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Updates

• Wanrou 
 
1:30-3:00 PM Tuesday (17th) - In person - Richards 
Hall 243 
 
5:00-6:30 PM Wednesday (18th) - Virtual 

1. Linear algebra 


1a. Vectors 


1b. Matrices 


1c. Vector and Matrix operations 


2. Probabilities 


2a. Bayes’ rule and conditional probability 


2b. Distributions 


2c. CDFs and PDFs

• Zaiba 
 
1:00-2:30PM Wednesday (18th) - In person - EL 311 
 
2:00-3:00 PM Thursday (19th) - Virtual 

1. Probabilities 


1a. Bayes’ rule and conditional probability 


1b. Distributions 


1c. CDFs and PDFs


2. Derivatives 


2a. Gradients 


2b. Derivatives of some common functions 


2c. Chain Rule, Product Rule, Quotient Rule 




Today’s Outline

• Linear Discriminant Analysis  

• Naive Bayes



Linear Discriminant Analysis (LDA) 

• LDA is a generative classifier 


• Instead of directly predicting  like logistic regression, it models the 
joint distribution  by modeling:


• : How features are distributed within each class


• : Prior probability of each class


• Then it uses Bayes' theorem to compute  for classification.

ℙ(Y |X)
ℙ(X, Y)

ℙ(X |Y)

ℙ(Y)

ℙ(Y |X)
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Linear Discriminant Analysis (LDA) 

• LDA is a generative classifier 


• Key idea: 


• Assume each class generates data from a Gaussian distribution. 


• Find the decision boundary that optimally separates these Gaussian clouds.



Linear Discriminant Analysis (LDA) 
Assumptions 

• Assumption 1: 


• Class conditional probabilities are Gaussian (normal distribution)


• 


• Assumption 2: 


• All classes share the same co-variance matrix  (homoscedasticity)


• Assumption 3: 


• Classes differ only in their means 


• These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

Σ

μk
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Linear Discriminant Analysis (LDA) 
Gaussian Conditional Probability 

• Assumption: 


• Class conditional probabilities are Gaussian (normal distribution)


• 


Gaussian PDF: 


ℙ(X |Y = k) = 𝒩(X |μk, Σ)

f(x) =
1

2πσ2
⋅ e− (x − μ)2

2σ2

ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))
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Linear Discriminant Analysis (LDA) 
Computing Predictions

Have:  
 




Want:  
 




Use Bayes’ Theorem: 


ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))

ℙ(Y |X)

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A) ⋅ P(A)
P(B)
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Linear Discriminant Analysis (LDA) 
Computing Predictions


ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)
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Linear Discriminant Analysis (LDA) 
Computing Predictions




We classify to the class with highest posterior probability: 

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

̂y = argmax kℙ(Y = k |X = x)



Linear Discriminant Analysis (LDA) 
Computing Predictions




We classify to the class with highest posterior probability: 




Note for all , the denominator is going to be the same

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

̂y = argmax kℙ(Y = k |X = x)

k



Linear Discriminant Analysis (LDA) 
Computing Predictions







Taking log on RHS (monotonic transform)


ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

̂y = argmax k ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

̂y = argmax k log(ℙ(X = x |Y = k)) + log(ℙ(Y = k))



Linear Discriminant Analysis (LDA) 
Computing Predictions




Expanding the log of the Gaussian:





Using :





̂y = arg max
k

[log P(X = x |Y = k) + log P(Y = k)]

log P(X = x |Y = k) = log [ 1
(2π)d/2 |Σ |1/2 exp (−

1
2

(x − μk)TΣ−1(x − μk))]
log(ab) = log(a) + log(b)

log ( 1
(2π)d/2 ) + log ( 1

|Σ |1/2 ) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))
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Linear Discriminant Analysis (LDA) 
Computing Predictions




Simplifying each term:





log ( 1
(2π)d/2 ) + log ( 1

|Σ |1/2 ) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))

