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Models Seen So Far 
Supervised Unsupervised

Linear Regression

Logistic 
Regression

k-NN

LDA

PCA

k-Means 
Clustering 



Linear Regression

Model: 






Loss Function: 

 


̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize: 


Closed Form: 





Gradient Descent: 




θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)



Linear Regression

Model: 






Loss Function: 

 


̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize: 


Closed Form: 





Gradient Descent: 




θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)



Linear Regression

Model: 






Loss Function: 

 


̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize: 


Closed Form: 





Gradient Descent: 




θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)



Linear Regression

Model: 






Loss Function: 

 


̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize: 


Closed Form: 





Gradient Descent: 




θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)



Linear Regression

Model: 






Loss Function: 

 


̂y = θ0 + θ1 ⋅ ϕ(x)

̂Y = Xθ

ℓ(θ) =
1
m

m

∑
i=0

(yi − ̂yi)2

ℓ(θ) =
1
m ∑ (Y − Xθ)2

Optimize: 


Closed Form: 





Gradient Descent: 




θ = (XTX)−1XTY

∂ℓ(θ)
∂θ0

=
2
m

m

∑
i=1

(θ0 + θ1xi − yi)

∂ℓ(θ)
∂θ1

=
2
m

m

∑
i=1

xi ⋅ (θ0 + θ1xi − yi)



Logistic Regression

Model: 



Loss Function: 

̂y = σ(θ0 + θ1 ⋅ ϕ(x))

ℓ(θ) = −
m

∑
i=1

y(i)log(pi) + (1 − y(i))log(1 − pi)

Optimize: 


Closed Form: 


None - Cannot invert Sigmoid


Gradient Descent: 

 




∂ℓ
∂θ

=
1
m

m

∑
i=1

x(i) ⋅ ( ̂y(i) − y(i))

∇θ(ℓ(θ)) =
1
m

XT( ̂Y − Y)
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k-Nearest Neighbors 

Model: 
Non-parametric model


Loss Function: 

No parameters to optimize 

Optimize/Inference: 


Closed Form: 


Find k nearest neighbors 


Majority voting 
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k-Nearest Neighbors 

Model: 
Non-parametric model


Loss Function: 

No parameters to optimize 

Optimize/Inference: 


Closed Form: 


Find k nearest neighbors 


Majority voting 

Not a learnable parameter

(learnable)



Linear Discriminant Analysis 

Model: 
 




Loss Function: 

None 


Has assumptions on data distributions 
instead

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

Optimize/Inference: 


Closed Form: 


Estimate ,  and 


Plug into model

μk ℙ(Y = k) Σ
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LDA for Dimensionality Reduction 

Model: 
 

 




Loss Function: 

Maximize 

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

J(w) =
wTSBw
wTSWw

Optimize/Inference: 


Closed Form: 


S−1
W SB ⋅ w = λw
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Models Seen So Far 
Supervised Unsupervised

Linear Regression

Logistic 
Regression

k-NN
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Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Gradient Descent 

 : Learning Rate α






Step 1: Initialize 


Step 2: Repeat Until Convergence


ℓθ(x) =
1
m ∑

i

(yi − θ0 − θ1xi)2

θ0, θ1

θj ← θj − α ⋅
∂ℓθ(x)

∂θj

Gradient Descent 

 : Learning Rate α

If  is too large? α

If  is too small? α



Gradient Descent 
When to stop? 

Fixed Iteration Gradient Norm Change in Loss Change in θ Validation



Gradient Descent 
Practical Issues

Feature Scaling / 
Pre-processing

Small Gradients /  
Plateau Regions Adaptive Step Sizes



Gradient Descent 
Batch Sizes

Batch GD Mini Batch GD Stochastic GD



Practical Issues in ML 

Overfitting Underfitting



Practical Issues in ML 

Model 
Complexity Bias Variance Train Error Test Error

Too Simple High Low High High

Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High



Practical Issues
Regularization

• Regularization explicitly trades bias for variance.



