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Updates

* Wanrou

1:30-3:00 PM Tuesday (17th) - In person - Richards
Hall 243

5:00-6:30 PM Wednesday (18th) - Virtual
1. Linear algebra
1a. Vectors

1b. Matrices

and Matrix operations

2a. Bayes’ rule and conditional probability

2b. Distributions

2c. CDFs and PDFs

» Zaiba
1:00-2:30PM Wednesday (18th) - In person - EL 311

2:00-3:00 PM Thursday (19th) - Virtual

1. Probabilities
1a. Bayes’ rule and conditional probability
1b. Distributions
1c. CDFs and PDFs

2. Derivatives

2a. Gradients

2b. Derivatives of some common functions

2c. Chain Rule, Product Rule, Quotient Rule



Today’s Outline

e Linear Discriminant Analysis

* Naive Bayes



Linear Discriminant Analysis (LDA)

 LDA is a generative classifier



Linear Discriminant Analysis (LDA)

—SP (Y1) 4= QArvimtnudve .

Iﬂ)C%‘g) — Genavetue —P Ybavas
 LDA is a generative classi

* Instead of directly predicting) P(Y | X) like logistic regression, it models the
joint distribution P(X, Y) by modeling:

« P(X]|Y): How features are distributed within each class
« P(Y): Prior probability of each class

 Then it uses Bayes' theorem to compute P(Y | X) for classification.



Linear Discriminant Analysis (LDA)

» LDA is a generative classifier :p ~

2
 Key idea: PDF —P Ja\—’gr;'-\ é:(l@%)l)

« Assume each class generates data from a Gaussian distribution.

* Find the decision boundary that optimally separates these Gaussian clouds.



Linear Discriminant Analysis (LDA)

Assumptions

AT pon Joomd
« Assumption 1: -

» Class conditional probabilities/are Gaussian (normal distribution)

« PX|Y = k) = F X [pJE)



Linear Discriminant Analysis (LDA)

Assumptions

e Assumption 1:

» Class conditional probabilities are Gaussian (normal distribution)
« PX|Y = k) = N (X| 4y, %)
* Assumption 2:

« All classes share the same co-variance matrix 2 (homoscedasticity)



Linear Dlscrlmlnant AnaIyS|s (LDA)

Assumptions @—T———A

@,}’TK

Assumption 1:

» Class conditional probabilities are Gaussian (normal distribution)

P Y =K = X D) |

Assumption 2:

« All classes share the same co-variance matrix 2 (homoscedasticity)

Assumption 3:

« Classes differ only in their means y;

(AL

These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.



Linear Discriminant Analysis (LDA)

Assumptions

Assumption 1:

« Class conditional probabilities are Gaussian (normal distribution)

« PX|Y = k) = H(X| o 2)

Assumption 2:

« All classes share the same co-variance matrix 2 (homoscedasticity)

Assumption 3:

« Classes differ only in their means

These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.



Linear Discriminant Analysis (LDA)

Gaussian Conditional Probability

e Assumption:

« Class conditional probabilities are Gaussian (normal distribution)

 PX|Y = k) = H(X| 1, T)




'\l \V) —é\/,
Linear Discriminant AnaIyS|s (LDA)

Gaussian Conditional Probability

-

e Assumption:

« Class conditional probabilities are Gaussian (normal distribution)

« PX|Y = k) = H(X| 1, T)

x—,u2
Gaussian PDF: f(x) = e_( 5
) 270? p
1
P(x|Y =k) = exp(——(x ) 'E" lx = 1))
ez 2

L o




Linear Discriminant Analysis (LDA)

Computing Predictions

Have:

1 1
P(x|Y = k) = ———exp(—=(x = i) "7 (x — )
Q)7 |Z|? 2



Linear Discriminant Analysis (LDA)

Computing Predictions

Have:
1 1 Tl
Px|Y =k) = ————exp(—=( — )" X7 (x — 1)
Q)7 |Z|? 2
Want:

P(Y|X)



Linear Discriminant Analysis (LDA)

Computing Predictions

Have:
1 1 Tl
Px|Y =k) = ————exp(—=( — )" X7 (x — 1)
Q)7 |Z|? 2
Want:
P(Y|X)

Use Bayes’ Theorem:
P(A N B) _ P(B|A) - P(A)

PA|B) = —
: (B) P(B)




