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Derivative of the Sigmoid Function
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Recap

Linear Regression Derivation
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Recap

Linear Regression Derivation

Find the point where VL(0) = 0
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Recap

Linear Regression Derivation - Matrix Form
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Linear Regression Derivation - Matrix Form
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Recap

Linear Regression Derivation - Matrix Form
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Recap

Linear Regression Derivation - Matrix Form

_ 1 v
L(O) = — Z(Y X0)
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Recap

Linear Regression Derivation - Matrix Form
1
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Recap

Linear Regression Derivation - Matrix Form

Each of these is a vector
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Recap

Linear Regression Derivation - Matrix Form

This whole thing is then also a vector
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Recap

Linear Regression Derivation - Matrix Form

These two representations are now similar
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Recap

Linear Regression Derivation - Matrix Form

So we can replace this with' (Y — X0)7(Y — X0)
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Recap

Linear Regression Derivation - Matrix Form

L(O) = 1 Z (Y — X0)?

L0 = (Y - XO)! (Y — X0)

(why is this true?)

LO) = YT - 0"X")(Y - X0)

(Take the transpose inside. And then, because (AB)T = BTAT)

LO=YY-Y'X0-0"X"Y+6"X"X0

(the two terms in the centre are equivalent, why?)

LO) =YY -20"X"Y + 6" X" X0
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Linear Regression Derivation - Matrix Form
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L(O) = ~ Z(Y X0)

LO) = (Y — XO)! (Y — X0)

(why is this true?)

LO) = YT - 0"X")(Y - X0)

(Take the transpose inside. And then, because (AB)” = BTAT)
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the two terms In the centre nt, why?)

LO) =YY -20"X"Y + 6" X" X0



Recap

Linear Regression Derivation - Matrix Form

$
Y7x0 € @ik g g
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Which means

YTX0 € RI*

Which means

Y X6 is symmetric

Which is why
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Recap

Linear Regression Derivation - Matrix Form

_ 1 v
L(O) = ~ Z(Y X0)

L0 = (Y - XO)! (Y — X0)

(why is this true?)

LO) = YT - 0"X")(Y - X0)

(because (AB)" = BTAT)

LO=YY-Y'X0-0"X"Y+6"X"X0

(the two terms in the centre are equivalent, why?)

LO) =YY -20"X"Yy + QTXTXQJ




Recap

Matrix Form - Derivative

NxN
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So we have

VL) = = 2XTY + 2X' X0
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Matrix Form - Derivative
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Recap

Matrix Form - Derivative

LO) =YY -20"XTY + 0T X1 X6

Lets look at 81 XTY

XTy € R™! _ This is a vector.
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Matrix Form - Derivative
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Recap

Matrix Form - Derivative

LO) =YY -20"XTY + 0T X1 X6

Lets look at 81 XY

@Nhere B=X'y e R
O - o |

.. . . 1x1
\ YN - A'X\ We know this is symmetric because the resultis € R




Recap

Matrix Form - Derivative

LO) =YY -20"XTY + 0T X1 X6
Lets look at 97 XY
M (\M} <3‘/ here B = X'Y € R™!

o M W)

The derivative rule we had:
V.(B'A)=B

e




Recap

Matrix Form - Derivative

LO) =YY -20"XTY + 0T X1 X6
Lets look at 87 XY
0" B where B =@e R
0'B= ("B =B'0

The derivative rule we had:
V,(B'0) =B
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Matrix Form - Derivative
LO) =YY -20"X"TY + HT@
For any vector A o &
V.(B'A)=B
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%\ R For any symmetric matrix B.
V,(ATBA) = 2BA
So we have

VL) = = 2XTY + 2XTX



Recap

Matrix Form - Derivative

LO) =YY —-20"XTY + 0T X1 X6

For any vector A
V.(B'A)=B

For any symmetric matrix B
V.,(ATBA) = 2BA

So we have

VL) = = 2XTY + 2X' X0



Recap Is X7 X symmetric?
Matrix Form - Derivative XX =X". (x"" = X"X
X' X is always symmetric

LO) =YY —-20"XTY + 0T X1 X6

For any vector A
V.(B'A)=B

For any symmetric matrix B
V.,(ATBA) = 2BA

So we have

VL) = = 2XTY + 2X' X0



Recap

Solution

We want to find the minimum so set gradient to zero
VL) = - 2X'Y +2X'X0 =0
2X'x0 = 2XTy
X'X0 = X'y
If X! X is invertible, then

0=X"X)"'xTy



Practical Example

https://zohairshafi.github.io/pages/lectures/Lecture_2_ Notebook.ipynb
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Train / Test Splits

« Generally data is split into a training dataset and a testing data

* Rough rule of thumb is that this is an 80-20 split
Yy X X1 X

80% of the entire dataset is set aside
for learning parameters - “training”

20% of the entire dataset is set aside This is unseen data and tells you if
to test the models the model can generalize well




Train / Test Splits

 However, in practice, if you are given only one train and test set, its easy to
accidentally pick model architectures that work well on the test set, even
though test set data is unseen

