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Recap
Derivative of the Sigmoid Function 

• Sigmoid: 


Let  and 
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f(x) = 1 + e−x g(x) = 1
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= x−1

σ(x) = g( f(x))
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σ′ (x) = e−x

(1 + e−x)2
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Find the point where 





L(θ) = 1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) = 1
m

m

∑
i=1

[θ0 + θ1 ⋅ xi − yi]2

∇L(θ) = 0
∂L(θ)
∂θ0

= 2
m

m

∑
i=1

(θ0 + θ1xi − yi) = 0

∂L(θ)
∂θ1

= 2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi) = 0

Recap
Linear Regression Derivation
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∇f( ) = 0

 points in direction of steepest ascent∇f( )
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Find the point where 





∇L(θ) = 0
∂L(θ)
∂θ0

= 2
m

m

∑
i=1

(θ0 + θ1xi − yi) = 0

∂L(θ)
∂θ1

= 2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi) = 0

Recap
Linear Regression Derivation

 
θ0 = ȳ − θ1x̄

θ1 = Cov(x, y)
Var(x)

F



Recap
Linear Regression Derivation - Matrix Form




 
 

L(θ) = 1
m ∑ (Y − Xθ)2

Y ∈ ℝm×1

X ∈ ℝm×n

θ ∈ ℝn×1
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Recap
Linear Regression Derivation - Matrix Form




 
 
 

L(θ) = 1
m ∑ (Y − Xθ)2

Y ∈ ℝm×1

X ∈ ℝm×n

θ ∈ ℝn×1

Xθ ∈ ℝm×n ⋅ ℝn×1 = ℝm×1
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L(θ) = 1
m ∑ (Y − Xθ)2

Y ∈ ℝm×1

X ∈ ℝm×n

θ ∈ ℝn×1

Xθ ∈ ℝm×n ⋅ ℝn×1 = ℝm×1

⃗u = [
5
7
9] ⃗u2 =

25
49
81

Recap
Linear Regression Derivation - Matrix Form
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L(θ) = 1
m ∑ (Y − Xθ)2

⃗u = [
5
7
9] ⃗u2 =

25
49
81

uTu = [5 7 9] ⋅ [
5
7
9] = [5 ⋅ 5 + 7 ⋅ 7 + 9 ⋅ 9] = [155]

Recap
Linear Regression Derivation - Matrix Form






 





 

L(θ) = 1
m ∑ (Y − Xθ)2

⃗u = [
5
7
9] ⃗u2 =

25
49
81

uTu = [5 7 9] ⋅ [
5
7
9] = [5 ⋅ 5 + 7 ⋅ 7 + 9 ⋅ 9] = [155]

uTu = [u2
1 + u2

2 + u2
3 + ⋯u2

n] =
n

∑
i

u2
i

Recap
Linear Regression Derivation - Matrix Form

08
s wwul.li






 





 

L(θ) = 1
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Recap
Linear Regression Derivation - Matrix Form

Each of these is a vector 
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Recap
Linear Regression Derivation - Matrix Form

This whole thing is then also a vector
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Recap
Linear Regression Derivation - Matrix Form

These two representations are now similar 
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Recap
Linear Regression Derivation - Matrix Form

So we can replace this with  (Y − Xθ)T(Y − Xθ)



Recap
Linear Regression Derivation - Matrix Form




  
(why is this true?)


 
(Take the transpose inside. And then, because )


 
(the two terms in the centre are equivalent, why?)


L(θ) = 1
m ∑ (Y − Xθ)2

L(θ) = (Y − Xθ)T(Y − Xθ)

L(θ) = (YT − θTXT)(Y − Xθ)
(AB)T = BT AT

L(θ) = YTY − YTXθ − θTXTY + θTXTXθ

L(θ) = YTY − 2θTXTY + θTXTXθ



Recap
Linear Regression Derivation - Matrix Form




  
(why is this true?)


 
(Take the transpose inside. And then, because )


 
(the two terms in the centre are equivalent, why?)