Linear Discriminant Analysis (LDA)

Computing Predictions Hove — @3y
PCM@B{ ?CB‘/’D P(A) sV d N -

D) PX=x|Y=k  -P(Y=k

% [D(Y:kIX:x):I X=x|Y =0 P(Y =k

Lh—-aﬂ
Weni - )’%)‘



Linear Discriminant Analysis (LDA)

Computing Predictions

PX=x|Y=k) -P(Y=k)

[EX=9)

IP(X—le k) -P(Y =k)
wes - b PY=k|X=x) =

CPX=x|Y=))-P(Y= p]
Qﬁ S,"‘ C(osseg', ]
s Q""“’C%\CB : PCC)

P(Y=k|X=x)=




Linear Discriminant Analysis (LDA)

Computing Predictions

[P’(Y:CléX:x): I];(X=x|Y=k)-[|3>(Y=k)]_
T PX=x|Y=))-P(Y=))

We classify to the class with highest posterior probability:

A

\y = argmax P =k X = x))




Linear Discriminant Analysis (LDA)

Computing Predictions

PX=x|Y=k)  -P(Y =k
Y PX=x|Y=))-PY =)

P(Y=k|X =x) =
We classify to the class with highest posterior probability:

y =argmax P(Y =k|X =Xx)

Note for all k, the denominator is going to be the same



Linear Discriminant Analysis (LDA)

Computing Predictions Prostet .

[

P(X = x| Y = k)+P(Y = k)

P(Y=k|X=Xx) = p ——
]Zj=1P<X=x|Y=j>-P<Y=j> |

y=argmax , PX=x|Y=k)-P(Y=k)

Taking log on RHS (monotonic transform)

y =argmax , log(P(X =x|Y =k)) + log(P(Y = k))



Linear Discriminant Analysis (LDA)
Computing Predictions Gessae Drsbriobion

(7

y = arg max [logP(X =x|Y=k)+logP(Y = k)]
k



X«a(ﬁb)= l% Q4 Xo(jab tk‘ﬂ C—%) - ’{@ a —Jdgb

Linear Discriminant Analysis (LDA)
Computing Predictions A@CqD :b[@q |

H = log P(X = Y=kfu P(Y =k
( y argm]ﬁ[’og( x| )ig( \)]\

Expanding the log of the Gaussian:

1 1 B
logP(X =x|Y =k)=log [(2 S |1/2 ‘[exp <——(x _ ptk)TZ l(x _ ﬂk)>]

1"3( §3J$'/A . _L'ZA . exp( ya (e ' (%;M)> l%[abc)
a LCJ =g 1+ Ly by ¢

J%C‘LJ/::) + yd(gi/ \J{j‘ (?e{ - -




Linear Discriminant AnaIyS|s (LDA)
Computing Predictions @}3 _ % Lﬁ\ — exp

Lﬂ C&B ‘)“a 4 kﬂb = arg max [log PX=x|Y=k)+1logP(Y = k)]

Expanding the log of the Gaussian:

ﬁogéq@

| E 1 Tl
b 103 A  logPX=x|Y=k) =log L(\Zﬂ)d/ﬂzwz CXPp _E(X—//‘k) 2 (x—ﬂk)>]

_ Using log(ab) = log(a) + log(b):

1/? : : 1 : Tyl

(og <(2 )d,2> 0g< B + log <6XP <—5(x — W) X (x —ﬂk)>>
— )

Lol - Xg(am&‘-‘%)) 40 o (£2)




Linear Discriminant Analysis (LDA)

Computing Predictions

1 1 1 _
}og ((2]‘[)d/2> + log < I > +yfg (e)?p <_E(x — ) =7 (x - Mk)>>
— ‘ ~ —

— )

4 Simplifying each term:
O <0, 2 N 5}
JLDOC> ﬂd(a?ﬂ ) +-.L>éCl) _%(5_ ) j

0 = L) + O - %\ﬂa[e> -



Linear Discriminant Analysis (LDA)

Computing Predictions

1 1 1
lo + lo +1 e ——(x— )" -
g<(2ﬂ)d,2> \g<|2|1,2> ?é<f{< S0 =) 2 /@))
@ e (1550 Simplifying each term:
Lﬁ D
d 1
2

(2ﬂ)——108|2|——(x Mk)TZ 1(?6 M)
I AL _

i 1




Linear Discriminant Analysis (LDA)

