaller updates


• Parameters with small historical gradients receive larger updates


• The limitation is that the accumulated sum  grows monotonically, eventually making the learning 
rate vanishingly small.

Gt



• RMSprop addresses AdaGrad's diminishing learning rate by using an 
exponentially decaying average of squared gradients



Gt = ρ ⋅ Gt−1 + (1 − ρ) ⋅ (∇ℓθt−1)2

θt = θt−1 −
α

Gt + ϵ
⋅ ∇ℓθt−1

Optimizing Loss Functions 
Gradient Descent - RMSProp

• The decay rate  is typically set to 0.9. 


• This prevents the learning rate from decaying to zero while still adapting to the gradient scale.

ρ



• Adam (Adaptive Moment Estimation) combines the benefits of momentum 
(first moment) with the adaptive learning rates of RMSProp (second moment)


Optimizing Loss Functions 
Gradient Descent - ADAM



• Adam (Adaptive Moment Estimation) combines the benefits of momentum 
(first moment) with the adaptive learning rates of RMSProp (second moment)


Adam maintains two moving averages 


First Moment (mean): 


Second Moment (variance): 

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

Optimizing Loss Functions 
Gradient Descent - ADAM



• Adam (Adaptive Moment Estimation) combines the benefits of momentum 
(first moment) with the adaptive learning rates of RMSProp (second moment)


Adam maintains two moving averages 


First Moment (mean): 


Second Moment (variance): 


Update: 

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α

vt + ϵ
⋅ mt

Optimizing Loss Functions 
Gradient Descent - ADAM



• Adam (Adaptive Moment Estimation) combines the benefits of momentum 
(first moment) with the adaptive learning rates of RMSProp (second moment)


Adam maintains two moving averages 


First Moment (mean): 


Second Moment (variance): 


Update: 

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α
̂vt + ϵ

⋅ m̂t

Optimizing Loss Functions 
Gradient Descent - ADAM

Bias Correction: 
Important for early 

iterations when 
estimates are biased 

towards 0



m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2



• Adam (Adaptive Moment Estimation) combines the benefits of momentum 
(first moment) with the adaptive learning rates of RMSProp (second moment)


Adam maintains two moving averages 


First Moment (mean): 


Second Moment (variance): 


Update: 

mt = β1mt−1 + (1 − β1)∇ℓθt−1

vt = β2vt−1 + (1 − β2)(∇ℓθt−1
)2

θt = θt−1 −
α
̂vt + ϵ

⋅ m̂t

Optimizing Loss Functions 
Gradient Descent - ADAM

Bias Correction: 
Important for early 

iterations when 
estimates are biased 

towards 0



m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2

Default Hyperparameters: β1 = 0.9, β2 = 0.999, α = 10−3



• Batch Gradient Descent 


• Use entire training set per epoch 

• The whole training dataset is used to compute a single parameter update 


θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent



• Batch Gradient Descent 


• Use entire training set per epoch 

• The whole training dataset is used to compute a single parameter update 


• One epoch leads to one parameter update 


θt = θt−1 − α
1
m

m

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent

Sum over the whole training dataset



• Stochastic Gradient Descent 


• Use one randomly selected training data point at each step 

• Parameters are updated after looking at each data point 


• One epoch leads to m parameter updates


θt = θt−1 − α∇ℓθt−1
(xi, yi)

Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent



• Mini-Batch Gradient Descent 


• A compromise between batch and stochastic variants 


• Use a small batch of randomly sampled training data points 


• Typical batch sizes are 





B = 32, 64, 128, 256, 512, 1024

θt = θt−1 − α
1
B

B

∑
i=1

∇ℓθt−1
(xi, yi)

Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent



Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent

ℓθ(x) ℓθ(x)

Epochs Epochs
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

ℓθ(x)

Epochs
1 2 3 4 5 6 7 8 9 10 11

Batch GD Mini-Batch GD SGD



Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch 
Pros:

Stochastic 
Pros:

Stable Convergence: No noise in gradient estimates means 
smooth, predictable progress toward the minimum 

Guaranteed Descent: Each update is guaranteed to reduce the 
loss (with appropriate learning rate) 
 
Simple learning rate selection: The lack of noise means you 
can often use larger learning rates without instability


Parallelizable Gradient Computation: The sum over all 
samples can be computed in parallel across multiple processors


Fast Updates: Each parameter update is computationally 
cheap, allowing rapid initial progress.


Memory Efficient: Only one sample needs to be in memory at 
a time.


Escapes Local Minima: The inherent noise helps the algorithm 
escape shallow local minima and saddle points. The 
stochasticity acts as implicit regularization


Online Learning: Can naturally incorporate new data as it 
arrives - just perform an update on each new sample


Better Generalization: The noise can prevent overfitting to the 
training set. 



Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch 
Cons:

Stochastic 
Cons:

Computationally Expensive: For large datasets, computing the 
full gradient is very slow. A dataset with 10 million samples 
requires processing all 10 million before a single update.


Memory Intensive: The entire dataset must fit in memory.


Redundant Computation: Many datasets contain redundant or 
similar samples. BGD computes gradients for all of them even 
when a subset would provide nearly the same information.


Poor Escape From Local Minima: The deterministic nature 
means the algorithm follows the same path every time and can 
get permanently stuck in local minima or saddle points.


Slow for Online Learning: Cannot incorporate new data without 
reprocessing everything.


High Variance: Individual gradient estimates can be very noisy, 
causing erratic updates.


Unstable Convergence: The loss curve is noisy. The algorithm 
may step away from the minimum even when near it.


Requires Learning Rate Decay: To converge to a minimum 
(rather than oscillating around it), the learning rate must 
decrease over time, adding hyperparameters.


Poor Hardware Utilization: Modern GPUs are optimized for 
parallel operations on batches, not sequential single-sample 
operations. SGD fails to exploit this.


Sensitive to Sample Ordering: The order in which samples are 
presented can affect results, requiring careful shuffling.




Gradient Descent 
Batch vs Mini-Batch vs Stochastic Gradient Descent

Mini-Batch

Variance Reduction: Averaging over  samples reduces 
gradient variance by a factor of  compared to pure SGD, while 
still maintaining some beneficial noise


Hardware Efficiency: GPUs perform matrix operations in 
parallel. A batch size of 64 is nearly as fast as a batch size of 1 
on modern hardware, giving essentially 64× speedup over SGD


Memory-Computation Tradeof: Batch size can be tuned to 
maximize GPU memory utilization without requiring the full 
dataset


Balances Exploration and Exploitation: Enough noise to 
escape poor regions, enough signal to make consistent 
progress.


B
B



Gradient Descent 
Gradient Descent vs Closed Form

Gradient Descent Closed Form 
θ = (XTX)−1XTY

+ Linear increase in  (# training data) and  (# features) 

+ Generally applicable to multiple models  

+ Guaranteed to reach global optimum for convex functions 
and appropriate learning rate  

- Need to choose learning rate  and stopping conditions  

- Need to choose optimization method (Adam, RMSProp 
etc..) 

- Might get stuck in local optima / saddle point  

- Needs feature scaling 

m n

α

+ No parameter tuning  

+ Gives global optimum  

- Not generally applicable to any learning algorithm  

- Slow computation - scales with  where  is number of 
features 

n3 n



• Summary


• We saw how gradient descent works 


• We saw issues with gradient descent and how to address them 


• We saw multiple optimizers commonly used in gradient descent 


• We saw types of gradient descent (batch, mini-batch, stochastic)


• Next Class - Classification, cross-validation and logistic regression 

Summary and Next Class


