
Wednesday | February 18, 2026

Midterm Review
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Models Seen So Far
Supervised Unsupervised

Linear Regression

Logistic
Regression

k-NN

LDA

PCA

k-Means
Clustering

Linear Regression

Model: 

Loss Function:

̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize:

Closed Form:

Gradient Descent:

θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)

Linear Regression

Model: 

Loss Function:

̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize:

Closed Form:

Gradient Descent:

θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)

Linear Regression

Model: 

Loss Function:

̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize:

Closed Form:

Gradient Descent:

θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)

Linear Regression

Model: 

Loss Function:

̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize:

Closed Form:

Gradient Descent:

θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)

Linear Regression

Model: 

Loss Function:

̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize:

Closed Form:

Gradient Descent:

θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)

Logistic Regression

Model: 

Loss Function:

̂y = σ(θ0 + θ1 ⋅ ϕ(x))

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Optimize:

Closed Form:

None - Cannot invert Sigmoid

Gradient Descent:

∂ℓ
∂θ

=
1
m

m

∑
i=1

x(i) ⋅ (̂y(i) − y(i))

∇θ(ℓ(θ)) =
1
m

XT(̂Y − Y)

Logistic Regression

Model: 

Loss Function:

̂y = σ(θ0 + θ1 ⋅ ϕ(x))

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Optimize:

Closed Form:

None - Cannot invert Sigmoid

Gradient Descent:

∂ℓ
∂θ

=
1
m

m

∑
i=1

x(i) ⋅ (̂y(i) − y(i))

∇θ(ℓ(θ)) =
1
m

XT(̂Y − Y)

Logistic Regression

Model: 

Loss Function:

̂y = σ(θ0 + θ1 ⋅ ϕ(x))

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Optimize:

Closed Form:

None - Cannot invert Sigmoid

Gradient Descent:

∂ℓ
∂θ

=
1
m

m

∑
i=1

x(i) ⋅ (̂y(i) − y(i))

∇θ(ℓ(θ)) =
1
m

XT(̂Y − Y)

Logistic Regression

Model: 

Loss Function:

̂y = σ(θ0 + θ1 ⋅ ϕ(x))

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Optimize:

Closed Form:

None - Cannot invert Sigmoid

Gradient Descent:

∂ℓ
∂θ

=
1
m

m

∑
i=1

x(i) ⋅ (̂y(i) − y(i))

∇θ(ℓ(θ)) =
1
m

XT(̂Y − Y)

Logistic Regression

Model: 

Loss Function:

̂y = σ(θ0 + θ1 ⋅ ϕ(x))

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Optimize:

Closed Form:

None - Cannot invert Sigmoid

Gradient Descent:

∂ℓ
∂θ

=
1
m

m

∑
i=1

x(i) ⋅ (̂y(i) − y(i))

∇θ(ℓ(θ)) =
1
m

XT(̂Y − Y)

k-Nearest Neighbors

Model: 
Non-parametric model

Loss Function:

No parameters to optimize

Optimize/Inference:

Closed Form:

Find k nearest neighbors

Majority voting

k-Nearest Neighbors

Model: 
Non-parametric model

Loss Function:

No parameters to optimize

Optimize/Inference:

Closed Form:

Find k nearest neighbors

Majority voting

k-Nearest Neighbors

Model: 
Non-parametric model

Loss Function:

No parameters to optimize

Optimize/Inference:

Closed Form:

Find k nearest neighbors

Majority voting

Optimize/Inference:

Closed Form:

Find k nearest neighbors

Majority voting

k-Nearest Neighbors

Model: 
Non-parametric model

Loss Function:

No parameters to optimize

k-Nearest Neighbors

Model: 
Non-parametric model

Loss Function:

No parameters to optimize

Optimize/Inference:

Closed Form:

Find k nearest neighbors

Majority voting

Not a learnable parameter

(learnable)

Linear Discriminant Analysis

Model: 
 

Loss Function:

None

Has assumptions on data distributions
instead

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

Optimize/Inference:

Closed Form:

Estimate , and

Plug into model

μk ℙ(Y = k) Σ

Linear Discriminant Analysis

Model: 
 

Loss Function:

None

Has assumptions on data distributions
instead

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

Optimize/Inference:

Closed Form:

Estimate , and

Plug into model

μk ℙ(Y = k) Σ

Linear Discriminant Analysis

Model: 
 

Loss Function:

None

Has assumptions on data distributions
instead

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

Optimize/Inference:

Closed Form:

Estimate , and

Plug into model

μk ℙ(Y = k) Σ

Linear Discriminant Analysis

Model: 
 

Loss Function:

