Northeastern University
Khoury College of
Computer Sciences

Midterm Review

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Wednesday | February 18, 2026

Models Seen So Far

Linear Regression

Logistic
Regression

k-NN

LDA

Linear Regression

Linear Regression

Model:
y=0,+ 0, - px)

A\

Y = X0

Linear Regression

Model:
y=0,+ 0, - px)

Y = X0

Loss Function:

R PN
£(0) =— Z;,@,- 9:)

1 Cum2
£(0) = — Z(Y X0)

Linear Regression

Model: Optimize:
Y = ‘90 + 0, - P(x) Closed Form:

A\

Y = X6 0=X'X)"xTy

Loss Function:

L PR
£(0) =— 2;, ;= 9

1 w2
£(0) = — Z(Y X0)

Linear Regression

Model: Optimize:
y=0+0, pXx) Closed Form:
? — X@ 0 = (XTX)—IXTY
Loss Function: Gradient Descent:
| 0t (0) 2 &
£(0) mZ(yl ¥.) 2, m;(o+ 01X —)
i=0 =

1 0O _2% . —y
f(6)=zz(Y—X9)2 691 _mle (HO_l_Hl'xl yl)

=1

Logistic Regression

Logistic Regression

Model:
y=0(0y+ 0, - p(x))

Logistic Regression

Model:
y=0(0y+ 0, - p(x))

Loss Function:

£0) =—) yPlog(p) + (1 — yD)log(1 - p)
=1

Logistic Regression

Model: Optimize:
y =00+ 0, - p(x)) Closed Form:
Loss Function: None - Cannot invert Sigmoid

£0) =—) yPlog(p) + (1 — yD)log(1 - p)
=1

Logistic Regression

Model: Optimize:
y = 5(6’0 T 91 - p(x)) Closed Form:
Loss Function: None - Cannot invert Sigmoid
m. | Gradient Descent:
£0) = —) yPlog(p) + (1 — yNlog(1 - p) S 1
i=1 R Z x@ . (O — @)
00 m —

_ Ly
Vo(£(0) = —X'(Y = 1)

k-Nearest Neighbors

Model:

k-Nearest Neighbors

Model:
Non-parametric model

k-Nearest Neighbors

Model:
Non-parametric model

Loss Function:

No parameters to optimize

k-Nearest Neighbors

Model: Optimize/Inference:
Non-parametric model

Closed Form:

Loss Function:
Find k nearest neighbors

No parameters to optimize
Majority voting

k-Nearest Neighbors

Model: Optimize/Inference:
Non-parametric model

Closed Form:

Loss Function: Not a learnable parameter
Find K nearest neighbors

No parameters to optimize
(learnable) Majority voting

Linear Discriminant Analysis

Linear Discriminant Analysis

Model:

1
Sp(x) = x" X7y — 5/4/;[>~y + log P(Y = k)

Linear Discriminant Analysis

Model:
|
Sp(x) = x" X7y — 5/4/;[>~y + log P(Y = k)

Loss Function:
None

Has assumptions on data distributions
instead

Linear Discriminant Analysis

Model:
|
Sp(x) = x" X7y — 5/4/;[>~y + log P(Y = k)

Loss Function:
None

Has assumptions on data distributions
instead

LDA for Dimensionality Reduction

Model:

LDA for Dimensionality Reduction

Model:

Sw = ZSk Z D=) —)"

k=1 i:y=k

Sp = Z Ny —)y —)"
k=1

LDA for Dimensionality Reduction

Model:

Sw = ZSk Z D=) —)"

k=1 i:y=k

Sp = Z Ny —)y —)"
k=1

Loss Function:
w! Spw

wlSyw

Maximize J(w) =

LDA for Dimensionality Reduction

Model: Optimize/Inference:
Closed F .
Sy = Z 5, = Z 30— =) o
=1 S'Sp-w = Aw
Sp = Z Ny —)y —)"

k=1
Loss Function:

wlsS W

wlSyw

Maximize J(w) =

Models Seen So Far

Linear Regression

Logistic
Regression

k-NN

LDA

Gradient Descent

|
Lo(X) = — Z (y; — Oy — 01x)°

Step 1: Initialize 0, 0,

Step 2: Repeat Until Convergence
0C y(x)

00

6 6 a;

a . Learning Rate

Gradient Descent

1 | ?
KQ(X) — Z 2 (yl — 90 — Hl'xi)z If o is too large”

Step 1: Initialize 0, 0,

Step 2: Repeat Until Convergence

afg(x) If o is too small?