Computing Predictions

R (g1

The full expression to maximize is:

d 1 1 :
y = arg max — 5 log(27) — 5 log| 2| — E(x — ) =7 e — ) [+ log P(Y = k)
k 'ig_\-%—)



Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

y = arg max

Terms that don't depend on k:

—% log(2r) : depends only on dimensionality d

) log|X| : X is same for all classes (LDA assumption)



Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

1
y = argmax |——(x — ,uk)TZ‘l(x — ) +1og P(Y = k)]
k12 S




Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

[;:l 1
y = argfmax —E(lx — ,uk)TZ_l(x — ) +log P(Y = k)]

Expanding:

x—p) T o — ) = xTZ7 I — X127y, — /,LkTZ_lx + ,ukTZ_l/,tk
e~ _J




Linear Discriminant Analysis (LDA)

Computing Predictions d & dx( L & Jdxd.
Cixd) Cdsd) -Gy 2 e bd My, G dx
- Q Y,] The full expression to maximize is:

1
y = arg max [_E(X — ,uk)TZ‘l(x — ) +log P(Y = k)]
k

Expanding: T

x—p) 27 o — ) = xT27x —( xTZ_l/,tk>— /,tkTZ_lx + ,ukTZ_l/,tk

Note that xTZ_l,uk and ,ukTZ_lx are both scalars, and since X! is symmetric:

| //tkTZ_l.X — (XTZ_IMk)T — XTZ_lﬂk R

@)= o yapRS




Linear Discriminant Analysis (LDA)

Computing Predictions

x— )T — ) = xT=7 e — 127y, — ,ukTZ_lx + //tkTZ_l,uk
Therefore

(0 = ) E7 e = pg) = T = 2 B+ gy

Lets put this back into the original equation



Linear Discriminant Analysis (LDA)

Computing Predictions

1
y = ) |xTZ_1x —2xTz 7y + ,ukTZ_l,uk] + log P(Y = k)



Linear Discriminant Analysis (LDA)

Computing Predictions

]
$ = 2 [x "= = 2xTE 4+ w7 | + log P(Y = k)

__Lirs, +xTZ 7y, — l//lTZ_l//t +log P(Y = k)



Linear Discriminant Analysis (LDA)

Computing Predictions
A 1 T~—1 T~s—1 T~s—1
y=—5 [xZ X =227y + ,uk]+10gP(Y=k)

! 1 ' 1
Ty—1 Ty —1 Ty —1
= —x'2" X+ x' X ——ulx + log P(Y =k

The term —%xTZ_lx depends only on X, not on k.

c C\

When comparing classes, this is the same for all k, so we drop it.



Linear Discriminant Analysis (LDA)

Computing Predictions

Finally:

T [
O (x) =x —u, 2w, + log P(Y = k)
L , — — —

0 0
g\qC‘h/): ?:@\ ‘[—@O — C,QSZC\ 7%71”\.
\/ )




Linear Discriminant Analysis (LDA)

Computing Predictions
Finally:
1
5x) = xTZ 7y — EﬂkT 2~y +log P(Y = k)

This is linear in x because:

-
m is linear in x (dot product with a constant vector)

The other terms are constants (don't depend on Xx)



Linear Discriminant Analysis (LDA)

Computing Predictions

Finally:

NEU 6}\&2«4-}1
(*P(E)J | ), 5(x)—xT2 //‘k_%lukz iyt log (Y = b,
T\’(a 00 |oddentsy - 07 L

FPC&- N\‘ﬁ-’ S:\'L-\nu\#) T @'79\ 5k(x) — 91Tx+90

We can also re-write as:

Where:
01, = Z_lﬂk

1
Oy = — —p =~ ,uk+logP(Y k)
2 ‘-—\’

k



Linear Discriminant Analysis (LDA)

Parameter Estimation

1
5,(x) = xT2y, — —pu!>\y +1log P(Y = k
[ k() = S He 2 [g,(\/)
What do we need?
Class Priors: P(Y = k)
Class Means:
| "

Covariance: 2
—



Linear Discriminant Analysis (LDA)

