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Linear Algebra 
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• Consider the equation  y = w0x0 + w1x1

 
 

 
 

 
 

(1) ⋅ w0 + (450) ⋅ w1 = 2000

(1) ⋅ w0 + (510) ⋅ w1 = 2100

(2) ⋅ w0 + (980) ⋅ w1 = 2400

(3) ⋅ w0 + (1500) ⋅ w1 = 3000

Systems of Linear Equations - Linear Regression Example
Linear Algebra 

X ∈ ℝ4×2 W ∈ ℝ2×1 y ∈ ℝ4×1

X ⋅ W = y=
This is a matrix product!



• A set of vectors are linearly independent if none of them can be written as a 
linear combination of each other. 

Linear Independence and Rank of a Matrix
Linear Algebra 

               


The vectors  are not linearly independent since  


               


The vectors  are linearly independent

⃗u = [
1
2
3] ⃗v = [

2
4
6]

⃗u, ⃗v ⃗v = 2 ⋅ ⃗u

⃗u = [
1
2
3] ⃗v = [

7
9

13]
⃗u, ⃗v



•  is given:


• Number of linearly independent columns


• Number of linearly independent rows 


• There's a related fact about the upper bound on rank:


•  - upper bound on rank 


• For an  matrix, you can't have more than  independent rows (there are only  of them) or 
more than  independent columns.


• So the rank is bounded by whichever dimension is smaller.


• A matrix has full rank if 

rank(A)

rank(A) ≤ min(m, n)

m × n m m
n

rank(A) = min(m, n)

Linear Independence and Rank of a Matrix
Linear Algebra 



Linear Algebra 
Inverse of Matrices 

• For a square matrix, the inverse matrix  is a matrix such that:  
 
                                         


• Some properties of inverse:


• 


• 


•

A−1

A ⋅ A−1 = A−1 ⋅ A = I

(A−1)−1 = A

(AB)−1 = B−1A−1

(AT)−1 = (A−1)T

A matrix is only invertible if it has full rank 
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Inverse of Matrices 

• For a square matrix, the inverse matrix  is a matrix such that:  
 
                                         


• If a given matrix  is invertible, then we can find a solution for the equation of 
the form  as: 

A−1

A ⋅ A−1 = A−1 ⋅ A = I

A
Ax = b 








Ax = b

A−1Ax = A−1b

Ix = A−1b

x = A−1b
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• If a given matrix  is invertible, then we can find a solution for the equation of 
the form  as 


• For the linear regression problem , a potential solution can be 
 
                                                    

A−1
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A
Ax = b x = A−1b

X ⋅ W = y

W = X−1y



• For a square matrix, the inverse matrix  is a matrix such that:  
 
                                         


• If a given matrix  is invertible, then we can find a solution for the equation of 
the form  as 


• For the linear regression problem , a potential solution can be 
 
                                                    

A−1

A ⋅ A−1 = A−1 ⋅ A = I

A
Ax = b x = A−1b

X ⋅ W = y

W = X−1y

Linear Algebra 
Inverse of Matrices 

BUT 
For this to hold true,  must be a square matrix and invertible, which is rarely the case X



• The determinant  of a matrix  is a scalar value of a matrix


• It determines whether a matrix is invertible and how it scales volume


• Some properties:


•  is invertible 


• 


• 


•

det(A) A

det(A) ≠ 0 ⟹ A

det(AB) = det(A) ⋅ det(B)

det(AT) = det(A)

det(A−1) =
1

det(A)

Linear Algebra 
Determinants 



• The determinant  of a matrix  is a scalar value of a matrix


• It determines whether a matrix is invertible and how it scales volume


• Some properties:


•  is invertible 


• 


• 


•

det(A) A

det(A) ≠ 0 ⟹ A

det(AB) = det(A) ⋅ det(B)

det(AT) = det(A)

det(A−1) =
1

det(A)

Linear Algebra 
Determinants 

For a  matrix  2 × 2 A = [a b
c d]

det(A) = a ⋅ d − b ⋅ c



• For a square matrix :


                              

A

Av = λv
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Eigenvalues and Eigenvectors

 is a non-zero vectorv
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• For a square matrix :


                              

A

Av = λv

Linear Algebra 
Eigenvalues and Eigenvectors

 is a non-zero vector  Eigenvectorv ⟹
 is a scalar value  Eigenvalueλ ⟹

Interpretation 
The Eigenvector  is a vector such that when multiplied by the matrix , 

the vector remains the same but is scaled by the Eigenvalue 
v A

λ



• Some properties - 


• To find Eigenvalues: 