None

Has assumptions on data distributions
instead

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

Optimize/Inference:

Closed Form:

Estimate , and

Plug into model

μk ℙ(Y = k) Σ

LDA for Dimensionality Reduction

Model: 
 

Loss Function:

Maximize

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

J(w) =
wTSBw
wTSWw

Optimize/Inference:

Closed Form:

S−1
W SB ⋅ w = λw

LDA for Dimensionality Reduction

Model: 
 

Loss Function:

Maximize

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

J(w) =
wTSBw
wTSWw

Optimize/Inference:

Closed Form:

S−1
W SB ⋅ w = λw

LDA for Dimensionality Reduction

Model: 
 

Loss Function:

Maximize

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

J(w) =
wTSBw
wTSWw

Optimize/Inference:

Closed Form:

S−1
W SB ⋅ w = λw

LDA for Dimensionality Reduction

Model: 
 

Loss Function:

Maximize

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

J(w) =
wTSBw
wTSWw

Optimize/Inference:

Closed Form:

S−1
W SB ⋅ w = λw

Models Seen So Far
Supervised Unsupervised

Linear Regression

Logistic
Regression

k-NN

LDA

PCA

k-Means
Clustering

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Gradient Descent

 : Learning Rate α

Step 1: Initialize

Step 2: Repeat Until Convergence

ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Gradient Descent

 : Learning Rate α

If is too large? α

If is too small? α

Gradient Descent
When to stop?

Fixed Iteration Gradient Norm Change in Loss Change in θ Validation

Gradient Descent
Practical Issues

Feature Scaling /
Pre-processing

Small Gradients /
Plateau Regions Adaptive Step Sizes

Gradient Descent
Batch Sizes

Batch GD Mini Batch GD Stochastic GD

Practical Issues in ML

Overfitting Underfitting

Practical Issues in ML

Model
Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

Practical Issues
Regularization

• Regularization explicitly trades bias for variance.

L(θ) =
1
m ∑ (Y − Xθ)2

L(θ) =
1
m ∑ (Y − Xθ)2 + λ∥θ∥2

Practical Issues
k-Fold Cross Validation

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

CV1 =
1

D1 ∑
D1

ℓ(yD1
, fθ(D1))

Validation Set D1

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

CV2 =
1

D2 ∑
D2

ℓ(yD2
, fθ(D2))

Validation Set D2

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

CV3 =
1

D3 ∑
D3

ℓ(yD3
, fθ(D3))

Validation Set D3

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

CV4 =
1

D4 ∑
D4

ℓ(yD4
, fθ(D4))

Validation Set D4

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

CV5 =
1

D5 ∑
D5

ℓ(yD5
, fθ(D5))

Validation Set D5

k-Fold Cross Validation
Algorithm

Algorithm

1. Shuffle the dataset randomly

2. Split data into equally-sized folds (or partitions)

3. for each fold :

3a. Use fold as the validation set

3b. Use the remaining folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

Mean CV Score:

C̄V =
1
k

k

∑
i=1

CVi

k-Fold Cross Validation
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

Mean CV Score:

C̄V =
1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

k-Fold Cross Validation
Algorithm

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
Let’s say we want to run

-fold cross validation k = 5

Train on 8 rows, test on 2
row

Mean CV Score:

C̄V =
1
k

k

∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

-fold CV requires  
training models.

If training is expensive,
smaller is preferred.

k
k

k

k-Fold Cross Validation
Variants

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4 Stratified Cross-Validation

• The Problem with Random Splits

• For imbalanced classification, random splits may create folds with different class
distributions.

• One fold might have 40% positives while another has 20%, leading to unreliable
estimates.

• Stratified sampling ensures each fold has approximately the same class distribution as
the full dataset.

• Algorithm:

• Separate samples by class

• For each class, distribute samples evenly across folds

• Combine to form final folds

k−

Classification

• Your classifier will output a probability value
between 0 and 1

• Example:

•

•

• Practitioner needs to also set a threshold

• is a cat if

ℙ(cat | image1) = 0.61

ℙ(cat | image2) = 0.52

imagei ℙ(cat | imagei) ≥ Threshold

x1

x0

This is the learned
curve, the
“decision
boundary”This is class 0

This is class 1

Classification Metrics

Predicted Positive Predicted Negative

Actual Positive

Actual Negative

Classification Metrics

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Metrics
Precision and Recall

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Metrics
Precision and Recall

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Of all instances predicted as positive, what fraction actually are positive?  
Precision measures the reliability of positive predictions. High precision means few
false alarms.

When to care about precision?  
When false positives are costly.  
 
Examples include spam filtering (users hate losing important emails), recommendation
systems (irrelevant recommendations erode trust), and legal contexts (wrongful
accusations).