Parameter Estimation

P (o) 88 =0 -

% C 151) D - What do we need? 1090 Steday,
N\\( = S, oo —» yp -
A C [ Sl) " Class Priors: P(Y = k) = Nk ®CY- NE_S) lo>/.
1
o Class Means: y;, = ’Z C ) A
¥ (WLU\ﬁa > = Aty klly_k 7
¢3) =
R | Covariance: X = ——— Z Z (x; — ﬂk)(x - //lk)T

k—lly =k

L— )




Linear Discriminant Analysis (LDA)

Parameter Estimation

Suppose you have a dataset with

d = 3 features (height, weight, age)

—_—

k = 2 classes (male, female)

——

[ Index Height Weight Age Sex |

1 175 70 25
180 80 30
170 68 22
185 85 35
170 50 25
175 60 30
170 58 22
165 65 35

0NN B W
ST




Linear Discriminant Analysis (LDA)

Parameter Estimation

[ Index He.ight Weight Age Sex

| &
M * R ”

50

M
- 6 175 60 30 M

7 170 58 22 M
| 8 165 65 35 M

N u\ Then:

[ 175 + 180 + 170 + 185 |

i xheight 4 177.5| — \-f
pe= |Tweight | = | BERERER | = 7575 — «
)'C;;;; 25 +30 422 +35 28 |—
~ 4




Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation.

[
4
x
X < 7
< K
9
j ”
L4
v —
XA
------------- --ﬂ )Z,k



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction o
2 > o bxe

* Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation.

ol
2

* This is sometimes called Fisher's Linear Discriminant Analysis.
?‘rojacf'm\
et x € lo

 \What do we want?
d — w7 I 2 e
~ << ]Z X ©

Where 7 € R%, X € R2and W € R

- N
We want the projected data to have maximum separation between classes and
LEinimumﬁspread within gassesb




Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction A, A,
R ? ®/0 Ci,g
« Scatter Matrix (1/3) =~ cﬁ% 0
© ®
* Within Scatter Matrix ' / —>
2 *
Sy = Zsk Z D Gl — ) TETEER
k=1 i:y=k é ,“®

« where S, is the scatter matrix for class k of shape Raxd

e Intuition: §mal| S means points are tightly clustered around their class
means. —




Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

» Scatter Matrix (2/3)

* Between Scatter Matrix j ogh

Meun
K -
— T
. Sp = Z N — Wy — 1) 4
k=1

—

o

1 &
where i = N Z X; Is the global mean

l

« Intuition: Large Sz means class centers are far apart from each other.



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

« Scatter Matrix (3/3)

» Total Scatter Matrix



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Optimization Objective

* We want projections where: gb

 Between-class scatter is large (classes far apart {Large Sp)

- Within-class scatter is small (classes compact -)Small Sy)
o ——



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

los — 5
~
* Optimization Objective (;
* We want projections where: Cwl Ya - - Ou,
v}
 Between-class scatter is large (classes far apart - Large Sp) W - —_——

— L}a\ ——
- Within-class scatter is small (classes compact - Small Sy) '
— ‘J\)‘O e

L—‘/cm")

* For a single projection direction w
« Projected within-class scatter = WTSWW ]

T
(O]
- Projected between-class scatter = w’S W SB v
— T
AHNAY




Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

» Optimization Objective
* We want projections where:

 Between-class scatter is large (classes far apart - Large Sp)

- Within-class scatter is small (classes compact - Small Sy)
* For a single projection direction w

 Projected within-class scatter = WTSWW

 Projected between-class scatter = WTSBW



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Optimization Objective
* We want projections where:

 Between-class scatter is large (classes far apart - Large Sp)
O ————————

- Within-class scatter is small (classes compact - Small Sy)

* For a single projection direction w

 Projected within-class scatter = WTSWW

 Projected between-class scatter = wTSBw f

wlSpw

Maximize : J(w) =

— T




Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction
&b. w = NS, X

-\ W TS W
- S NSy S Sy e W OB
S W = , Maximize : J(w) =
&\—) 18 1 WTSWW
| To maximize, compute derivative and set to zero.
- — Stslex veal wvale
S S .Q - )\w .
W ~F Sp W :@W' w
S!Sy = Aw

This is the standard Eigen-decomposition

The optimal w* is the Eigenvector corresponding to the largest Eigenvalue



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

wlSzw

Maximize : J(w) =
ximize : J(w) TS



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

wlSzw

Maximize : J(w) =
%) wlSyw

To maximize, compute derivative and set to zero.