•  i.e.,  is the product of all Eigenvalues of 


• For Symmetric matrices (i.e., )


  
 
where  is the matrix of all Eigenvectors 
and  is a diagonal matrix with all Eigenvalues 

Av = λv

det(A − λI) = 0

det(A) = Π λi det(A) A

A = AT

A = VΛVT

V
Λ

Linear Algebra 
Eigenvalues and Eigenvectors



• Some properties - 


• To find Eigenvalues: 


•  i.e.,  is the product of all Eigenvalues of 


• For Symmetric matrices (i.e., )


  
 
where  is the matrix of all Eigenvectors 
and  is a diagonal matrix with all Eigenvalues 

Av = λv

det(A − λI) = 0

det(A) = Π λi det(A) A

A = AT

A = VΛVT

V
Λ

Linear Algebra 
Eigenvalues and Eigenvectors

This is also called the Eigendecomposition of a matrix  since you 
are decomposing the matrix into two matrices  and  

A
V Λ
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• The derivative  measures the instantaneous rate of change of the 

function  at the input 


f′￼(x) =
df
dx

f x

f′￼(x) = limh→0
f(x + h) − f(x)

h

Calculus
Derivatives



Calculus
Derivatives

 is an infinitesimally small valueh

• The derivative  measures the instantaneous rate of change of the 

function  at the input 


f′￼(x) =
df
dx

f x
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f(x + h) − f(x)

h
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f(x)
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Calculus
Derivatives

 is an infinitesimally small valueh

• The derivative  measures the instantaneous rate of change of the 

function  at the input 


f′￼(x) =
df
dx

f x

f′￼(x) = limh→0
f(x + h) − f(x)

h
 f

x

x + h

f(x)
f(x + h)

If , then the derivative of speed is acceleration, i.e., rate of change of speed Speed =
Distance

Time



Calculus
Common Derivatives

• 





• 





• 


f(x) = xn

df
dx

= n ⋅ xn−1

f(x) = ex

df
dx

= ex

f(x) = log(x)
df
dx

=
1
x

• 





• 





f(x) = sin(x)
df
dx

= cos(x)

f(x) = cos(x)
df
dx

= − sin(x)



Calculus
Derivative Rules

• Sum Rule





• Product Rule


( f + g)′￼ = f′￼+ g′￼

( fg)′￼ = fg′￼+ f′￼ g

• Quotient Rule





• Chain Rule


• If , then 


(
f
g

)′￼ =
f′￼g − fg′￼

g2

y = f(g(x))
dy
dx

= f ′￼(g(x)) ⋅ g′￼(x)



Calculus
Partial Derivatives

• For a function , the partial derivative  is the derivative with 

respect to  only while leaving all other variables as constant 

• Example: 


f(x1, x2, x3, x4)
∂f
∂xi

xi

f(x, y) = x2y + 3xy2



Calculus
Partial Derivatives

• For a function , the partial derivative  is the derivative with 

respect to  only while leaving all other variables as constant 

• Example: 





f(x1, x2, x3, x4)
∂f
∂xi

xi

f(x, y) = x2y + 3xy2

∂f
∂x

= 2xy + 3y2

∂f
∂y

= x2 + 6xy



Calculus
Gradient

• The gradient  is a vector of all partial derivatives of a function 


Given a function 





• Properties 


• Gradient points in the direction of steepest ascent 


• Negative gradient points in the direction of steepest descent 


• At a minimum or maximum point, 

∇f

f(x1, x2, x3, x4)

∇f = [
∂f
∂x1

,
∂f
∂x2

,
∂f
∂x3

,
∂f
∂x4

]

∇f = 0



Calculus
Gradient

• The gradient  is a vector of all partial derivatives of a function 


Given a function 





• Properties 


• Gradient points in the direction of steepest ascent 


• Negative gradient points in the direction of steepest descent 


• At a minimum or maximum point, 

∇f

f(x1, x2, x3, x4)

∇f = [
∂f
∂x1

,
∂f
∂x2

,
∂f
∂x3

,
∂f
∂x4

]

∇f = 0

 f

∇f( ) = 0

 points in direction of steepest ascent∇f( )



Calculus
Gradient

• If you have multiple functions 
 
 