00

G 6=

a : Learning Rate

Gradient Descent
When to stop?

Fixed lteration Gradient Norm Change in Loss Change in @ Validation

Gradient Descent

Practical Issues

Feature Scaling / Small Gradients /

Pre-processing Plateau Regions Adaptive Step Sizes

Gradient Descent
Batch Sizes

Batch GD Mini Batch GD Stochastic GD

Practical Issues in ML

Overfitting Underfitting

Practical Issues in ML

Model

Complexity Bias Variance Train Error Test Error
Too Simple High Low High High
Sweet Spot Medium Medium Medium Medium

Too Complex Low High Low High

Error

Optimum Model Complexity

o

Total Error

Variance

Model Complexity

Practical Issues

Regularization

* Regularization explicitly trades bias for variance.

1 Cum2
L(O) = — Z(Y X0)

_ LN v _ xor :
L(O) = —), (¥ = X0 + 0]

Practical Issues
k-Fold Cross Validation

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

X1 X X3 X Algorithm
(1) Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
(2)
X .
Train on , teston 2 2. Split data into k equally-sized folds (or partitions)
(3) row
X
4) 1 3.foreachfoldi=1, 2, ..., k:
g CVy=—= 2, £ 0p, JfDy)
x® L' b, 3a. Use fold i as the validation set
(6)
& 3b. Use the remaining k — i folds as the training set
x
) 3c. Train the model on the training set
X

e 3d. Evaluate on the validation set, record performance metric

x(10) 4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi= 1, 2, ..., k:
CVy = — Z £(p,» fo D)
D, D, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
1 3.foreachfoldi=1, 2, ..., k:
CVy == D £ 0p, JyD3)
3 Dj 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

X1 X X3 X Algorithm
Let’s say we want to run
k = 5-fold cross validation 1. Shuffle the dataset randomly
;I'(r)a‘t’i’n on , teston 2 2. Split data into k equally-sized folds (or partitions)
1 3.foreachfoldi=1, 2, ..., k:
CVy=—= 2 £0p, [y D)
* b, 3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set

3c. Train the model on the training set

3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

Algorithm

(1) Let’s say we want to run
X k = 5-fold cross validation 1. Shuffle the dataset randomly
x(Trai test on 2

rain on , test on 2. Split data into k equally-sized folds (or partitions)

(3) row
X

4) 1 3.foreachfoldi=1, 2, ..., k:
g CVs=—= 2, £ 0p, JyD5)
x®) > D 3a. Use fold 7 as the validation set
x© .

3b. Use the remaining k — i folds as the training set

x(7)

) 3c. Train the model on the training set
X
e 3d. Evaluate on the validation set, record performance metric
x10) 4. Aggregate the K performance estimates

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©
D
+®)
+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Train on , test on 2
row

Mean CV Score:

N
CV=;Z:,CVZ-

Algorithm

1. Shuffle the dataset randomly
2. Split data into k equally-sized folds (or partitions)
3.foreachfoldi =1, 2, ..., k:

3a. Use fold i as the validation set

3b. Use the remaining k — i folds as the training set
3c. Train the model on the training set
3d. Evaluate on the validation set, record performance metric

4. Aggregate the K performance estimates

k-Fold Cross Validation
Algorithm

(1) Let’s say we want to run
A k = S-fold cross validation . . .

2) k-value Training Size Properties
X Train on test on 2
X o High Bias

k=2 50% Low Variance

e Mean CV Score: Fast

&) k
X _ 1

CV = — Z CV, (=5 80% Good Balance
+(© k 4 1 Commonly Used
1=

(7

X .
k=10 90% Low Bias
+® Commonly Used
x® Low Bias
k=m-1 m-1 samples Highest Variance

(10)

X Slow

k-Fold Cross Validation

Algorithm

D
@
ME
ey
)
+©

D

+®)

+©)

x(10)

Let’s say we want to run
k = 5-fold cross validation

Train on , test on 2
row

Mean CV Score:

1 ¢
CV=;Z:,CVZ-

k-fold CV requires
training £ models.

