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1. Linear Algebra
2. Calculus

3. Simple Linear Regression
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Linear Algebra

Systems of Linear Equations

» Consider the equation Ax = b

'AEmen
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Linear Algebra

Systems of Linear Equations

» Consider the equation Ax = b

e A €

e X € |

e b el

mxn

nxl1

mx 1

This is a system of m equations
with n unknown parameters

a; X, + apx, = b,
ay1X| + dypXy = by
az1X| + azpX, = by

ay1X) + agpXy = by



Linear Algebra

Systems of Linear Equations

» Consider the equation Ax = b

Hxn
« A € R™
. [ nxl1 This IS a system of m equations
X € with n unknown parameters
mx1
*beEl ai s =0 apy app
ay1 Xy + AyXy = by ary Oy [ X,
_> —
a31X) + a3pXy = by ayy Adzy X,

Cl41x1 —+ a42x2 — b4 a41 a42



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,
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« Consider the equation y = wyx, + WX,
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Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y Xo X

Price

H
Rooms

Sq. Ft.

2000

1

450

2100

510

2400

980

3000

1500

(1)
(1)
(2)
3)

- wy + (450) - w; = 2000
-wy + (510) - w; = 2100
- wy + (980) - w; = 2400
- wy + (1500) - w; = 3000



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y X X
. #
711%® | Rooms | 5% T (1) - wy + (450) - w; = 2000 1 450 000
2000 | 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wy + (980) - w; = 2400 2 980 [ W1] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y X X
. #
711%® | Rooms | 5% T (1) - wy + (450) - w; = 2000 1 450 000
2000 | = 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wy + (980) - w; = 2400 2 980 [ W1] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000

These are all the vector of X



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y X X
. #
711%® | Rooms | 5% T (1) - wy + (450) - w; = 2000 1 450 000
2000 | 1 450 (1) - wy +(510) - w; = 2100 1 510 W 2100
(2) - wo + (980) - w; = 2400 2 980 [ wl] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000

These are all the vector of X;



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y X X
. #
711%® | Rooms | 5% T (1) - wy + (450) - w; = 2000 1 450 000
2000 | 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wo + (980) - wy = 2400 2 980 [ wl] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000

This is the matrix for input data X € R***



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y Ao M
. #
711%® | Rooms | 5% T (1) - wy + (450) - w; = 2000 1 450 _—
2000 | 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wp + (980) - w; = 2400 2 9380 [ wid | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000

This is the vector of training data or labels y



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

y X X
. #
711%® | Rooms | 5% T (1) - Wy + (450) - wy = 2000 1 450 000
2000 | 1 450 (1) - wp + (510) - wy = 2100 1 510 W 2100
(2) - wp + (980) - wy = 2400 2 980 [ wl] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000

Finally, the matrix of learnable weights W



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

X X
y O 1 X e R4X2 W e RZXI y E R4X1
Price # Sqg. Ft.
Rooms (1) - wy+ (450) - w; = 2000 1 450 2000
2000 | 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wp + (980) - wy = 2400 2 9380 [wl] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

(1)
(1)
(2)
(3)

owo

(450) - w, = 2000

-wy + (510) - wy; = 2100
- wy + (980) - wy = 2400
- wy + (1500) - wy = 3000

X- W=y

X & R4X2

W e RZXI

y E R4X1



Linear Algebra

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

X e R4X2 W e RZXI y E R4X1
(1) - wy + (450) - w; = 2000

(1) -wy+ (510) - w; = 2100
— X- W=y
(2) - wy + (980) - w, = 2400
This is a matrix product!

(3) - wy + (1500) - w; = 3000



Linear Algebra

Linear Independence and Rank of a Matrix

* A set of vectors are linearly independent if none of them can be written as a
linear combination of each other.

-f ol

The vectors u, v are not linearly independent since v =2 - u

- -l

The vectors u, v are linearly independent



Linear Algebra

Linear Independence and Rank of a Matrix

« rank(A) is given:
 Number of linearly independent columns
 Number of linearly independent rows

 There's a related fact about the upper bound on rank:
e rank(A) < min(m, n) - upper bound on rank

 For an m X n matrix, you can't have more than m independent rows (there are only m of them) or
more than n independent columns.