= −
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk)
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1
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The full expression to maximize is:





Terms that don't depend on :


 : depends only on dimensionality 


 :  for all classes (LDA assumption)

̂y = arg max
k

−
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)

k

− d
2 log(2π) d

−
1
2

log |Σ | Σ

Linear Discriminant Analysis (LDA) 
Computing Predictions



Linear Discriminant Analysis (LDA) 
Computing Predictions

The full expression to maximize is:





Terms that don't depend on :


 : depends only on dimensionality 


 :  is same for all classes (LDA assumption)

̂y = arg max
k

−
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)

k

− d
2 log(2π) d

−
1
2

log |Σ | Σ



Linear Discriminant Analysis (LDA) 
Computing Predictions

The full expression to maximize is:





Expanding:





Note that  and  are both scalars, and since  is symmetric:





̂y = arg max
k [−

1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)]
(x − μk)TΣ−1(x − μk) = xTΣ−1x − xTΣ−1μk − μT

k Σ−1x + μT
k Σ−1μk

xTΣ−1μk μT
k Σ−1x Σ−1

μT
k Σ−1x = (xTΣ−1μk)T = xTΣ−1μk
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Linear Discriminant Analysis (LDA) 
Computing Predictions



Linear Discriminant Analysis (LDA) 
Computing Predictions




Therefore 





Lets put this back into the original equation 

(x − μk)TΣ−1(x − μk) = xTΣ−1x − xTΣ−1μk − μT
k Σ−1x + μT

k Σ−1μk

(x − μk)TΣ−1(x − μk) = xTΣ−1x − 2xTΣ−1μk + μT
k Σ−1μk



Linear Discriminant Analysis (LDA) 
Computing Predictions




The term  depends only on , not on . 
 

 When comparing classes, this is the same for all , so we drop it.


̂y = −
1
2 [xTΣ−1x − 2xTΣ−1μk + μT

k Σ−1μk] + log P(Y = k)

= −
1
2

xTΣ−1x + xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

− 1
2 xTΣ−1x x k

k
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Linear Discriminant Analysis (LDA) 
Computing Predictions

Finally:





This is linear in  because:


•  is linear in  (dot product with a constant vector)


•    The other terms are constants (don't depend on )

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

x

xTΣ−1μk x

x
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Finally:





This is linear in  because:


 is linear in  (dot product with a constant vector)


   The other terms are constants (don't depend on )

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

x

xTΣ−1μk x

x



Linear Discriminant Analysis (LDA) 
Computing Predictions

Finally:





We can also re-write as:





Where:


δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

δk(x) = θT
1k

x + θ0k

θ1k
= Σ−1μk

θ0k
= −

1
2

μT
k Σ−1μk + log P(Y = k)



Linear Discriminant Analysis (LDA) 
Parameter Estimation 




What do we need?  
 

Class Priors: 


Class Means: 


Covariance: 

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

ℙ(Y = k)

μk

Σ



Linear Discriminant Analysis (LDA) 
Parameter Estimation 

What do we need?  
 

Class Priors: 


Class Means: 


Covariance: 

ℙ(Y = k) =
Nk

N

μk =
1
Nk ∑

i:yi=k

xi

Σ =
1

N − K

K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T



Linear Discriminant Analysis (LDA) 
Parameter Estimation 

Suppose you have a dataset with 


 features (height, weight, age) 


 classes (male, female)


d = 3

k = 2

Index Height Weight Age Sex
1 175 70 25 F
2 180 80 30 F
3 170 68 22 F
4 185 85 35 F
5 170 50 25 M
6 175 60 30 M
7 170 58 22 M
8 165 65 35 M



Linear Discriminant Analysis (LDA) 
Parameter Estimation 




Then:


Index Height Weight Age Sex
1 175 70 25 F
2 180 80 30 F
3 170 68 22 F
4 185 85 35 F
5 170 50 25 M
6 175 60 30 M
7 170 58 22 M
8 165 65 35 M

μF =

x̄height
x̄weight

x̄age

=

175 + 180 + 170 + 185
4

70 + 80 + 68 + 85
4

25 + 30 + 22 + 35
4

=
177.5
75.75

28



Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

• Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation. 