If training Is expensive,
smaller k is preferred.

k-value Training Size Properties
High Bias
k=2 50% Low Variance
Fast
Good Balance
— 0]
k=3 80% Commonly Used
Low Bias
— 0]
k=10 90% Commonly Used
Low Bias
k=m-1 m-1 samples Highest Variance
Slow

k-Fold Cross Validation

Variants
X X X3 X Stratified Cross-Validation
xh * The Problem with Random Splits
x? . e L . . .
 For imbalanced classification, random splits may create folds with different class
53 distributions.
x@ One fold might have 40% positives while another has 20%, leading to unreliable
5 estimates.
x©)
(6) e Stratified sampling ensures each fold has approximately the same class distribution as
X the full dataset.
x
* Algorithm:
x(3)
+©) Separate samples by class
x(10) « For each class, distribute samples evenly across k—folds

e (Combine to form final folds

Classification

* Your classifier will output a probability value
between 0 and 1

° Example: This is class 1

» P(cat|image;) = 0.61

This is the learned
curve, the
“decision
boundary”

» P(cat|image,) = 0.52

e Practitioner needs to also set a threshold

« image; is a cat if P(cat |image;) > Threshold

Classification Metrics

Predicted Positive

Predicted Negative

Actual Positive

Actual Negative

Classification Metrics

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

I'P

Precision = W

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

I'P

Precision =

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

I'P

Precision = ——
IP+ FP
Recall = ———
IP+ FN
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

Precision =

I'P

I'P+ FP

I'P

R || =

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision and Recall

TP Of all instances predicted as positive, what fraction actually are positive?
Precision measures the reliability of positive predictions. High precision means few

m false alarms.

When to care about precision?
When false positives are costly.

Precision =

I'P

Recall| =z ——— Examples include spam filtering (users hate losing important emails), recommendation
TP + FN systems (irrelevant recommendations erode trust), and legal contexts (wrongful
accusations).

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision and Recall

TP Of all actual positive instances, what fraction did we correctly identify? Recall
Precision = measures coverage of positive instances. High recall means few missed positives.
I[P+ FP When to care about recall?
When false negatives are costly.
1P Examples include disease screening (missing a diagnosis can be fatal), security
Recall = ————————— threats (missing an attack is catastrophic), and search engines (users want all relevant
TP + FN results).
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

» 1P
Precision = ——
IP+ FP
TP
Recall = ——
IP+ FN

Precision and recall are inherently in tension.

Increasing the threshold for positive classification typically increases precision
but decreases recall.

Decreasing the threshold has the opposite effect.

The optimal balance depends on the application's cost structure.

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = —— F1=2
I'P+ FP Precision + Recall 2TP+ FP + FN
TP o TN
Recall = —— Specificity = ————
I'P+ FN I'N + FP
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

o TP Precision - Recall 2TP
Precision = ——— Fl=2— =
I'P+ FP Precision + Recall 2TP+ FP + FN
TP o TN N FP
Recall = —— Specificity = ———— False Positive Rate = ———
I'P+ FN I'N + FP I'N + FP
Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat in image if P(cat | image;) > 0

* Precision goes - Recall goes-

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat in image if P(cat | image;) > 0

* Precision goes down, Recall goes up

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat inimage if P(cat|image;) > 0.999

* Precision gces.RecaII goes-

Metrics

Precision vs Recall Tradeoff - F1 Score

TP TP
Precision = —— Recall =z ——8M8M8M8 —
IP+ FP IP+ FN

Question:

How is this a tradeoff?
How would you increase/decrease the true positives”?