* So the rank is bounded by whichever dimension is smaller.

» A matrix has full rank if rank(A) = min(m, n)



Linear Algebra

Inverse of Matrices

 For a square matrix, the inverse matrix A ! is a matrix such that:

A-A =AY, A =T Amatixisonly invertible if it has full rank

e Some properties of inverse:
c (AH =4
. (AB)"' =B71A-!
.« (AT = (A~



Linear Algebra

Inverse of Matrices

 For a square matrix, the inverse matrix A ! is a matrix such that:
A-A T =A"1.A=1

o |If a given matrix A is invertible, then we can find a solution for the equation of

the form Ax = b as: Ax = b
A7 lAx =A"1p
Ix=A"1p

x=A"1p



Linear Algebra

Inverse of Matrices

 For a square matrix, the inverse matrix A ! is a matrix such that:
A-A T =A"1.A=1

o |If a given matrix A is invertible, then we can find a solution for the equation of
the form Ax =basx =A"'b

« For the linear regression problem X - W = vy, a potential solution can be

W=X"1y



Linear Algebra

Inverse of Matrices

 For a square matrix, the inverse matrix A ! is a matrix such that:
A-A T =A"1.A=1

o |If a given matrix A is invertible, then we can find a solution for the equation of
the form Ax =basx =A"'b

« For the linear regression problem X - W = vy, a potential solution can be

W=X"1y

BUT
For this to hold true, X must be a square matrix and invertible, which is rarely the case



Linear Algebra

Determinants

* The determinant det(A) of a matrix A is a scalar value of a matrix
e |t determines whether a matrix is invertible and how it scales volume

 Some properties:
e det(A) # 0 = A isinvertible
e det(AB) = det(A) - det(B)
. det(A") = det(A)

Cdet(A™h = Tt A)




Linear Algebra

Determinants

* The determinant det(A) of a matrix A is a scalar value of a matrix
e |t determines whether a matrix is invertible and how it scales volume

 Some properties:
e det(A) # 0 = A isinvertible
e det(AB) = det(A) - det(B)
. det(A") = det(A)

Fora2 X 2 matrix A = [a b]
c d

det(A)=a-d—b-c

Cdet(A™h = Tt A)




Linear Algebra

Eigenvalues and Eigenvectors

» For a square matrix A:

Ay = AV

V IS a hon-zero vector



Linear Algebra

Eigenvalues and Eigenvectors

» For a square matrix A:

Ay = AV

/A is a scalar value



Linear Algebra

Eigenvalues and Eigenvectors

» For a square matrix A:

Ay = AV

—> Eigenvector
—> Eigenvalue
Interpretation

The Eigenvector v is a vector such that when multiplied by the matrix A,
the vector remains the same but is scaled by the Eigenvalue A



Linear Algebra

Eigenvalues and Eigenvectors

« Some properties - Av = Av
» To find Eigenvalues: det(A — Al) = 0
» det(A) =11 A i.e., det(A) is the product of all Eigenvalues of A
. For Symmetric matrices (i.e., A = A')
A =VAV!

where V' is the matrix of all Eigenvectors
and A is a diagonal matrix with all Eigenvalues



Linear Algebra

Eigenvalues and Eigenvectors

« Some properties - Av = Av
» To find Eigenvalues: det(A — Al) = 0

» det(A) =11 A i.e., det(A) is the product of all Eigenvalues of A

. For Symmetric matrices (i.e., A = A”)

A _ V AVT This is also called the Eigendecomposition of a matrix A since you
. are decomposing the matrix into two matrices V and A

where V' is the matrix of all Eigenvectors
and A is a diagonal matrix with all Eigenvalues



Today’s Outline

1. Linear Algebra
2. Calculus

3. Simple Linear Regression
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Calculus

Derivatives

df

. The derivative f'(x) = - measures the instantaneous rate of change of the
X

function f at the input x

J(x +h) = f(x)