L(θ) = 1
m ∑ (Y − Xθ)2

L(θ) = (Y − Xθ)T(Y − Xθ)

L(θ) = (YT − θTXT)(Y − Xθ)
(AB)T = BT AT

L(θ) = YTY − YTXθ − θTXTY + θTXTXθ

L(θ) = YTY − 2θTXTY + θTXTXθ
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Which means 





Which means 


 is symmetric 

Which is why 





YTXθ ∈ ℝ1×m ⋅ ℝm×n ⋅ ℝn×1

YTXθ ∈ ℝ1×1

YTXθ

YTXθ = (YTXθ)T = θTXTY

Recap
Linear Regression Derivation - Matrix Form
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Recap
Linear Regression Derivation - Matrix Form




  
(why is this true?)


 
(because )


 
(the two terms in the centre are equivalent, why?)


L(θ) = 1
m ∑ (Y − Xθ)2

L(θ) = (Y − Xθ)T(Y − Xθ)

L(θ) = (YT − θTXT)(Y − Xθ)
(AB)T = BT AT

L(θ) = YTY − YTXθ − θTXTY + θTXTXθ

L(θ) = YTY − 2θTXTY + θTXTXθ



Recap
Matrix Form - Derivative 




For any vector  



For any symmetric matrix  



So we have 


L(θ) = YTY − 2θTXTY + θTXTXθ

A
∇A(BT A) = B

B
∇A(ATBA) = 2BA

∇L(θ) = − 2XTY + 2XTXθ
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Recap
Matrix Form - Derivative 




For any vector  
 

L(θ) = YTY − 2θTXTY + θTXTXθ

A
∇A(BT A) = B



Recap
Matrix Form - Derivative 




Lets look at  

L(θ) = YTY − 2θTXTY + θTXTXθ

θTXTY



Recap
Matrix Form - Derivative 




Lets look at  

L(θ) = YTY − 2θTXTY + θTXTXθ

θTXTY
 - This is a vector. XTY ∈ ℝn×1

Y
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Recap
Matrix Form - Derivative 




Lets look at 


 where  

L(θ) = YTY − 2θTXTY + θTXTXθ

θTXTY

θTB B = XTY ∈ ℝn×1
B



Recap
Matrix Form - Derivative 




Lets look at 


 where  

L(θ) = YTY − 2θTXTY + θTXTXθ

θTXTY

θTB B = XTY ∈ ℝn×1

We know this is symmetric because the result is ∈ ℝ1×1o fnt.mx
1 1



Recap
Matrix Form - Derivative 




Lets look at 


 where 





The derivative rule we had: 
 

L(θ) = YTY − 2θTXTY + θTXTXθ

θTXTY

θTB B = XTY ∈ ℝn×1

θTB = (θTB)T = BTθ

∇A(BT A) = B
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Recap
Matrix Form - Derivative 




Lets look at 


 where 





The derivative rule we had: 
 

L(θ) = YTY − 2θTXTY + θTXTXθ

θTXTY

θTB B = XTY ∈ ℝn×1

θTB = (θTB)T = BTθ

∇θ(BTθ) = B






For any vector  



For any symmetric matrix  



So we have 


L(θ) = YTY − 2θTXTY + θTXTXθ

A
∇A(BT A) = B

B
∇A(ATBA) = 2BA

∇L(θ) = − 2XTY + 2XTXθ

Recap
Matrix Form - Derivative 
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Recap
Matrix Form - Derivative 




For any vector  



For any symmetric matrix  



So we have 


L(θ) = YTY − 2θTXTY + θTXTXθ

A
∇A(BT A) = B

B
∇A(ATBA) = 2BA

∇L(θ) = − 2XTY + 2XTXθ



Recap
Matrix Form - Derivative 




For any vector  



For any symmetric matrix  



So we have 


L(θ) = YTY − 2θTXTY + θTXTXθ

A
∇A(BT A) = B

B
∇A(ATBA) = 2BA

∇L(θ) = − 2XTY + 2XTXθ

Is  symmetric?