• This is sometimes called Fisher's Linear Discriminant Analysis.


• What do we want? 





Where ,  and 


We want the projected data to have maximum separation between classes and 
minimum spread within classes.

z = WTx

z ∈ ℝr X ∈ ℝd W ∈ ℝd×r



Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

• Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation. 


• This is sometimes called Fisher's Linear Discriminant Analysis.


• What do we want? 





Where ,  and 


We want the projected data to have maximum separation between classes and 
minimum spread within classes.

z = WTx

z ∈ ℝr X ∈ ℝd W ∈ ℝd×r



Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

• Scatter Matrix (1/3)


• Within Scatter Matrix 


• 


• where  is the scatter matrix for class  of shape 


• Intuition: Small  means points are tightly clustered around their class 
means.

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

Sk k ℝd×d

SW



Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

• Scatter Matrix (2/3)


• Between Scatter Matrix 


• 


• where  is the global mean 


• Intuition: Large  means class centers are far apart from each other.

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

μ =
1
N

N

∑
i

xi

SB



Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

• Scatter Matrix (3/3)


• Total Scatter Matrix 


• ST = SW + SB



Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

• Optimization Objective 


• We want projections where:


• Between-class scatter is large (classes far apart - Large ) 


• Within-class scatter is small (classes compact - Small )


• For a single projection direction 


• Projected within-class scatter = 


• Projected between-class scatter = 


Maximize : 

SB

SW

w

wTSWw

wTSBw

J(w) =
wTSBw
wTSWw
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Linear Discriminant Analysis (LDA) 
LDA For Dimensionality Reduction 

Maximize : 


To maximize, compute derivative and set to zero. 








This is the standard Eigen-decomposition 


The optimal  is the Eigenvector corresponding to the largest Eigenvalue 

J(w) =
wTSBw
wTSWw

SB ⋅ w = λSW ⋅ w

S−1
W SB = λw

w*
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LDA For Dimensionality Reduction 
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Linear Discriminant Analysis (LDA) 
LDA Summary 

Pros Cons

• Simple, fast, closed-form solution


• No hyperparameters to tune


• Works well when assumptions approximately hold


• Provides probabilistic outputs


• Built-in dimensionality reduction


• Stable with small datasets

• Assumes Gaussian distributions


• Assumes shared covariance (linear boundaries only)


• Sensitive to outliers (affect mean and covariance 
estimates)


• Cannot capture non-linear relationships


• Fails if features are highly non-Gaussian



Today’s Outline

• Linear Discriminant Analysis 


• Naive Bayes



Naive Bayes Classifier 

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem





• The challenge: 


• Estimating  for high-dimensional  is difficult. 


• With  features, each taking  possible values, we'd need to estimate  
parameters per class - exponential in dimensionality.

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X |Y = k) X

d v vd
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ℙ(X |Y = k) X

d v vd



Naive Bayes Classifier 

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem





• The challenge: 


• Estimating  for high-dimensional  is difficult. 


• With  features, each taking  possible values, we'd need to estimate  
parameters per class - exponential in dimensionality.

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X |Y = k) X

d v vd

Naive Bayes assumes features are conditionally independent given the class



Naive Bayes Classifier 

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem





•  


• This is almost always wrong in practice - features are usually correlated.