(x) = lim
f() h—(0 h



Calculus

Derivatives
o, df .
. The derivative f'(x) = - measures the instantaneous rate of change of the
X
function f at the input x
, . Jx+h) - f(x) f X+ h

f) = limy g2 aa

h *

h is an infinitesimally small value f(x +h) _____________ ¥

J(x)



Calculus

Derivatives

df

. The derivative f'(x) = - measures the instantaneous rate of change of the
X

function f at the input x

. f(x+h) — f(x) f x+h
fx) =lim_j————— :
h
h is an infinitesimally small value f(x :t::}:l:?:::::::::__::_i:
J(x) :
X
Distance o | o
If Speed = , then the derivative of speed is acceleration, i.e., rate of change of speed

Time



Calculus

Common Derivatives

* flx) =x" » f(x) = sin(x)
ﬁ =n-x""! ﬁ = cos(x)
dx dx

» fx) =¢ » f(x) = cos(x)
df df .
— =¥ — = — sin(x)
dx dx

» fx) = log(x)
ﬁ o

dx  x



Calculus

Derivative Rules

« Sum Rule  Quotient Rule
(f+8)'=f+g (i),zfg—fg
g g*
* Product Rule
/ / , « Chain Rule
(fg)'=Jg'+1 g

» Ify = f(g(x)), then

d |
o = f(g(x)) - g'(x)
dx



Calculus

Partial Derivatives

of

. For a function f(x,, x,, x5, X, ), the partial derivative a— is the derivative with
A

respect to x; only while leaving all other variables as constant

. Example: f(x,y) = x°y + 3xy”



Calculus

Partial Derivatives

of

. For a function f(x,, x,, x5, X, ), the partial derivative a— is the derivative with
A

respect to x; only while leaving all other variables as constant

. Example: f(x,y) = x°y + 3xy”

0

g = 2xy + 3y*
0X

0

—f = x% + 6xy

dy



Calculus
Gradient

e The gradient Vfis a vector of all partial derivatives of a function

Given a function f(x;, X,, X3, X4)

of o o o

0x; 0Xx, Oxy OXxy

Vi=1

* Properties
* (Gradient points in the direction of steepest ascent

* Negative gradient points in the direction of steepest descent

At a minimum or maximum point, Vf = 0



Calculus
Gradient

e The gradient Vfis a vector of all partial derivatives of a function

Given a function f(xl’ Xy, X3, X4) V f(®) points in direction of steepest ascent

of o o o /

0x; 0Xx, Oxy OXxy

Vi=1

* Properties

* Gradient points in the direction of steepest ascent Vf(®) =0

* Negative gradient points in the direction of steepest descent

At a minimum or maximum point, Vf = 0



Calculus
Gradient

* |f you have multiple functions
yp = J1(xp, X, X3)
Yo = Jo(X15 Xp, X3)
V3 = J3(X), X, X3)

* Then the Jacobian is defined as




Calculus

Some Properties of Vector and Matrix Gradients

. If)? =3 dx1 and {; =3 dx1 are two . IfA € R (square) and x & Rax1
vectors, ox’ Ax .
. =A+A")x
oV’ x T o
o =V If A is also symmetric, then
ox! Ax
. IfA € R™4 and x € R¥*! = 2AX
X
0AX _ A . Ifx € R
0x ol|x||°
<2

ox



Sigmoid Function

Calculus )
Exercise
. Sigmoid: o(x) = ———
l +e*
 Derivative 6'(x) = ? ;




Calculus

Exercise

. Sigmoid: o(x) =
° ) I +e>

e Derivative :

1
Let f(x) =1 +eFand g(x) = — = x~!
X

o(x) = g(f(x))
o(x)=(1+e!