 is always symmetric

XT X

(XT X)T = XT ⋅ (XT)T = XT X

XT X



Recap
Solution

We want to find the minimum so set gradient to zero











If  is invertible, then 


∇L(θ) = − 2XTY + 2XTXθ = 0
2XTXθ = 2XTY

XTXθ = XTY

XTX

θ = (XTX)−1XTY



Practical Example 
 

https://zohairshafi.github.io/pages/lectures/Lecture_2_Notebook.ipynb 

https://zohairshafi.github.io/pages/lectures/Lecture_2_Notebook.ipynb
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Train / Test Splits

• Generally data is split into a training dataset and a testing data 


• Rough rule of thumb is that this is an 80-20 split 
y x0 x1 x2

80% of the entire dataset is set aside 
for learning parameters - “training”

20% of the entire dataset is set aside 
to test the models

This is unseen data and tells you if 
the model can generalize well



Train / Test Splits

• However, in practice, if you are given only one train and test set, its easy to 
accidentally pick model architectures that work well on the test set, even 
though test set data is unseen 


• To counter this, we use two unseen datasets - “validation” set and “test” set


• The split is generally of the form 80-10-10 where 80% is training data, 10% is 
validation data and 10% is test data 

to



Practical Issues in Linear Regression 
Multicollinearity 

• When two features are highly correlated or are linearly dependent on each 
other 



Practical Issues in Linear Regression 
Multicollinearity 

• When two features are highly correlated or are linearly dependent on each 
other 


• Why it's a problem:


•  becomes nearly singular (ill-conditioned)


• Small changes in data cause huge changes in coefficients


• Coefficients become unreliable and hard to interpret


• Standard errors blow up

XTX

θ = (XTX)−1XTY
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Practical Issues in Linear Regression 
Multicollinearity 

• When two features are highly correlated or are linearly dependent on each 
other 


• Why it's a problem:


•  becomes nearly singular (ill-conditioned)


• Small changes in data cause huge changes in coefficients


• Coefficients become unreliable and hard to interpret


• Standard errors blow up

XTX

θ = (XTX)−1XTY Simple Detection: 
If correlation between features ≥ 0.8

1 1



Practical Issues in Linear Regression 
Quick Aside  

θ = (XTX)−1XTY
When else is this not going to be invertible? 

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model

m
n



Practical Issues in Linear Regression 
Quick Aside  

θ = (XTX)−1XTY
When else is this not going to be invertible? 

X ∈ ℝm×n

: Number of training examples  
: Number of parameters in the model 

m
n
rank(X) = min(m, n)

If , then , so need more data 
points than number of parameters to get a 

unique set of parameters

m < n rank(X) ≤ m

y 0020 O n 0222 Osk tonny

x
2rowsofdata 12 5

or
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Practical Issues in Linear Regression 
Overfitting vs Underfitting 



Practical Issues in Linear Regression 
Overfitting vs Underfitting 

underfitting

s bestfit

overfitting



Practical Issues in Linear Regression 
Overfitting vs Underfitting 

The blue model is underfitting the data


The orange model is overfitting the data 


The green model is a good fit of the data



Practical Issues in Linear Regression 
Underfitting 

• What is happening?


• The model is too simple to be able to capture the data 


• How do you identify it? 


• Training loss is high 


• Test loss is high 

• Solutions


• Add more features 


• Add polynomial features ( )


• Use a more complex model 

x2
1 , x2

2 , x1x2, ⋯

EIF



Practical Issues in Linear Regression 
Quick Aside 

• Add polynomial features ( )
x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1

Question: If the output looks like the curve in green, is this still linear regression? 
00.0



Question: If the output looks like the curve in green, is this still linear regression?


Yes, the model  is still linear in its parameters, but just not in its inputs.