 To counter this, we use two unseen datasets - “validation” set and “test” set

* The split is generally of the form 80-10-10 where 80% is training data, 10% is
validation data and 10% is test data
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other



Practical Issues in Linear Regression
Multicollinearity by 22,

* When two features are highly correlated or are linearly dependent on each w\> %
other

« Why it's a problem: 0=(X"X)'x"y
« X' X becomes nearly singular (ill-conditioned) —/
« Small changes in data cause huge changes in coefficients
« Coefficients become unreliable and hard to interpret

e Standard errors blow up



Practical Issues in Linear Regression

Multicollinearity 1) [2<

* When two features are highly correlated or are linearly dependent on each
other

o Why it's a problem: 0 = (XTX)—1XTY Simple Detection:

If correlation between features > 0.8

<_\/—"

« XX becomes nearly singular (ill-conditioned)
« Small changes in data cause huge changes in coefficients
« Coefficients become unreliable and hard to interpret

e Standard errors blow up



Practical Issues in Linear Regression
Quick Aside

X € R™Xn

0 = (XTX)_leY m: Number of training examples

n: Number of parameters in the model
When else is this not going to be invertible?



Practical Issues in Linear Regression

Quick Aside 3’— Qe +O %, t@y2, +~ Oy +O,, 2y
A
YOUS ot deim L
12 S
X e R™"
6 = XTX)_1XTY m: Number of training examples

n: Number of parameters in the model

When else is this not going to be invertible? rank(X) = min(m, n)

If m < n, then rank(X) < m, so need more data
points than number of parameters to get a
unique set of parameters
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Overfitting vs Underfitting
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Practical Issues in Linear Regression
Overfitting vs Underfitting

The blue model is underfitting the data

A V »
The orange model is the data '\\_/..

The green model is a good fit of the data




Practical Issues in Linear Regression

Underfitting N

P
b

<

<
~
<
>

* What is happening?

* The model is too simple to be able to capture the data

4

* How do you identify it?
* Training loss is high
* Test loss is high
« Solutions
* Add more features
2 .2 )

« Add polynomial features (xi, xj, XX, -

* Use a more complex model

A

.\\//..
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Question: If the output looks like the curve in , is this still linear regression?




Practical Issues in Linear Regression
Quick Aside

A
« Add polynomial features (xlz,xzz,xlxz, -)

Jox) =6y + 01x; + 92x12

Question: If the output looks like the curve in , is this still linear regression?

Yes, the model f,(x) is still linear in its parameters, but just not in its inputs.

A model like f4(x) = 6, + xfl would however not classify as linear regression



Practical Issues in Linear Regression

Quick Aside

2 2 )

« Add polynomial features (x, xy, X;X,, ***

£Hx) = 0y + O,x, +@£Q/%>
AN ‘«(\M

What about these models?

Jo(x) =

O

2% O, pin(xy) ) — o

F— fylx) = sm@e +D62) + 0,

X

ZN

A




Practical Issues | in Linear Regression

Overfitting o % (9\ o L8

* What is happening? “@J;[% U\O\F (oo

* The model is too complex, so it learns the noise distribution and outliers and hence does not

generalize well o new aata points
* How do you identify it?
* Training loss is low
X
* Test loss is high x

+(Coefficients have large magnitudes

<
« Solutions vl X

{ Regularization (Ll,la@'— R s

 Cross-validation for model selection G ‘

¢ Reduce number of features

* Get more training data
———————
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Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Error from wrong assumptions due to the model being too simple
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A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Error from high sensitivity to each data point and noise due to the model being too complex



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

Inherent randomness in data. Cannot be removed.



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

E[(Y — V)] = = (E[Y] - Y)? + E[(Y — E[Y])?] + &°



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise
E[(Y = ¥)°] = = (E[¥] = ¥)* + E[(¥ - E[V])*] + ¢

How far is the average prediction from the true labels?




Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

E[(Y - ¥)*] = = (E[¥] - V)* + E[(Y = E[¥])?] + &*

)

If we use different training datasets, how much does IA/
vary?




Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

E[(Y — V)] = = (E[Y] - Y)* + E[(Y — E[Y])?] + 6°

This is not the Sigmoid function. This is just irreducible
noise in the true data Y



Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?
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Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model Complexity Bias Variance Train Error Test Error
Too Simple High Low High High
Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High



Practical Issues in Linear Regression

Regularization
A

* Regularization explicitly trades bias for variance.

) o




Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

L(O) = Z (Y — X9)2

1o =— Y- Xe}a‘mew

| ol

A

4

ai

a * §2ptxa
hou, .
KVA (%

St744
= mWCS./?/q)



Practical Issues in Linear Regression

Regularization
A

* Regularization explicitly trades bias for variance.

_1 Y 2
L(0) = mZ(Y X0)> + 26|

0=X'X+1)"'XTy



Practical Issues in Linear Regression

Regularization
A

* Regularization explicitly trades bias for variance. b/
1 L K -
LO)=— Y (¥~ X6) +[ij] \‘\/
m . .. * ..
0=X"X+A)"'XTY NN W2/

e As /increases:

* Coefficients shrink toward zero

—_—

* Bias increases (we're constraining the model)

* Variance decreases (less sensitive to data)

o At som@est error is minimized

XN



Practical Issues in Linear Regression

Regularization
A

* Regularization explicitly trades bias for variance.

