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Recap

Derivative of the Sigmoid Function

. Sigmoid: o(x) =
l + e

|
Let f(x) =1+ e and g(x) = — = x"!
X

o(x) = g(f(x))
o(x) = (1 +e 7!

cd(xX)=—=1-(1+e™) 72 - —e™*

e—x

(1 + e—X)?2

—X

o'(x) =

o'(x) = o(x) - o

c'(x) = o(x) - (1 = o(x))



Recap

Linear Regression Derivation

1 m
L) =— ) [fyx) — v
it =1

V f(®) points in direction of steepest ascent
1 m

L) =— Y [0+ 6, - x;— v J
m =1

Find the point where VL(8) = 0

oL(O) 2
= — Oh+0x.—y)=0
00, mi=21( 0 01%; = ) VA®) =0
oL@) 2

D x- (O+0x,—y) =0

00, m&



Recap

Linear Regression Derivation

Find the point where VL(0) = 0

8L(6’) 2
— Oy + 0,x;, — y;) =
aeo 2( 0 1 yl)
8L(6’) 2
— ) X (Oy+0x, —y;) =
ael Z ( 0 1 yl)
Cov(x,
0, = ov(x,y)

Var(x)
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Linear Regression Derivation - Matrix Form
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Recap

Linear Regression Derivation - Matrix Form

1
= — ) (Y- X0
L(0) — (Y )

Y €[
X el
=R

mxn

mX1
MmXn

nxl1

nxl __ [ mX 1

25
= |49
81



Recap

Linear Regression Derivation - Matrix Form

b a2
L(O) = — Z(Y X0)

5 25
u= |7 u*= 149
0 81

uTu=[579]-[

O ~J W

] =[5-54+7-7+4+9-9] =[155]



Recap

Linear Regression Derivation - Matrix Form

_ 1 a2
L(O) = — Z(Y X0)

5 25
u= |7 u*= |49
0 S1

S
w'u=1[5709] [7] =[5-5+7-7+9-9]=[155]
9
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Recap

Linear Regression Derivation - Matrix Form

Each of these is a vector

_ 1 a2
L(O) = — Z(Y X0)

5 25
u= |7 u*= |49
0 S1

ulu=1_[5709]- [ ] =[5-5+7-749-9]=[155]

O ~J

ulu = [“12 u22 -+ u32 + u,%] = Z uiz




Recap

Linear Regression Derivation - Matrix Form

This whole thing is then also a vector

_ 1 a2
L(O) = — Z(Y X0)

5 25
u= |7 u*= |49
0 S1

ulu=1_[5709]- [ ] =[5-5+7-749-9]=[155]

O ~J

ulu = [“12 u22 -+ u32 + u,%] = Z uiz




Recap

Linear Regression Derivation - Matrix Form

These two representations are now similar

_ 1 a2
L(O) = — Z(Y X0)

5 25
u= |7 u*= |49
0 S1

ulu=1_[5709]- [ ] =[5-5+7-749-9]=[155]

O ~J

ulu = [“12 u22 -+ u32 + u,%] = Z ul-z




Recap

Linear Regression Derivation - Matrix Form

So we can replace this with (Y — X0)' (Y — X6)

_ 1 a2
L(O) = — Z(Y X0)

5 25
u= |7 u*= |49
0 S1

ulu=1_[5709]- [ ] =[5-5+7-749-9]=[155]

O ~J

ulu = [“12 u22 -+ u32 + u,%] = Z uiz
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Linear Regression Derivation - Matrix Form

L(0) = 1 Z (Y — X6)?

L(O) = (Y — X0)! (Y — X0)

(why is this true?)

L) =Y - 0" XY - X0)

(Take the transpose inside. And then, because (AB)! = BT AY)

LO)=Y'Y-Y'X0-0"X"Y+0"X"'XO

(the two terms in the centre are equivalent, why?)

LO) =Y'Y-20"X"Y+6'X' X0
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Linear Regression Derivation - Matrix Form

L(0) = 1 Z (Y — X6)?

L(O) = (Y — X0)! (Y — X0)

(why is this true?)

L) =Y - 0" XY - X0)

(Take the transpose inside. And then, because (AB)! = BT AY)

LO)=Y'Y-Y'X0-0"X"Y+0'X'XO
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Recap

Linear Regression Derivation - Matrix Form

YTX@ = RIXm . [RMXn RnXI

Which means

Y'x0 e R

Which means

Y! X0 is symmetric

Which is why
Y'xo = Y'xe)y! =o'x'y



Recap

Linear Regression Derivation - Matrix Form

_ b a2
L(O) = — Z(Y X0)

L(O) = (Y — X0)! (Y — X0)

(why is this true?)