A model like  would however not classify as linear regression  

fθ(x)

fθ(x) = θ0 + xθ1
1

Practical Issues in Linear Regression 
Quick Aside 

• Add polynomial features ( )
x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1

Oo 2,0



• Add polynomial features ( )





What about these models?  
 




x2
1 , x2

2 , x1x2, ⋯

fθ(x) = θ0 + θ1x1 + θ2x2
1

fθ(x) = θ1ex1 + θ2sin(x2)
fθ(x) = sin(θ1x1 + θ2x2

1) + θ2

Practical Issues in Linear Regression 
Quick Aside 

2 2
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Practical Issues in Linear Regression 
Overfitting 

• What is happening?


• The model is too complex, so it learns the noise distribution and outliers and hence does not 
generalize well to new data points 


• How do you identify it? 


• Training loss is low 


• Test loss is high 

• Coefficients have large magnitudes 

• Solutions


• Regularization ( )


• Cross-validation for model selection


• Reduce number of features


• Get more training data

L1, L2

0528 28

116.1150 1011100

Of



Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise
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Error from high sensitivity to each data point and noise due to the model being too complex



Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise

Inherent randomness in data. Cannot be removed. 
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Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

How far is the average prediction from the true labels?

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise



𝔼[(Y − ̂Y)2] = = (𝔼[ ̂Y] − Y)2 + 𝔼[( ̂Y − 𝔼[ ̂Y])2] + σ2

a



Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

If we use different training datasets, how much does  
vary? 

̂Y

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise



𝔼[(Y − ̂Y)2] = = (𝔼[ ̂Y] − Y)2 + 𝔼[( ̂Y − 𝔼[ ̂Y])2] + σ2

T



Practical Issues in Linear Regression 
A more mathematical look - Bias / Variance Tradeoff 

This is not the Sigmoid function. This is just irreducible 
noise in the true data Y

Every model's prediction error/loss can be decomposed into three parts:


Expected Loss = Bias² + Variance + Irreducible Noise



𝔼[(Y − ̂Y)2] = = (𝔼[ ̂Y] − Y)2 + 𝔼[( ̂Y − 𝔼[ ̂Y])2] + σ2



Practical Issues in Linear Regression 
Bias / Variance Tradeoff 

Why is it called a tradeoff? 
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Practical Issues in Linear Regression 
Bias / Variance Tradeoff 

Why is it called a tradeoff? 

Model Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High
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Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








L(θ) = 1
m ∑ (Y − Xθ)2

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2I

v1
40112 52 72 92

a sn ii.a



Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








L(θ) = 1
m ∑ (Y − Xθ)2

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY



Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








• As  increases:


• Coefficients shrink toward zero


• Bias increases (we're constraining the model)


• Variance decreases (less sensitive to data)


• At some , test error is minimized

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

λ

λ*

f



Practical Issues in Linear Regression 
Regularization

• Regularization explicitly trades bias for variance.








• As  increases:


• Coefficients shrink toward zero


• Bias increases (we're constraining the model)


• Variance decreases (less sensitive to data)


• At some , test error is minimized

L(θ) = 1
m ∑ (Y − Xθ)2 + λ∥θ∥2

θ = (XTX + λI)−1XTY

λ

λ*

These sort of parameters 
are usually called  
hyper-parameters 

They are not learnable 
but are human defined y



Practical Issues in Linear Regression 
Non-Linearity

• True relationship between  and  is not linearx y

x
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Practical Issues in Linear Regression 
Non-Linearity

• True relationship between  and  is not linear


• Solutions: 


• Add polynomial terms like etc..


• Add interaction terms like 


• Transform input features like 


• Use a non-linear model 

x y

x2, x3,
x1 ⋅ x2

log(x), x

x

y

Sinan cos n
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Feature Normalization 
Why Normalize?

• If feature  ranges from 0 to 1 and feature  ranges from 0 to 1,000,000, this 
could lead to numerical instability in the solving process 


• This is particular relevant to gradient descent 


• Regularization unfairness


• If  is much larger,  must be much smaller to produce similar predictions.


• The regularization penalty then affects features unequally based on arbitrary 
scale choices.


• Distance-based algorithms

x1 x2

x2 θ2
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Feature Normalization 
Why Normalize?