Use chain rule ﬂ = f(g(x)) - g'(x)

dx



Calculus

Exercise

. Sigmoid: o(x) =
° ) I +e>

e Derivative :

1
Let f(x) =1 +eFand g(x) = — = x!
X

o(x) = g(f(x))
o(x) = (1 +e !
cdxX)==1-(1+e 2 - —¢™



Calculus

Exercise

. Sigmoid: o(x) =
° ) I +e>

e Derivative :

1
Letf(x) =1+ e Fand g(x) = — = x~!
X

o(x) = g(f(x))
o(x) =(1+e !
cdx)=—1-(1+e™?% . —e ™



Calculus

Exercise

. Sigmoid: o(x) =
° ) I +e>

e Derivative :

1
Let f(x) =1 +eFand g(x) = — = x~!
X

o(x) = g(f(x))
o(x)=(1+e!
cdx)=—1-(1+e™?% . —e™

e—x

(1 4+ e=)?

o'(x) =



Calculus

Exercise

. Sigmoid: o(x) =
° ) I +e>

e Derivative :

1
Let f(x) =1 +eFand g(x) = — = x~!
X

o(x) = g(f(x))
o(x)=(1+e!
cdx)=—1-(1+e™?% . —e™

e—x

(1 4+ e=)?

—X

o'(x) =

o'(x) =o(x) - o o

o'(x) = o(x) - (1 = o(x))
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3. Simple Linear Regression
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Linear Regression

* The oldest statistical learning method (Legendre and Gauss 1805)
* One of the most widely used technigues
 Fundamental to many complex models
* Logistic regression
* Neural networks
* Deep learning
e Easy to understand and interpret
» Efficient to find optimal solution in closed form

* Efficient to find a solution using practical algorithms like gradient descent



Linear Regression

Example Task - Income Prediction

- -~
A gy

True label: vy

Input Feature: X,
Input Feature: Xx;



Linear Regression

Example Task - Income Prediction

e Linear Model

fé(X) — 0() + QIXO + Hle



Linear Regression

Example Task - Income Prediction

e Linear Model

]CH(X) — HO + 6’le + Hle

Learnable parameters



Linear Regression

e Linear Model

fé(X) — 9() + QIXO + 92)(:1

e Loss Functions (also called Cost Functions)

The red lines are called residuals

1 ,
L(O) = — Z | Jo(x:) — ¥:]° - Mean Squared Error
iz



Linear Regression

e Linear Model
]%)(X) — HO + ‘9le + 92)61

e Loss Functions (also called Cost Functions)

The red lines are called residuals

l « ,
L(O) = — Z | fo(x;) — ¥:]* - Mean Squared Error
Mz

L(O) = Z [f,(x;) — v:]* - Residual Sum of Squares
i=1



Linear Regression

Side Note

fo(x) and y are generally used interchangeably and are used to denote the
predicted value

e | Iinear Model Similarly, w and @ are used interchangeably to denote learnable parameters

e Loss Functions (also called Cost Functions)

The red lines are called residuals

l « ,
L(O) = — Z | fo(x;) — ¥:]* - Mean Squared Error
Mz

L(O) = 2 [f,(x;) — v:]* - Residual Sum of Squares
i=1



Linear Regression

e Linear Model

1) = 6, ielx
Response Variable ~ §) \

“
A4

X Explanatory Variable



Linear Regression

e Linear Model
Jfo(x) =6+ 0,x
« How do we find the solution to this? How do we find the optimal 67

« We optimize @ to minimize the loss function

1 m
L) =— ) [fyx) = y?
i =1

m

1
L©O) =— ) [0+ 0, - x =y
m =1



Linear Regression

* Linear Model
fg(x) — 9() + 91)6 V f(®) points in direction of steepest ascent

« How do we find the solution to this? How do we find the optimal 67

« We optimize @ to minimize the loss function

1 m
L) =— ) [fyx) = y?
M Vf(®) =0

1 m
L©O) =— ) [0+ 0, - x =y
m =1



Linear Regression

« How do we find the solution to this? How do we find the optimal 67

« We optimize @ to minimize the loss function S
V f(®) points in direction of steepest ascent