L(θ) =
1
m ∑ (Y − Xθ)2

L(θ) =
1
m ∑ (Y − Xθ)2 + λ∥θ∥2



Practical Issues
k-Fold Cross Validation



k-Fold Cross Validation 
Algorithm

Algorithm 

1. Shuffle the dataset randomly


2. Split data into  equally-sized folds (or partitions)


3. for each fold :


3a. Use fold  as the validation set


3b. Use the remaining  folds as the training set


3c. Train the model on the training set


3d. Evaluate on the validation set, record performance metric


4. Aggregate the K performance estimates


k

i = 1, 2, . . . , k

i

k − i

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4
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k-Fold Cross Validation 
Algorithm
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-fold cross validation k = 5

Train on 8 rows, test on 2 
row

Mean CV Score:


C̄V =
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∑
i=1

CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow



k-Fold Cross Validation 
Algorithm
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Let’s say we want to run 

-fold cross validation k = 5

Train on 8 rows, test on 2 
row

Mean CV Score:
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1
k

k

∑
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CVi

k-value Training Size Properties

k=2 50%
High Bias 

Low Variance 
Fast

k=5 80% Good Balance 
Commonly Used

k=10 90% Low Bias 
Commonly Used

k=m-1 m-1 samples
Low Bias 

Highest Variance 
Slow

-fold CV requires  
training  models. 


If training is expensive, 
smaller  is preferred.

k
k

k



k-Fold Cross Validation 
Variants

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x1 x2 x3 x4 Stratified Cross-Validation 

• The Problem with Random Splits


• For imbalanced classification, random splits may create folds with different class 
distributions.


• One fold might have 40% positives while another has 20%, leading to unreliable 
estimates. 

• Stratified sampling ensures each fold has approximately the same class distribution as 
the full dataset.


• Algorithm:


• Separate samples by class


• For each class, distribute samples evenly across folds


• Combine to form final folds

k−



Classification

• Your classifier will output a probability value 
between 0 and 1


•  Example: 


• 


• 


• Practitioner needs to also set a threshold 

•  is a cat if 

ℙ(cat | image1) = 0.61

ℙ(cat | image2) = 0.52

imagei ℙ(cat | imagei) ≥ Threshold

x1

x0

This is the learned 
curve, the 
“decision 
boundary”This is class 0

This is class 1



Classification Metrics

Predicted Positive Predicted Negative

Actual Positive

Actual Negative
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Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Of all instances predicted as positive, what fraction actually are positive?  
Precision measures the reliability of positive predictions. High precision means few 
false alarms. 

When to care about precision?  
When false positives are costly.  
 
Examples include spam filtering (users hate losing important emails), recommendation 
systems (irrelevant recommendations erode trust), and legal contexts (wrongful 
accusations).



Metrics
Precision and Recall 

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Of all actual positive instances, what fraction did we correctly identify? Recall 
measures coverage of positive instances. High recall means few missed positives. 
 
When to care about recall?  
When false negatives are costly. 


Examples include disease screening (missing a diagnosis can be fatal), security 
threats (missing an attack is catastrophic), and search engines (users want all relevant 
results).



Metrics
Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

Precision and recall are inherently in tension. 


Increasing the threshold for positive classification typically increases precision 
but decreases recall. 


Decreasing the threshold has the opposite effect. 


The optimal balance depends on the application's cost structure.
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Precision vs Recall Tradeoff - F1 Score

Precision = 
TP

TP + FP

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Recall = 
TP

TP + FN

F1 = 2 ⋅
Precision ⋅ Recall
Precision + Recall

=
2TP

2TP + FP + FN

Specificity = 
TN

TN + FP
False Positive Rate = 

FP
TN + FP
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Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Question:  

How is this a tradeoff?  
How would you increase/decrease the true positives? 
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Comparisons



1. Gradient Descent vs Closed Form

Gradient Descent Closed Form 
θ = (XTX)−1XTY

+ Linear increase in  (# training data) and  (# features) 

+ Generally applicable to multiple models  

+ Guaranteed to reach global optimum for convex functions 
and appropriate learning rate  

- Need to choose learning rate  and stopping conditions  

- Need to choose optimization method (Adam, RMSProp 
etc..) 

- Might get stuck in local optima / saddle point  

- Needs feature scaling 

m n

α

+ No parameter tuning  

+ Gives global optimum  

- Not generally applicable to any learning algorithm  

- Slow computation - scales with  where  is number of 
features 

n3 n



2. Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch 
Pros:

Stochastic 
Pros:

Stable Convergence: No noise in gradient estimates means 
smooth, predictable progress toward the minimum 

Guaranteed Descent: Each update is guaranteed to reduce the 
loss (with appropriate learning rate) 
 
Simple learning rate selection: The lack of noise means you 
can often use larger learning rates without instability


Parallelizable Gradient Computation: The sum over all 
samples can be computed in parallel across multiple processors


Fast Updates: Each parameter update is computationally 
cheap, allowing rapid initial progress.


Memory Efficient: Only one sample needs to be in memory at 
a time.


Escapes Local Minima: The inherent noise helps the algorithm 
escape shallow local minima and saddle points. The 
stochasticity acts as implicit regularization


Online Learning: Can naturally incorporate new data as it 
arrives - just perform an update on each new sample


Better Generalization: The noise can prevent overfitting to the 
training set. 