Metrics
Precision and Recall

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Of all actual positive instances, what fraction did we correctly identify? Recall
measures coverage of positive instances. High recall means few missed positives. 
 
When to care about recall?  
When false negatives are costly.

Examples include disease screening (missing a diagnosis can be fatal), security
threats (missing an attack is catastrophic), and search engines (users want all relevant
results).

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

Precision and recall are inherently in tension.

Increasing the threshold for positive classification typically increases precision
but decreases recall.

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅
Precision ⋅ Recall
Precision + Recall

=
2TP

2TP + FP + FN

Specificity =
TN

TN + FP

Metrics
Precision vs Recall Tradeoff - F1 Score

Precision =
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall =
TP

TP + FN

F1 = 2 ⋅
Precision ⋅ Recall
Precision + Recall

=
2TP

2TP + FP + FN

Specificity =
TN

TN + FP
False Positive Rate =

FP
TN + FP

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes down, Recall goes up

ℙ(cat | imagei) ≥ 0

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes down, Recall goes up

ℙ(cat | imagei) ≥ 0

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes up, Recall goes down

ℙ(cat | imagei) ≥ 0.999

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Metrics
Precision vs Recall Tradeoff - F1 Score

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:

How is this a tradeoff?  
How would you increase/decrease the true positives?

Answer: By changing the threshold

• Cat in image if

• Precision goes up, Recall goes down

ℙ(cat | imagei) ≥ 0.999

Precision =
TP

TP + FP
Recall =

TP
TP + FN

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier
Even better classifier

Direction to
get better

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier
Even better classifier - TPR: 0.75, FPR: 0.23

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier

Better classifier - TPR: 0.75, FPR: 0.5
Even better classifier - TPR: 0.75, FPR: 0.23

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random classifier 
TPR: 0.75, FPR: 0.75

Better classifier - TPR: 0.75, FPR: 0.5
Even better classifier - TPR: 0.75, FPR: 0.23

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve

Metrics
AUC-ROC Curve

TPR =
TP

TP + FN
FPR =

FP
TN + FP

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Area under the curve
AUC = 1 - Perfect Classifier 
AUC = 0.5 - Random Classifier  
AUC < 0.5 - Worse Than Random Classifier

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Random Baseline

Random classifier:  
 
Horizontal line at the
proportion of positives
(25% here). 
 
AUC-PR equals the
class proportion. No
predictive power.

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Poor classifier

Random Baseline

Random classifier:  
 
Horizontal line at the
proportion of positives
(25% here). 
 
AUC-PR equals the
class proportion. No
predictive power.

Poor classifier:  
 
Precision drops steadily
as recall increases.  
 
Still better than random,
but significant tradeoff
between precision and
recall.

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Metrics
Area Under Precision-Recall Curve (AUP)

Pr
ec

is
io

n

Recall

0

1

0 1

0.5

0.50.25 0.75

0.25

0.75

Perfect classifier

Good classifier

Poor classifier

Random Baseline

Random classifier:  
 
Horizontal line at the
proportion of positives
(25% here). 
 
AUC-PR equals the
class proportion. No
predictive power.

Poor classifier:  
 
Precision drops steadily
as recall increases.  
 
Still better than random,
but significant tradeoff
between precision and
recall.

Perfect classifier:  
 
Precision stays at 1.0
across all recall values.
AUC-PR = 1.0.  
 
Every positive
prediction is correct,
and all actual positives
are found.

Good classifier:  
 
High precision
maintained until high
recall.  
 
The curve hugs the top-
right corner.

Comparisons

1. Gradient Descent vs Closed Form

Gradient Descent Closed Form 
θ = (XTX)−1XTY

+ Linear increase in (# training data) and (# features)

+ Generally applicable to multiple models

+ Guaranteed to reach global optimum for convex functions
and appropriate learning rate

- Need to choose learning rate and stopping conditions

- Need to choose optimization method (Adam, RMSProp
etc..)

- Might get stuck in local optima / saddle point

- Needs feature scaling

m n

α

+ No parameter tuning

+ Gives global optimum

- Not generally applicable to any learning algorithm

- Slow computation - scales with where is number of
features

n3 n

2. Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch 
Pros:

Stochastic 
Pros:

Stable Convergence: No noise in gradient estimates means
smooth, predictable progress toward the minimum

Guaranteed Descent: Each update is guaranteed to reduce the
loss (with appropriate learning rate) 
 
Simple learning rate selection: The lack of noise means you
can often use larger learning rates without instability

Parallelizable Gradient Computation: The sum over all
samples can be computed in parallel across multiple processors

Fast Updates: Each parameter update is computationally
cheap, allowing rapid initial progress.