Answer: By changing the threshold

Predicted Positive

Predicted Negative

Actual Positive

True Positive (TP)

False Negative (FN)

Actual Negative

False Positive (FP)

True Negative (TN)

» Cat inimage if P(cat|image;) > 0.999

* Precision goes up, Recall goes down

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

N

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrICS I'P+ FN I'N + FP
AUC-ROC Curve

N

0.75

Random classifier

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrICS I'P+ FN I'N + FP
AUC-ROC Curve

N

0.75

Random classifier

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=——— FPR=————
Metrics IP+ FN IN+ FP
AUC-ROC Curve

Direction to
get better

0.75

. Random classifier

0.25

True Positive Rate

Even better classifier

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrlCS IP+ FN I'N + FP
AUC-ROC Curve

0.75)-------

Random classifier

Better classifier
Even better classifier - TPR: 0.75, FPR: 0.23

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR= ——
MetrlCS IP+ FN I'N + FP
AUC-ROC Curve

075222

Random classifier

Better classifier - TPR: 0.75, FPR: 0.5
Even better classifier - TPR: 0.75, FPR: 0.23

0.25

True Positive Rate

-----“--

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN+ FP
AUC-ROC Curve

075|=======

Random classifier
TPR: 0.75, FPR: 0.75

Better Cla:ssifier - TPR: 0.75, FPR: 0.5
Even better tlassifier - TPR: 0.75, FPR: 0.23
|

0.25

True Positive Rate

-----“--

i
i
i
0 0.25 0.5 0.75 1

False Positive Rate

I'P FP

' TPR=——— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

Perfect classifier

—h

0.75

0.25

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

P P

' TPR=———— FPR=———
Metrics I'P+ FN IN + FP
AUC-ROC Curve

N

0.75

Area under the curve

AUC =1 - Perfect Classifier
AUC = 0.5 - Random Classifier

0.25 AUC < 0.5 - Worse Than Random Classifier

True Positive Rate

0 0.25 0.5 0.75 1

False Positive Rate

Metrics

Area Under Precision-Recall Curve (AUP)

0.75

0.5

Precision

0.25

0 0.25 0.5 0.75

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier:

Horizontal line at the
proportion of positives
(25% here).

AUC-PR equals the
class proportion. No
predictive power.

Precision

0 0.25 0.5 0.75 1

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier:

Horizontal line at the
proportion of positives
(25% here).

0.75
AUC-PR equals the
class proportion. No

predictive power.

0.5 Poor classifier

Precision

Poor classifier:

O O5 sesssnunununnnnnnnnnnnnnnnnnnagaannnnsannnnnnnnnnnnnnnnnnnnns
Precision drops steadily
as recall increases.

Still better than random,
but significant tradeoft 0 0.25 05 0.75 1
between precision and
recall.

Recall

Metrics

Area Under Precision-Recall Curve (AUP)

Random classifier:

Horizontal line at the

proportion of positives

(25% here). Good classifier

0.75
AUC-PR equals the C
class proportion. No %
predictive power O 99| Poor classifier Good classifier:
O
Poor classifier: al High precision
0.25 maintained until high
Precision drops steadily recall.
as recall increases. The curve hugs the top-
Still better than random, 0 right corner.
but significan’g t.radeoﬁ 0 0.25 0.5 0.75 1
between precision and
recall.

Recall

Comparisons

1. Gradient Descent vs Closed Form

Closed Form

Gradient Descent 0= (xT X)—l xTy

+ Linear increase in m (# training data) and » (# features)

+ Generally applicable to multiple models _
+ No parameter tuning

+ Guaranteed to reach global optimum for convex functions _ _
and appropriate learning rate + Gives global optimum

- Need to choose learning rate o and stopping conditions - Not generally applicable to any learning algorithm

- Need to choose optimization method (Adam, RMSProp - Slow computation - scales with n> where 7 is number of
etc..) features

- Might get stuck in local optima / saddle point

- Needs feature scaling

2. Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch
Pros:

Stable Convergence: No noise in gradient estimates means
smooth, predictable progress toward the minimum

Guaranteed Descent: Each update is guaranteed to reduce the
loss (with appropriate learning rate)

Simple learning rate selection: The lack of noise means you
can often use larger learning rates without instability

Parallelizable Gradient Computation: The sum over all
samples can be computed in parallel across multiple processors

Stochastic
Pros:

Fast Updates: Each parameter update is computationally
cheap, allowing rapid initial progress.

Memory Efficient: Only one sample needs to be in memory at
a time.

Escapes Local Minima: The inherent noise helps the algorithm
escape shallow local minima and saddle points. The
stochasticity acts as implicit regularization

Online Learning: Can naturally incorporate new data as it
arrives - just perform an update on each new sample

Better Generalization: The noise can prevent overfitting to the
training set.