• Then the Jacobian is defined as 


y1 = f1(x1, x2, x3)
y2 = f2(x1, x2, x3)
y3 = f3(x1, x2, x3)

∂y
∂x

=

∂y1

∂x1

∂y1

∂x2

∂y1

∂x3

∂y2

∂x1

∂y2

∂x2

∂y2

∂x3

∂y3

∂x1

∂y3

∂x2

∂y3

∂x3



Calculus
Some Properties of Vector and Matrix Gradients

• If  and  are two 
vectors, 





• If  and 


⃗x ∈ ℝd×1 ⃗v ∈ ℝd×1

∂vTx
∂x

= vT

A ∈ ℝn×d x ∈ ℝd×1

∂Ax
∂x

= A

• If  (square) and 





If  is also symmetric, then


 


• If 


A ∈ ℝd×d x ∈ ℝd×1

∂xT Ax
∂x

= (A + AT)x

A

∂xT Ax
∂x

= 2Ax

x ∈ ℝd×1

∂∥x∥2

∂x
= 2xT



Calculus
Exercise 

• Sigmoid: 


• Derivative ?

σ(x) =
1

1 + e−x

σ′￼(x) =



Calculus
Exercise 

• Sigmoid: 


• Derivative :


Let  and 








 








σ(x) =
1

1 + e−x

f(x) = 1 + e−x g(x) =
1
x

= x−1

σ(x) = g( f(x))

σ(x) = (1 + e−x)−1

σ′￼(x) = − 1 ⋅ (1 + e−x)−2 ⋅ − e−x

σ′￼(x) =
e−x

(1 + e−x)2

σ′￼(x) = σ(x) ⋅
e−x

1 + e−x

σ′￼(x) = σ(x) ⋅ (1 − σ(x))

Use chain rule 
dy
dx

= f ′￼(g(x)) ⋅ g′￼(x)
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Linear Regression 

• The oldest statistical learning method (Legendre and Gauss 1805)


• One of the most widely used techniques 


• Fundamental to many complex models 


• Logistic regression 


• Neural networks 


• Deep learning 


• Easy to understand and interpret 


• Efficient to find optimal solution in closed form 


• Efficient to find a solution using practical algorithms like gradient descent 



Linear Regression 
Example Task - Income Prediction 

True label: y

Input Feature: x1

Input Feature: x0



Linear Regression 
Example Task - Income Prediction 

• Linear Model 


fθ(x) = θ0 + θ1x0 + θ2x1



Linear Regression 
Example Task - Income Prediction 

• Linear Model 


fθ(x) = θ0 + θ1x0 + θ2x1
Learnable parameters



• Linear Model 





• Loss Functions (also called Cost Functions)


 - Mean Squared Error

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) =
1
m

m

∑
i=1

[ fθ(xi) − yi]2

Linear Regression 

The red lines are called residuals 



• Linear Model 





• Loss Functions (also called Cost Functions)


 - Mean Squared Error


 - Residual Sum of Squares

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) =
1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) =
m

∑
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[ fθ(xi) − yi]2

Linear Regression 

The red lines are called residuals 



• Linear Model 





• Loss Functions (also called Cost Functions)


 - Mean Squared Error


 - Residual Sum of Squares

fθ(x) = θ0 + θ1x0 + θ2x1

L(θ) =
1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) =
m

∑
i=1

[ fθ(xi) − yi]2

Linear Regression 

The red lines are called residuals 

Side Note  
 and  are generally used interchangeably and are used to denote the 

predicted value


Similarly,  and  are used interchangeably to denote learnable parameters

fθ(x) ̂y

w θ



• Linear Model 


fθ(x) = θ0 + θ1x

Linear Regression 

θ0

̂y

x

Response Variable

Explanatory Variable



• Linear Model 





• How do we find the solution to this? How do we find the optimal ?