L) =Y - 0" XY - X0)

(because (AB)! = BT AT

LO)=Y'Y-Y'X0-0"X"Y+0"X"'XO

(the two terms in the centre are equivalent, why?)

LO) =Y'Y-20"X"Y+6'X' X0
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Matrix Form - Derivative
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Recap

Matrix Form - Derivative

LO) =YY —20TXTY + 0TXT X0

Lets look at 01 XY

0’ B where B = X'Y € R™!

We know this is symmetric because the resultis € R1*!
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Matrix Form - Derivative
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Matrix Form - Derivative
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Recap

Matrix Form - Derivative

L@ =Y'Y-20"X"Y + 0" X" X0

For any vector A

For any symmetric matrix B
V.,(A"BA) = 2BA

So we have

VL) = - 2X'Y + 2X' X6



Is X1 X symmetric?

Recap

Matrix Form - Derivative XTxX) =xT.x"" = xTx

X' X is always symmetric

L@ =Y'Y-20"X"Y + 0" X" X0

For any vector A

For any symmetric matrix B
V.,(A"BA) = 2BA

So we have

VL) = - 2X'Y + 2X' X6



Recap

Solution

We want to find the minimum so set gradient to zero
VLO) = -2X'Y+2X'X0 =0
2X'X0 = 2X"'Y
X'X0=X"Y
if X' X is invertible, then

0=X'X)"xTy



Practical Example

https://zohairshafi.github.io/pages/lectures/Lecture 2 Notebook.ipynb
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Train / Test Splits

* (Generally data is split into a training dataset and a testing data

 Rough rule of thumb is that this is an 80-20 split
y X0 X1 X

80% of the entire dataset is set aside
for learning parameters - “training”

20% of the entire dataset is set aside This is unseen data and tells you if
to test the models the model can generalize well




Train / Test Splits

 However, In practice, if you are given only one train and test set, its easy to
accidentally pick model architectures that work well on the test set, even

though test set data is unseen

e Jo counter this, we use two unseen datasets - “validation” set and “test” set

* The split is generally of the form 80-10-10 where 80% is training data, 10% is
validation data and 10% is test data
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Practical Issues in Linear Regression

Multicollinearity

 When two features are highly correlated or are linearly dependent on each
other

o Why it's g problem: 0 = XTX)_1XTY Simple Detection:

If correlation between features > 0.8

+ X' X becomes nearly singular (ill-conditioned)
 Small changes in data cause huge changes in coefficients
» Coefficients become unreliable and hard to interpret

e Standard errors blow up
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0 = (X X) XY m: Number of training examples
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Practical Issues in Linear Regression
Quick Aside

X = Rm)(n

I'xN\—1vyT
0 = (X X) XY m: Number of training examples

- | | | n: Number of parameters in the model
When else is this not going to be invertible? rank(X) = min(m, n)
If m < n, then rank(X) < m, so need more data
points than number of parameters to get a
unique set of parameters
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Practical Issues in Linear Regression
Overfitting vs Underfitting

The blue model is underfitting the data
The orange model is the data

The green model is a good fit of the data




Practical Issues in Linear Regression
Underfitting

 What is happening?
* The model is too simple to be able to capture the data
* How do you identify it?

* Training loss is high

* Testloss is high
* Solutions
* Add more features
« Add polynomial features (xlz, x22, XXy, ***)

 Use a more complex model
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Practical Issues in Linear Regression
Quick Aside

« Add polynomial features (xlz, xzz, X1 X, )

Question: If the output looks like the curve in , Is this still linear regression?

Yes, the model f,(x) is still linear in its parameters, but just not in its inputs.

A model like fy(x) = G, + x191 would however not classify as linear regression



Practical Issues in Linear Regression
Quick Aside

« Add polynomial features (xlz, xzz, X1 X, )

What about these models?
fH(X) — Hlexl + 92Sin(x2)

fo(x) = sin(0,x; + 0,x7) + 6,



Practical Issues in Linear Regression
Overfitting

 What is happening?

* The model is too complex, so it learns the noise distribution and outliers and hence does not
generalize well to new data points

 How do you identify it?
* Training loss is low

* Jest loss is high

» Coefficients have large magnitudes
e Solutions

« Regularization (L, L,)

e Cross-validation for model selection

e Reduce number of features

* Get more training data
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A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + lrreducible Noise

Inherent randomness in data. Cannot be removed.
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A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

(Y=Y ==

(Y] - V)2 +
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How far is the average prediction from the true labels?



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + Irreducible Noise

(Y=Y ==

(Y] - V)2 +

_[(?_

C[Y])?] + o2

If we use different training datasets, how much does Y

vary?