• If feature  ranges from 0 to 1 and feature  ranges from 0 to 1,000,000, this 
could lead to numerical instability in the solving process 


• This is particular relevant to gradient descent 


• Regularization unfairness


• If  is much larger,  must be much smaller to produce similar predictions.


• The regularization penalty then affects features unequally based on arbitrary 
scale choices.


• Distance-based algorithms

x1 x2

x2 θ2



Feature Normalization 
Categorical vs Continuous Features

• Predict credit card balance


• Age


• Income


• Number of cards


• Credit limit


• Credit rating


• Categorical variables


• Student (Yes/No)


• State (50 different states)

Numerical



• For a variable like “Student” that takes True/False values:


• We can simply replace with 0/1


• For a variable like “State” which in the US can take 50 values, we use something 
called One-Hot encoding 


• 


• If the particular data point is from MA, that element of the vector is set to 1 and 
everything else 0


•

state = [xNY, xMA, xNJ, xWA, xCA, ⋯xRI]

state = [0,1,0,0,0,⋯0]

Feature Normalization 
Indicator Variables and One-Hot Encoding 



• For a variable like “Student” that takes True/False values:


• We can simply replace with 0/1


• For a variable like “State” which in the US can take 50 values, we use something 
called One-Hot encoding 
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everything else 0
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Feature Normalization 
Indicator Variables and One-Hot Encoding 
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Feature Normalization 
Indicator Variables and One-Hot Encoding 

• For a variable like “Student” that takes True/False values:


• We can simply replace with 0/1


• For a variable like “State” which in the US can take 50 values, we use something 
called One-Hot encoding 


• 


• If the particular data point is from MA, that element of the vector is set to 1 and 
everything else 0


•
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• For a variable like “Student” that takes True/False values:


• We can simply replace with 0/1


• For a variable like “State” which in the US can take 50 values, we use something 
called One-Hot encoding 


• 


• If the particular data point is from MA, that element of the vector is set to 1 and 
everything else 0


•

state = [xNY, xMA, xNJ, xWA, xCA, ⋯xRI]

state = [0,1,0,0,0,⋯0]

Feature Normalization 
Indicator Variables and One-Hot Encoding 

A key disadvantage of one-hot encoding is that the feature space grows extremely large 



Feature Normalization 
Normalization Methods

1. Min-Max Normalization


2. Mean-Variance Normalization 


3. Max-Absolute Normalization 


4. Robust Normalization 



Feature Normalization 
Min-Max Normalization

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column to 0 and 1





• This method preserves zero entries in sparse data


• But is very sensitive to outliers


x0, x1, x2, x4

x′ = x − min(x)
max(x) − min(x)

a

a



Feature Normalization 
Mean-Variance Normalization 

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale to have mean 0 and standard deviation 1





• Most common in practice


• Less sensitive to outliers than min-max


• Does not bound the range to 0 and 1


x0, x1, x2, x4

x′ = x − μ(x)
σ(x)
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Feature Normalization 
Max-Absolute Normalization 

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column to -1 and 1 





• Good for sparse data since it preserves sparsity (zeros stay zero)

x0, x1, x2, x4

x′ = x
|max(x) |



Feature Normalization 
Robust Normalization 

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column as  





• Robust to outliers


• Use when data has many outliers

x0, x1, x2, x4

x′ = x − median(x)
IQR(x)
Thenquartilerange



Feature Normalization 
Robust Normalization 

Inter-quartile range Q3 − Q1

• For every column in the input data, i.e., for each  etc., this 
normalization method will scale each column as  





• Robust to outliers


• Use when data has many outliers

x0, x1, x2, x4

x′ = x − median(x)
IQR(x)

This is just the second quartile Q2



• We saw practical issues and considerations in linear regression like 


• Train/test splits 


• Multicollinearity 


• Overfitting and Underfitting 


• Bias-Variance tradeoffs 


• Regularization 


• Feature pre-processing 


• One-hot encoding 


• Normalization methods 

Conclusion