L(6) = %i [fo(x;) — yi]z f
i=1

1 m
L) =— D [6p+06, x5,y
m =1

Find the point where VL(6) = 0

OLO) 2 o Vie) =0
” _m§(90+91xi ) =0 f
oL@ 2

691 m i



Linear Regression
Finding 6,

oL@ 2 &

——2(90+91xi_yz°) =0
6(90 m i1




Linear Regression
Finding 6,

oL(d) 2

00, m
1

We can ignore — since its simply a scaling factor here

m
Zyz'= ZQO_I'HIin

l

D O+ 0% —y) =0
=1



Linear Regression
Finding 6,

oL(d) 2

00, m
1

We can ignore — since its simply a scaling factor here

m
Zyz'= ZQO_I'HIin

l

D O+ 0% —y) =0
=1

m
Since Z 0, = mdo,
i

Zyz'=m90+912xi

I l



Linear Regression
Finding 6,

oL(d) 2

—2(90"‘913%_%') =0
6(90 m i1

|

We can ignore — since its simply a scaling factor here
m
Zyi = ZQO_I'HIin
i i i
m
Since Z 0, = mdo,
i

Zyz'=m90+912xi

i i
Divide both sides my m
}_7 — 90 ~+ 81)2



Linear Regression




Linear Regression
Finding 6,

oL(O) 2 «
=— ) X (Oh+0x—-y)=0
691 m -

=1
inyi = HOin+ lexiz

l




Linear Regression
Finding 6,

0L(0) 2 &
00, m 4 i+ (B 2 )

i=1
inyi = HOin+ lexiz

l

Substitue 6, = y — 6, %

inyi =y -0%) in +0, inz



Linear Regression
Finding 6,

0L(0) 2 &

1=

_ 2

inyi = Hozxi‘l‘ lexi
i i i
Substitue 0, =y — 0,x

nyl—(y 6’1x)2x +912x
2 X;y; — ny—Ql(xe+Zx2)




Linear Regression
Finding 6,

0L(0) 2 &

1=

_ 2

inyi = Hozxi‘l‘ lexi
i i i
Substitue 0, =y — 0,x

nyl—(y 6’1x)2x +912x
2 X;y; — ny—Ql(xe+Zx2)

Since Z 0, = mo,

l
Z x;y; —mxy = 0,( Z X7 — mi?)
i

l




Linear Regression
Finding 6,

agf) = % 2% G+ 65— y) =0 9 Z,- X;Y; — MXxy
1 i —
- : L D x? — mx?)
inyi_eozxi_l_glzxi ]
Substitue 0, =y — 0,x

nyl—(y 6’1x)2x +912x
2 X;y; — ny—Ql(xe+Zx2)

Since Z 0, = mo,

l
Z x;y; —mxy = 0,( Z X7 — mi?)
i

l



Linear Regression
Finding 6,

agf =%in-<90+91xi—y,->=o 0 _ Zixiyi — mxy
_ 2 L (), x? — mx?)
inyi_eozxi_l_glzxi ]
Substitue 6, =  — 6, This can be rewritten as
= (-6 0 _ _
2=0° 1’”2“ 2 ¥, (= D0, - )

g, =
So-sEa-0e T T SR
Since Z@lzmﬁl

l
Z x;y; —mxy = 0,( Z X7 — mi?)
i

l



Linear Regression
Finding 6,

agéle) =%2xi~(90+91xi—yi) ) g _ Zixiyi — mxy
inyil;HOin+lexi2 L (2, X — mx?)
| Substitue elo =3 91; This can be rewritten as
nyl—(y 91X)2x+912x2 ) Zi(xi—)?)(yi—)_/)
Z XY = yZX—WZHZ“ 1 Zi(xi_)_c)z
Since Z@l = m#), Which is
inyl, — mEy = HI(ZXZ.Z — mi) 0 — Cov(x,y)
l z | =

Var(x)



Linear Regression

Cov(x,y)
91 —
Var(x)
Cov(x,
The slope 0, = ‘iv()(c )y) makes sense:
ar(x

 |f x and y covary strongly (move together), the slope is steeper

 |If x has high variance (spread out), the slope is gentler

* The sign of covariance determines if the line goes up or down

Jfo(x) =6, + 0,x



Linear Regression

Solutions in Matrix Form

» |et’s look at the matrix formulation of the same problem

1 A
L(O) = — Z (i — 9

Vo

But in matrix form, f,(x) = Y = X0, where X € | mXd has m rows of data and d columns

O
0,

of features and @ =

_ 1 a2
L(O) = — D (Y —X0)

(think back to system of equations for why this is true)