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

wlSzw

Maximize : J(w) =
%) wlSyw

To maximize, compute derivative and set to zero.
SB W = /LSW - W

S!Sy = Aw



Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

wlSzw

Maximize : J(w) =
ximize : J(w) TS

To maximize, compute derivative and set to zero.
Sp-w=ASy-w
S!S -w=Aw
This is the standard Eigen-decomposition

The optimal w* is the Eigenvector corresponding to the largest Eigenvalue



Linear Discriminant Analysis (LDA)

LDA Summary

Pros

» Simple, fast, closed-form solution

* No hyperparameters to tune

* Works well when assumptions approximately hold
* Provides probabilistic outputs

*/ Built-in dimensionality reduction

» Stable with small datasets

Cons

Assumes Gaussian distributions
Assumes shared covariance (linear boundaries only)

Sensitive to outliers (affect mean and covariance
estimates)

Cannot capture non-linear relationships

Fails if features are highly non-Gaussian



Today’s Outline

e Linear Discriminant Analysis

 Naive Bayes



Naive Bayes Classifier

» Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k)  -P(Y=k)
P(X = x)

P(Y=k|X=x)=



Naive Bayes Classifier

» Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k)  -P(Y=k)

P(Y=k|X=x)= POX =)

* The challenge:

« Estimating P(X | Y = k) for high-dimensional X is difficult.



Naive Bayes Classifier

» Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k)  -P(Y=k)
P(X = x)

P(Y=k|X=x)=

* The challenge:

« Estimating P(X | Y = k) for high-dimensional X is difficult.

« With d features, each taking v possible values, we'd need to estimate ve

parameters per class - exponential in dimensionality.



Naive Bayes Classifier

Naive Bayes assumes features are conditionally independent given the class

» Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k)  -P(Y=k)
P(X = x)

P(Y=k|X=x)=

* The challenge:

« Estimating P(X | Y = k) for high-dimensional X is difficult.

« With d features, each taking v possible values, we'd need to estimate ve

parameters per class - exponential in dimensionality.



Naive Bayes Classifier

Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k)  -P(Y=k)

P(Y=k|X=x)= POX = )

PX=x|Y=k) =P, xp,x3,...., x5 Y =k) = Hleﬂj’()cjl Y=k)

This is almost always wrong in practice - features are usually correlated.

But it reduces parameters from exponential to linear: d parameters per class instead of pd



Naive Bayes Classifier

 Example:

» For spam classification with words “free” and “money”

 Reality: P("free", "money" | spam) # P("free"|spam) - P(“money" | spam)
 These words are correlated in spam emails

* Naive Bayes pretends they're independent



Naive Bayes Classifier

Want to predict:
PX=x|Y=k) -P(Y =k

PY=k|X=x)= POX =)

Naive Assumption:

PX =x|Y=k) =P, X X,..., x| Y =k) = H;.l:lnm(xj| Y = k)



Naive Bayes Classifier

y=argmax P(Y =k) - Hlep()gl Y =k)
k

For numerical stability, we take logs

d
y = arg max log(P(Y = k)) + Z log(P(le Y =k))
k
j=1



Naive Bayes Classifier

y=argmax P(Y =k) - Hlep()gl Y =k)
k

For numerical stability, we take logs

d
y = arg max log(P(Y = k)) + Z log(P(le Y =k))
k
j=1

How do you find I]j’(xj| Y =k)?



Naive Bayes Classifier

Gaussian Naive Bayes

For continuous features, assume each feature follows a Gaussian Distribution

1 —t N
P(x|Y = k) = e
\/ 270},
2

Each class-feature combination has its own mean 4; and variance oy




1
Hij = Z Xij
Nk iy=k

; 2 (X — )

o =
Gaussian Naive Bayes k oy =

Naive Bayes Classifier

For continuous features, assume each feature follows a Gaussian Distribution

1 —t N
P(x|Y = k) = e
\/ 270},
2

Each class-feature combination has its own mean 4; and variance oy




Naive Bayes Classifier

Multinomial Naive Bayes

For discrete features/count data like word frequencies
X
IP’(le Y=k)= Hk]{

Where ij is the probability of feature j in class k and X; is the count of feature j

count of feature j in class k

total count of all features in class k



Naive Bayes Classifier

Bernoulli Naive Bayes

For binary data like word frequencies
PO | Y =k) = 49;; (1= 6"