• We optimize  to minimize the loss function 





fθ(x) = θ0 + θ1x

θ

θ

L(θ) =
1
m

m

∑
i=1

[ fθ(xi) − yi]2

L(θ) =
1
m

m

∑
i=1

[θ0 + θ1 ⋅ x − yi]2

Linear Regression 



• Linear Model 





• How do we find the solution to this? How do we find the optimal ?
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(∑i x2
i − mx̄2)

θ1 =
∑i (xi − x̄)(yi − ȳ)
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i

xi = θ1(x̄∑
i

xi + ∑
i

x2
i )

m

∑
i

θ1 = mθ1

∑
i

xiyi − mx̄ȳ = θ1(∑
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xiyi = (ȳ − θ1x̄)∑
i

xi + θ1 ∑
i

x2
i

∑
i

xiyi − ȳ∑
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Linear Regression 

 





The slope  makes sense:


• If  and  covary strongly (move together), the slope is steeper


• If  has high variance (spread out), the slope is gentler


• The sign of covariance determines if the line goes up or down


θ0 = ȳ − θ1x̄

θ1 =
Cov(x, y)
Var(x)

θ1 =
Cov(x, y)
Var(x)

x y

x

θ0

̂y

x

Slope = θ1

fθ(x) = θ0 + θ1x



Linear Regression 
Solutions in Matrix Form

• Let’s look at the matrix formulation of the same problem 





But in matrix form, , where  has  rows of data and  columns 

of features and 


  
 

(think back to system of equations for why this is true)

L(θ) =
1
m ∑

i

(yi − ̂yi)2

fθ(x) = ̂Y = Xθ X ∈ ℝm×d m d

θ = [θ0

θ1] ∈ ℝd×1

L(θ) =
1
m ∑ (Y − Xθ)2



w0

w1

• Consider the equation  y = w0x0 + w1x1

 
 

 
 

 
 

(1) ⋅ w0 + (450) ⋅ w1 = 2000

(1) ⋅ w0 + (510) ⋅ w1 = 2100

(2) ⋅ w0 + (980) ⋅ w1 = 2400

(3) ⋅ w0 + (1500) ⋅ w1 = 3000

Systems of Linear Equations - Linear Regression Example

1 450
1 510

2000

2100[ ]2 980
3 1500

][ =
2400

3000
[ ]

Price # 
Rooms Sq. Ft. 

2000 1 450

2100 1 510

2400 2 980

3000 3 1500

y x1x0

Quick Recap

X ∈ ℝ4×2 W ∈ ℝ2×1 y ∈ ℝ4×1



• Consider the equation  y = w0x0 + w1x1

 
 

 
 

 
 

(1) ⋅ w0 + (450) ⋅ w1 = 2000

(1) ⋅ w0 + (510) ⋅ w1 = 2100

(2) ⋅ w0 + (980) ⋅ w1 = 2400

(3) ⋅ w0 + (1500) ⋅ w1 = 3000

Systems of Linear Equations - Linear Regression Example
Quick Recap

X ∈ ℝ4×2 W ∈ ℝ2×1 y ∈ ℝ4×1

X ⋅ W = y=



Linear Regression 
Expanded Loss Function in Matrix Form 




  
(why is this true?)


 
(because )


 
(the two terms in the centre are equivalent, why?)


L(θ) =
1
m ∑ (Y − Xθ)2

L(θ) = (Y − Xθ)T(Y − Xθ)

L(θ) = (YT − θTXT)(Y − Xθ)
(AB)T = BT AT

L(θ) = YTY − YTXθ − θTXTY + θTXTXθ

L(θ) = YTY − 2θTXTY + θTXTXθ
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Derivative 




For any matrix  
 




So we have 


L(θ) = YTY − 2θTXTY + θTXTXθ

A
∇A(BT A) = B

∇A(ATBA) = 2BA

∇L(θ) = − 2XTY + 2XTXθ
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Linear Regression 
Solution

We want to find the minimum so set gradient to zero











If  is invertible, then 


∇L(θ) = − 2XTY + 2XTXθ = 0

2XTXθ = 2XTY

XTXθ = XTY

XTX

θ = (XTX)−1XTY
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Linear Regression 
Regression vs Correlation 

• Correlation 

• Find a numerical value expressing the relationship between variables


• Measures linear dependence


• Regression 

• Estimate values of response variable on the basis of the values of predictor 
variable


• The slope of linear regression is related to correlation coefficient


• Regression scales to more than 2 variables, but correlation does not



Practical Example 
 

https://zohairshafi.github.io/pages/lectures/Lecture_2_Notebook.ipynb 

https://zohairshafi.github.io/pages/lectures/Lecture_2_Notebook.ipynb


Conclusion

• We went through some more linear algebra and calculus 


• We defined linear regression 


• We derived the optimal solution for linear regression and mean squared error loss 


• We derived the optimal solution for linear regression and mean squared loss in 
the matrix form 


• We saw some practical examples of linear regression in a Jupyter notebook 


• Next Class: 


• Practical issues, feature normalization and gradient descent