Practical Issues in Linear Regression

A more mathematical look - Bias / Variance Tradeoff

Every model's prediction error/loss can be decomposed into three parts:

Expected Loss = Bias? + Variance + lrreducible Noise

(Y=Y ==

(Y] - V)2 +

_[(?_

C[Y])?] + o2

This is not the Sigmoid function. This is just irreducible
noise in the true data Y
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Practical Issues in Linear Regression

Bias / Variance Tradeoff

Why is it called a tradeoff?

Model Complexity Bias Variance Train Error Test Error
Too Simple High Low High High
Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High
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Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

1 Cum2
L(O) = — Z(Y X0)

_ LN v _ xor :
L(O) = — ), (¥ = X0 + 0]

0=X"'X+A)"'X"Y



Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.
1
LO) =— ) (Y — X0)* + A]|0]°
m

0=X'X+1)'XTY

e As A increases:

* Coefficients shrink toward zero
* Bias increases (we're constraining the model)

» Variance decreases (less sensitive to data)

o At some A%, test error is minimized



Practical Issues in Linear Regression

Regularization

* Regularization explicitly trades bias for variance.

I R T
L(O) =— ) (Y = XO7 +2]10]

These sort of parameters
are usually called

O = (XTX + Al )_1XTY hyper-parameters

e As A increases: They are not learnable
but are human defined

e (Coefficients shrink toward zero

* Bias increases (we're constraining the model)

» Variance decreases (less sensitive to data)

o At some A%, test error is minimized
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Practical Issues in Linear Regression

Non-Linearity

» True relationship between x and y is not linear y \/
* Solutions:

2

e Add polynomial terms like x ,x3, etc..

» Add interaction terms like x; - X,

« Transform input features like log(x), \/)_c

e Use a non-linear model
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Feature Normalization

Why Normalize?

» |f feature x, ranges from 0 to 1 and feature x, ranges from 0 to 1,000,000, this
could lead to numerical instabllity in the solving process

* This Is particular relevant to gradient descent
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Feature Normalization

Why Normalize?

» |f feature x, ranges from 0 to 1 and feature x, ranges from 0 to 1,000,000, this
could lead to numerical instabllity in the solving process

* This Is particular relevant to gradient descent

* Regularization unfairness

» If X, is much larger, 6, must be much smaller to produce similar predictions.

* The regularization penalty then affects features unequally based on arbitrary
scale choices.

* Distance-based algorithms



Feature Normalization

Categorical vs Continuous Features

* Predict credit card balance
 Age
* Income
 Number of cards
» Credit limit
* Credit rating
» Categorical variables
o Student (Yes/No)

o State (50 different states)
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Feature Normalization

Indicator Variables and One-Hot Encoding

e For a variable like “Student” that takes True/False values:

* We can simply replace with 0/1

* For a variable like “State” which in the US can take 50 values, we use something
called One-Hot encoding

o Stale = [.xNy, )CMA, XNJ’ XWA, xCA, ".xRI]

 |f the particular data point is from MA, that element of the vector is set to 1 and
everything else O

e state = [0,1,0,0,0,---0]

A key disadvantage of one-hot encoding is that the feature space grows extremely large



Feature Normalization

Normalization Methods

1. Min-Max Normalization
2. Mean-Variance Normalization
3. Max-Absolute Normalization

4. Robust Normalization



Feature Normalization

Min-Max Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column to O and 1

, X — min(x)

X=—
max(x) — min(x)

 This method preserves zero entries In sparse data

* But Is very sensitive to outliers



Feature Normalization

Mean-Variance Normalization

 For every column in the input data, i.e., for each X, x;, x,, x, etc., this
normalization method will scale to have mean 0 and standard deviation 1

, _ X~ HW)
o(x)

X

 Most common in practice
e |Less sensitive to outliers than min-max

* Does not bound the range to 0 and 1



Feature Normalization

Max-Absolute Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column to -1 and 1

X

X' = ——
| max(x) |

 (Good for sparse data since it preserves sparsity (zeros stay zero)



Feature Normalization

Robust Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column as

- x — median(x)
X=—

IQR(x)
 Robust to outliers

 Use when data has many outliers



Feature Normalization

Robust Normalization

 For every column in the input data, i.e., for each X, X, X,, X, etc., this
normalization method will scale each column as

, X — median(x) This is just the second quartile O,
X —m —m—m@™@m8

[OR(x)
e Robust to outliers Inter-quartile range O; — Q1

 Use when data has many outliers



Conclusion

 We saw practical issues and considerations in linear regression like
* Train/test splits
* Multicollinearity
* Overfitting and Underfitting
e Bias-Variance tradeoffs
* Regularization
* Feature pre-processing
* One-hot encoding

e Normalization methods