Where ij is the probability of feature j in class k and X; is the count of feature j

count of feature j in class k
kK =

total samples in class k



Naive Bayes Classifier

Example

Task

Classify emails as spam or not spam

Training Data

X 1= X 2= X 3= X 4=
Document| .. ., | » | N ” Class
free money” | “meeting lunch
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam




Naive Bayes CIaSSifier 6= count of feature j in class k

" total count of all features in class k
Example

2
Task P(spam) = = = 0.5
Classify emails as spam or not spam ,
P(not spam) = 7 =0.5

Training Data

X 1= X 2= X 3= X 4 =
Document| .. ., | » | N ” Class
free money” | “meeting lunch
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam




Naive Bayes Classifier

Example

Task

Classify emails as spam or not spam

Training Data

X 1= X 2= X 3= X 4 =
Document| .. ., | » | N ” Class
free money” | “meeting lunch
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam

count of feature j in class k

0, —
% ™ total count of all features in class k

2
P(spam) = 7 =0.5

2
P(not spam) = 7 =0.5

For spam class:

G+1) =é=0.75
(8) 8

. P("free"|spam) =



Naive Bayes Classifier

Example

Task
Classify emails as spam or not spam

Training Data

X 1= X 2= X 3= X 4 =
Document| .. ., | » | N ” Class
free money” | “meeting lunch
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam

count of feature j in class k

2
P(spam) = 7 =0.5

2
P(not spam) = 7 =0.5

For spam class:

G+1) =é=0.75
(8) 8

GB+1 =i=0.5
(8) 8

O+D _1_ 5125
8 8

O+1) = 1 =0.125
8) 8

. P("free"|spam) =

. P("money"|spam) =

. P("meeting"|spam) =

. P("lunch"|spam) =

" total count of all features in class k



Naive Bayes CIaSSifier 6= count of feature j in class k

" total count of all features in class k
Example

2
Task P(spam) = = = 0.5
Classify emails as spam or not spam ,
P(not spam) = 7 =0.5

Training Data

For not spam class:

x_1= X 2= X 3= X 4= O+1) 1
Document| wfee» | “money” |“meeting”| *lunch® | 1S . P(freetinot spam) = =5 == = 0.166
1 3 2 0 0 spam
P . P("money"|not spam) = O+D = l =0.166
(6) 6
2 2 1 0 0 spam | G+1) 4
. P("meeting"|not spam) = © = 3 = 0.66
3 0 0 2 1 not spam
1 4
. P("lunch"|not spam) = G+1) =—=0.66
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Naive Bayes Classifier

For spam class:
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Naive Bayes Classifier

Example

For spam class:
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New Email: x = “free money”
P(spam|x) = P(Y = spam) - H]flzlﬂj’()cjl Y = spam)
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Naive Bayes Classifier
Why does it work?

» Despite violating independence assumption, Naive Bayes often performs surprisingly well.

 Why?

Classification only needs correct ranking: We don't need accurate probabilities - just
need P(spam | X) > P(not spam | X) when the email is actually spam.

The independence assumption can distort probabilities while preserving the ranking.

High bias, low variance tradeoff: The strong assumption reduces model complexity,
preventing overfitting especially with limited data.

Conditional independence may approximately hold: Within a class, features are
sometimes less correlated than across classes.



Naive Bayes Classifier

Pros

» Extremely fast training (just counting)
* Fast prediction

* Handles high-dimensional data well
* Works with small training sets

* Handles missing features naturally

* Easy to implement and interpret

» Often surprisingly accurate

Cons

Independence assumption is usually wrong
Probability estimates are unreliable
Cannot learn feature interactions

Continuous features require distributional
assumptions

Correlated features are “double-counted”



Classifiers

Comparison Naive Bayes Logistic Regression LDA

Type Generative Discriminative Generative

: Conditional Independence | Conditional Independence Gaussian and shared
Assumption .
Between Features Between Rows of Data covariance
Training Closed Form / Counting Gradient Descent Closed Form
Data Better with small data Better W'th Iargg Qata else Works well across data sizes
risk overfitting
Probabilities Poorly calibrated, care more Well calibrated Well calibrated
about correct ranking
Missing features Handles naturally Requires pre-processing Requires pre-processing




Next Class

 Recap and if we have time, decision trees.