Quick Recap

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

X X
y O 1 X e R4X2 W e RZXI y E R4X1
Price # Sqg. Ft.
Rooms (1) - wy+ (450) - w; = 2000 1 450 2000
2000 | 1 450 (1) - wy + (510) - wy = 2100 1 510 W 2100
(2) - wp + (980) - wy = 2400 2 9380 [wl] | 2400
2100 | 1 510 3 1500 3000

2400

980

3000

1500

3)

- wy + (1500) - w; = 3000



Quick Recap

Systems of Linear Equations - Linear Regression Example

« Consider the equation y = wyx, + WX,

(1)
(1)
(2)
(3)

owo

(450) - w, = 2000

-wy + (510) - wy; = 2100
- wy + (980) - wy = 2400
- wy + (1500) - wy = 3000

X- W=y

X & R4X2

W e RZXI

y E R4X1



Linear Regression

Expanded Loss Function in Matrix Form

_ b a2
L(O) = — Z(Y X0)



Linear Regression

Expanded Loss Function in Matrix Form

L(0) = 1 Z (Y — X6)?

L(O) = (Y — X0)! (Y — X0)

(why is this true?)



Linear Regression

Expanded Loss Function in Matrix Form

L(0) = 1 Z (Y — X6)?

L(O) = (Y — X0)! (Y — X0)

(why is this true?)

L) =Y - 0" XY - X0)

(because (AB)! = BT AT



Linear Regression

Expanded Loss Function in Matrix Form

L(0) = 1 Z (Y — X6)?

L(O) = (Y — X0)! (Y — X0)

(why is this true?)

L) =Y - 0" XY - X0)

(because (AB)! = BT AT

LO)=Y'Y-Y'X0-0"X"Y+0"X"'XO

(the two terms in the centre are equivalent, why?)



Linear Regression

Expanded Loss Function in Matrix Form

L(0) = 1 Z (Y — X6)?

L(O) = (Y — X0)! (Y — X0)

(why is this true?)

L) =Y - 0" XY - X0)

(because (AB)! = BT AT

LO)=Y'Y-Y'X0-0"X"Y+0"X"'XO

(the two terms in the centre are equivalent, why?)

LO) =Y'Y-20"X"Y+6'X' X0



Linear Regression

Derivative

L@ =Y'Y-20"X"Y + ' X" X6
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Linear Regression

Derivative

L@ =Y'Y-20"X"Y + ' X" X6

For any vector A

For any symmetric matrix B
V.,(A"BA) = 2BA

So we have

VL) = - 2X'Y + 2X' X6



Linear Regression

Derivative

LO) =Y'Y-20"X"Y +0' X' X0

For any vector A

For any symmetric matrix B

V.,(A'BA) = 2BA
So we have

VL) = - 2X'Y +2X"' X6



Linear Regression

Solution

We want to find the minimum so set gradient to zero

VLO) = -2X'Y+2X'X0 =0
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We want to find the minimum so set gradient to zero
VLO) = -2X'Y+2X'X0 =0
2X' X0 =2X"'Y
X'X0=X"Y



Linear Regression

Solution

We want to find the minimum so set gradient to zero
VLO) = -2X'Y+2X'X0 =0
2X'X0 = 2X"'Y
X'X0=X"Y
if X' X is invertible, then

0=X'X)"xTy



Linear Regression

Regression vs Correlation

* Correlation
* Find a numerical value expressing the relationship between variables
 Measures linear dependence

 Regression

* Estimate values of response variable on the basis of the values of predictor
variable

* The slope of linear regression is related to correlation coefficient

 Regression scales to more than 2 variables, but correlation does not



Practical Example

https://zohairshafi.github.io/pages/lectures/Lecture 2 Notebook.ipynb



https://zohairshafi.github.io/pages/lectures/Lecture_2_Notebook.ipynb

Conclusion

 \We went through some more linear algebra and calculus
 We defined linear regression
* We derived the optimal solution for linear regression and mean squared error loss

* We derived the optimal solution for linear regression and mean squared loss in
the matrix form

 We saw some practical examples of linear regression in a Jupyter notebook
* Next Class:

* Practical issues, feature normalization and gradient descent