1 2 . Y
Lo =—Y (v-xo W \/
0) " Z( ) hmOf parameteFS\ AV "\ /A,

are usually called

—3>=0=(X TX + I )_IX Ty hyper-parameters

« As 1 increases: CE Cx”qx

~\
) T They are not learnable
: a4 but are human defined
» Coefficients shrink toward zero —

* Bias increases (we're constraining the model)

* Variance decreases (less sensitive to data)

« At some A%, test error is minimized



Practical Issues in Linear Regression
Non-Linearity

A

 True relationship between x and y is not linear y \/

>



Practical Issues in Linear Regression
Non-Linearity

 True relationship between x and y is not linear

e Solutions:

Add polynomial terms like x2, X3 , etc..

Add interaction terms like x; - x,

Transform input features like log(x),\/x Sincay , (o5 ()

Use a non-linear model

e

—
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Feature Normalization
Why Normalize?

« If feature x; ranges from 0 to 1 and feature X, ranges from 0 to 1,000,000, this
could lead to numerical instability in the solving process

e This is particular relevant to gradient descent



Feature Normalization
Why Normalize?

« If feature x; ranges from 0 to 1 and feature X, ranges from 0 to 1,000,000, this
could lead to numerical instability in the solving process

e This is particular relevant to gradient descent

* Regularization unfairness

e If x, is much larger, 6, must be much smaller to produce similar predictions.

* The regularization penalty then affects features unequally based on arbitrary

scale choices.
®f_ G—\' &%' Lol




Feature Normalization
Why Normalize?

« If feature x; ranges from 0 to 1 and feature X, ranges from 0 to 1,000,000, this
could lead to numerical instability in the solving process

e This is particular relevant to gradient descent

* Regularization unfairness

e If x, is much larger, 6, must be much smaller to produce similar predictions.

* The regularization penalty then affects features unequally based on arbitrary
scale choices.

» Distance-based algorithms



Feature Normalization

Categorical vs Continuous Features

* Predict credit card balance

* Age

Income

Number of cards [\umc\n‘ cq \

Credit limit

Credit rating
« Categorical variables
« Student (Yes/No)
« State (50 different states)



Feature Normalization
Indicator Variables and One-Hot Encoding

* For a variable like “Student” that takes True/False values:

« We can simply replace with 0/1
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Indicator Variables and One-Hot Encoding

* For a variable like “Student” that takes True/False values:

« We can simply replace with 0/1 t%ﬁ\' r e p g0~

* For a variable like “State” which in the US can take 50 values, we use something
called One-Hot encoding

o state = [Xyy, Xpsas Xnj> Xwas Xca " Xpy]

« If the particular data point is from MA, that element of the vector is set to 1 and
everything else 0

e state = [0,1,0,0,0,---0]
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Feature Normalization
Indicator Variables and One-Hot Encoding

* For a variable like “Student” that takes True/False values:
« We can simply replace with 0/1

* For a variable like “State” which in the US can take 50 values, we use something
called One-Hot encoding

o State = [xNy, XMA’ XNJ, xWAa xCA? .“xR]]

« If the particular data point is from MA, that element of the vector is set to 1 and
everything else 0

e state = [0,1,0,0,0,---0]

A key disadvantage of one-hot encoding is that the feature space grows extremely large



Feature Normalization
Normalization Methods

1. Min-Max Normalization
2. Mean-Variance Normalization
3. Max-Absolute Normalization

4. Robust Normalization



Feature Normalization

Min-Max Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this
normalization method will scale each column to 0 and 1

we C /1000) , x — min(x)

|0,002 X = L
o & \0/ — mm(x))

* This method preserves zero entries in sparse data

* But is very sensitive to outliers



Feature Normalization

Mean-Variance Normalization

For every column in the input data, i.e., for each x, x;, x,, x4 etc., this
normalization method will scale to have mean 0 and standard deviation 1

,x—u®)

X = N
CG(X)) % 9({ A .

Most common in practice

el |)
» Less sensitive to outliers than min-max X = °2
* Does not bound the range to 0 and 1 (3
S




Feature Normalization
Max-Absolute Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this

normalization method will scale each column to -1 and 1
N—

, X
x' = '
| max(x) |

» Good for sparse data since it preserves sparsity (zeros stay zero)




Feature Normalization

Robust Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this
normalization method will scale each column as

, X median(x)
~ IQOR(x
JOR(x)
* Robust to outliers niev gravhle nye

« Use when data has many outliers



Feature Normalization

Robust Normalization

 For every column in the input data, i.e., for each x, x;, X,, X, etc., this
normalization method will scale each column as

X — median(x) This is just the second quartile O,
! e
IOR(x)

e Robust to outliers Inter-quartile range Q5 — Q1

« Use when data has many outliers



Conclusion

* We saw practical issues and considerations in linear regression like

Train/test splits

Multicollinearity

Overfitting and Underfitting

Bias-Variance tradeoffs

Regularization
* Feature pre-processing
* One-hot encoding

* Normalization methods