2. Batch vs Mini-Batch vs Stochastic Gradient Descent

Batch Stochastic

Cons: Cons:
Computationally Expensive: For large datasets, computing the High Variance: Individual gradient estimates can be very noisy,
full gradient is very slow. A dataset with 10 million samples causing erratic updates.

requires processing all 10 million before a single update.
Unstable Convergence: The loss curve is noisy. The algorithm

Memory Intensive: The entire dataset must fit in memory. may step away from the minimum even when near it.
Redundant Computation: Many datasets contain redundant or Requires Learning Rate Decay: To converge to a minimum
similar samples. BGD computes gradients for all of them even (rather than oscillating around it), the learning rate must

when a subset would provide nearly the same information. decrease over time, adding hyperparameters.

Poor Escape From Local Minima: The deterministic nature Poor Hardware Utilization: Modern GPUs are optimized for
means the algorithm follows the same path every time and can parallel operations on batches, not sequential single-sample
get permanently stuck in local minima or saddle points. operations. SGD fails to exploit this.

Slow for Online Learning: Cannot incorporate new data without Sensitive to Sample Ordering: The order in which samples are

reprocessing everything. presented can affect results, requiring careful shuftling.

2. Batch vs Mini-Batch vs Stochastic Gradient Descent

Mini-Batch

Variance Reduction: Averaging over B samples reduces

gradient variance by a factor of B compared to pure SGD, while
still maintaining some beneficial noise

Hardware Efficiency: GPUs perform matrix operations in
parallel. A batch size of 64 is nearly as fast as a batch size of 1
on modern hardware, giving essentially 64x speedup over SGD

Memory-Computation Tradeoff: Batch size can be tuned to
maximize GPU memory utilization without requiring the full
dataset

Balances Exploration and Exploitation: Enough noise to
escape poor regions, enough signal to make consistent
progress.

3. k-Nearest Neighbors

Choosing k

e k is the primary hyper-parameter controlling the bias-variance tradeoff

Small £ (e.g. kK = 1)

* High variance, low bias

* Decision boundary is highly
irregular

* \ery sensitive to noise and
outliers

* Prone to overfitting, but
can capture fine grained
structure

Practical Tips

Start with k = \/m

Use cross-validation to
select optimal k

If k is odd, it avoids ties in
binary classification

k should be smaller than
the smallest class size

Large k (e.g. kK = m)
High bias, low variance

Decision boundary is very
smooth

Robust to noise, but may
miss local patterns

At the extreme of kK = m,
always predicts majority
class

3. k-Nearest Neighbors

Pros

e Simple to understand and implement
* No training phase (fast to “train”)
* Naturally handles multi-class classification

 Non-parametric: makes no distributional
assumptions

» Can capture arbitrarily complex decision boundaries

» Easily adapts to new training data (just add it)

cons

Slow prediction for large datasets
High memory requirement (stores all training data)
Sensitive to irrelevant features and feature scaling

Struggles in high dimensions (curse of
dimensionality)

No interpretable model or feature importance

Requires meaningful distance metric

3. k-Nearest Neighbors

When to use k-NN?

Use Don’t Use

* Small to medium datasets | | -
* Large datasets with real-time prediction

| | | requirements
* Low to moderate dimensionality (n < 20)

* Very high-dimensional data
* Non-linear decision boundaries expected

, , _ , * Features have varying relevance
* Data arrives incrementally (online learning)

 Interpretability is required
 Quick baseline model needed

Pros Cons

 Simple, fast, closed-form solution * Assumes Gaussian distributions

* No hyperparameters to tune Assumes shared covariance (linear boundaries only)

* Works well when assumptions approximately hold * Sensitive to outliers (affect mean and covariance
estimates)

* Provides probabilistic outputs
e Cannot capture non-linear relationships

e Built-in dimensionality reduction
* Fails if features are highly non-Gaussian

e Stable with small datasets

5. Classifiers

Comparison Logistic Regression LDA
Type Discriminative Generative
Assumption Conditionalégsvespsfngzge Between Gaussian and shared covariance
Training Gradient Descent Closed Form
Data Setter Wiﬂl)l,aeﬁﬁt?nzca else risk Works well across data sizes
Probabilities Well calibrated Well calibrated
Missing features Requires pre-processing Requires pre-processing