Memory Efficient: Only one sample needs to be in memory at
a time.

Escapes Local Minima: The inherent noise helps the algorithm
escape shallow local minima and saddle points. The
stochasticity acts as implicit regularization

Online Learning: Can naturally incorporate new data as it
arrives - just perform an update on each new sample

Better Generalization: The noise can prevent overfitting to the
training set.

Batch 
Cons:

Stochastic 
Cons:

Computationally Expensive: For large datasets, computing the
full gradient is very slow. A dataset with 10 million samples
requires processing all 10 million before a single update.

Memory Intensive: The entire dataset must fit in memory.

Redundant Computation: Many datasets contain redundant or
similar samples. BGD computes gradients for all of them even
when a subset would provide nearly the same information.

Poor Escape From Local Minima: The deterministic nature
means the algorithm follows the same path every time and can
get permanently stuck in local minima or saddle points.

Slow for Online Learning: Cannot incorporate new data without
reprocessing everything.

High Variance: Individual gradient estimates can be very noisy,
causing erratic updates.

Unstable Convergence: The loss curve is noisy. The algorithm
may step away from the minimum even when near it.

Requires Learning Rate Decay: To converge to a minimum
(rather than oscillating around it), the learning rate must
decrease over time, adding hyperparameters.

Poor Hardware Utilization: Modern GPUs are optimized for
parallel operations on batches, not sequential single-sample
operations. SGD fails to exploit this.

Sensitive to Sample Ordering: The order in which samples are
presented can affect results, requiring careful shuffling.

2. Batch vs Mini-Batch vs Stochastic Gradient Descent

Mini-Batch

Variance Reduction: Averaging over samples reduces
gradient variance by a factor of compared to pure SGD, while
still maintaining some beneficial noise

Hardware Efficiency: GPUs perform matrix operations in
parallel. A batch size of 64 is nearly as fast as a batch size of 1
on modern hardware, giving essentially 64× speedup over SGD

Memory-Computation Tradeof: Batch size can be tuned to
maximize GPU memory utilization without requiring the full
dataset

Balances Exploration and Exploitation: Enough noise to
escape poor regions, enough signal to make consistent
progress.

B
B

2. Batch vs Mini-Batch vs Stochastic Gradient Descent

• is the primary hyper-parameter controlling the bias-variance tradeoff k

Choosing k

Small (e.g.)k k = 1 Large (e.g.)k k = m
• High variance, low bias

• Decision boundary is highly
irregular

• Very sensitive to noise and
outliers

• Prone to overfitting, but
can capture fine grained
structure

• High bias, low variance

• Decision boundary is very
smooth

• Robust to noise, but may
miss local patterns

• At the extreme of ,
always predicts majority
class

k = m

Practical Tips

• Start with

• Use cross-validation to
select optimal

• If is odd, it avoids ties in
binary classification

• should be smaller than
the smallest class size

k = m

k

k

k

3. k-Nearest Neighbors

3. k-Nearest Neighbors

• Simple to understand and implement

• No training phase (fast to “train”)

• Naturally handles multi-class classification

• Non-parametric: makes no distributional
assumptions

• Can capture arbitrarily complex decision boundaries

• Easily adapts to new training data (just add it)

• Slow prediction for large datasets

• High memory requirement (stores all training data)

• Sensitive to irrelevant features and feature scaling

• Struggles in high dimensions (curse of
dimensionality)

• No interpretable model or feature importance

• Requires meaningful distance metric

Pros Cons

3. k-Nearest Neighbors
When to use k-NN?

• Small to medium datasets

• Low to moderate dimensionality (< 20)

• Non-linear decision boundaries expected

• Data arrives incrementally (online learning)

• Quick baseline model needed

n
• Large datasets with real-time prediction

requirements

• Very high-dimensional data

• Features have varying relevance

• Interpretability is required

Use Don’t Use

4. LDA

Pros Cons

• Simple, fast, closed-form solution

• No hyperparameters to tune

• Works well when assumptions approximately hold

• Provides probabilistic outputs

• Built-in dimensionality reduction

• Stable with small datasets

• Assumes Gaussian distributions

• Assumes shared covariance (linear boundaries only)

• Sensitive to outliers (affect mean and covariance
estimates)

• Cannot capture non-linear relationships

• Fails if features are highly non-Gaussian

5. Classifiers

Comparison Logistic Regression LDA

Type Discriminative Generative

Assumption Conditional Independence Between
Rows of Data Gaussian and shared covariance

Training Gradient Descent Closed Form

Data Better with large data else risk
overfitting Works well across data sizes

Probabilities Well calibrated Well calibrated

Missing features Requires pre-processing Requires pre-processing