Batch 
Cons:

Stochastic 
Cons:

Computationally Expensive: For large datasets, computing the 
full gradient is very slow. A dataset with 10 million samples 
requires processing all 10 million before a single update.


Memory Intensive: The entire dataset must fit in memory.


Redundant Computation: Many datasets contain redundant or 
similar samples. BGD computes gradients for all of them even 
when a subset would provide nearly the same information.


Poor Escape From Local Minima: The deterministic nature 
means the algorithm follows the same path every time and can 
get permanently stuck in local minima or saddle points.


Slow for Online Learning: Cannot incorporate new data without 
reprocessing everything.


High Variance: Individual gradient estimates can be very noisy, 
causing erratic updates.


Unstable Convergence: The loss curve is noisy. The algorithm 
may step away from the minimum even when near it.


Requires Learning Rate Decay: To converge to a minimum 
(rather than oscillating around it), the learning rate must 
decrease over time, adding hyperparameters.


Poor Hardware Utilization: Modern GPUs are optimized for 
parallel operations on batches, not sequential single-sample 
operations. SGD fails to exploit this.


Sensitive to Sample Ordering: The order in which samples are 
presented can affect results, requiring careful shuffling.


2. Batch vs Mini-Batch vs Stochastic Gradient Descent



Mini-Batch

Variance Reduction: Averaging over  samples reduces 
gradient variance by a factor of  compared to pure SGD, while 
still maintaining some beneficial noise


Hardware Efficiency: GPUs perform matrix operations in 
parallel. A batch size of 64 is nearly as fast as a batch size of 1 
on modern hardware, giving essentially 64× speedup over SGD


Memory-Computation Tradeof: Batch size can be tuned to 
maximize GPU memory utilization without requiring the full 
dataset


Balances Exploration and Exploitation: Enough noise to 
escape poor regions, enough signal to make consistent 
progress.


B
B

2. Batch vs Mini-Batch vs Stochastic Gradient Descent



•  is the primary hyper-parameter controlling the bias-variance tradeoff k

Choosing k

Small  (e.g. )k k = 1 Large  (e.g. )k k = m
• High variance, low bias 


• Decision boundary is highly 
irregular 


• Very sensitive to noise and 
outliers 


• Prone to overfitting, but 
can capture fine grained 
structure 

• High bias, low variance


• Decision boundary is very 
smooth 


• Robust to noise, but may 
miss local patterns 


• At the extreme of , 
always predicts majority 
class 

k = m

Practical Tips

• Start with 


• Use cross-validation to 
select optimal 


• If  is odd, it avoids ties in 
binary classification


•  should be smaller than 
the smallest class size

k = m

k

k

k

3. k-Nearest Neighbors



3. k-Nearest Neighbors

• Simple to understand and implement


• No training phase (fast to “train”)


• Naturally handles multi-class classification


• Non-parametric: makes no distributional 
assumptions


• Can capture arbitrarily complex decision boundaries


• Easily adapts to new training data (just add it)

• Slow prediction for large datasets


• High memory requirement (stores all training data)


• Sensitive to irrelevant features and feature scaling


• Struggles in high dimensions (curse of 
dimensionality)


• No interpretable model or feature importance


• Requires meaningful distance metric

Pros Cons



3. k-Nearest Neighbors
When to use k-NN?

• Small to medium datasets


• Low to moderate dimensionality (  < 20)


• Non-linear decision boundaries expected


• Data arrives incrementally (online learning)


• Quick baseline model needed

n
• Large datasets with real-time prediction 

requirements


• Very high-dimensional data


• Features have varying relevance


• Interpretability is required

Use Don’t Use



4. LDA

Pros Cons

• Simple, fast, closed-form solution


• No hyperparameters to tune


• Works well when assumptions approximately hold


• Provides probabilistic outputs


• Built-in dimensionality reduction


• Stable with small datasets

• Assumes Gaussian distributions


• Assumes shared covariance (linear boundaries only)


• Sensitive to outliers (affect mean and covariance 
estimates)


• Cannot capture non-linear relationships


• Fails if features are highly non-Gaussian



5. Classifiers

Comparison Logistic Regression LDA

Type Discriminative Generative

Assumption Conditional Independence Between 
Rows of Data Gaussian and shared covariance 

Training Gradient Descent Closed Form

Data Better with large data else risk 
overfitting Works well across data sizes 

Probabilities Well calibrated Well calibrated 

Missing features Requires pre-processing Requires pre-processing