• But it reduces parameters from exponential to linear:  parameters per class instead of  

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X = x |Y = k) = ℙ(x1, x2, x3, . . . , xd |Y = k) = Πd
j=1ℙ(xj |Y = k)

d vd



Naive Bayes Classifier 

• Example:


• For spam classification with words “free” and “money”


• Reality: ("free", "money" | spam)  ("free"|spam)  (“money" | spam)


• These words are correlated in spam emails


• Naive Bayes pretends they're independent

ℙ ≠ ℙ ⋅ ℙ



Naive Bayes Classifier 

Want to predict: 




Naive Assumption: 

 

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X = x |Y = k) = ℙ(x1, x2, x3, . . . , xd |Y = k) = Πd
j=1ℙ(xj |Y = k)



Naive Bayes Classifier 

 

For numerical stability, we take logs 


̂y = arg max
k

ℙ(Y = k) ⋅ Πd
j=1ℙ(xj |Y = k)

̂y = arg max
k

log(ℙ(Y = k)) +
d

∑
j=1

log(ℙ(xj |Y = k))



Naive Bayes Classifier 

 

For numerical stability, we take logs 





How do you find ?

̂y = arg max
k

ℙ(Y = k) ⋅ Πd
j=1ℙ(xj |Y = k)

̂y = arg max
k

log(ℙ(Y = k)) +
d

∑
j=1

log(ℙ(xj |Y = k))

ℙ(xj |Y = k)



Naive Bayes Classifier 

Gaussian Naive Bayes 

For continuous features, assume each feature follows a Gaussian Distribution





Each class-feature combination has its own mean  and variance 

ℙ(xj |Y = k) =
1

2πσ2
kj

⋅ e
−

(xj − μkj)
2

2σ2
kj

μkj σ2
kj



Naive Bayes Classifier 

Gaussian Naive Bayes 

For continuous features, assume each feature follows a Gaussian Distribution





Each class-feature combination has its own mean  and variance 

ℙ(xj |Y = k) =
1

2πσ2
kj

⋅ e
−

(xj − μkj)
2

2σ2
kj

μkj σ2
kj

μkj =
1
Nk ∑

i:yi=k

xij

σ2
kj =

1
Nk ∑

i:yi=k

(xij − μkj)2



Naive Bayes Classifier 

Multinomial Naive Bayes 

For discrete features/count data like word frequencies 





Where  is the probability of feature  in class  and  is the count of feature 


ℙ(xj |Y = k) = θxj
kj

θkj j k xj j

θkj =
count of feature j in class k

total count of all features in class k



Naive Bayes Classifier 

Bernoulli Naive Bayes 

For binary data like word frequencies 





Where  is the probability of feature  in class  and  is the count of feature 


ℙ(xj |Y = k) = θxj
kj ⋅ (1 − θkj)1−xj

θkj j k xj j

θkj =
count of feature j in class k

total samples in class k



Naive Bayes Classifier 

Task 
Classify emails as spam or not spam


Training Data 

Example

Document x_1 = 
“free”

x_2 = 
“money”

x_3 = 
“meeting”

x_4 = 
“lunch” Class

1 3 2 0 0 spam

2 2 1 0 0 spam

3 0 0 2 1 not spam

4 0 0 1 2 not spam

 

 

For spam class:


• 


• 


• 


•

ℙ(spam) =
2
4

= 0.5

ℙ(not spam) =
2
4

= 0.5

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125
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Naive Bayes Classifier 
Example
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New Email: “free money”





 




x =

ℙ(spam |x) = ℙ(Y = spam) ⋅ Πd
j=1ℙ(xj |Y = spam)

ℙ(spam |x) = 0.5 ⋅ (0.75)1 ⋅ (0.5)1 = 0.1875

ℙ(not spam |x) = ℙ(Y = not spam) ⋅ Πd
j=1ℙ(xj |Y = not spam)

ℙ(not spam |x) = 0.5 ⋅ (0.166)1 ⋅ (0.166)1 = 0.013

ℙ(xj |Y = k) = θxj
kj

θkj =
count of feature j in class k

total count of all features in class k
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Naive Bayes Classifier 

• Despite violating independence assumption, Naive Bayes often performs surprisingly well. 


• Why?


• Classification only needs correct ranking: We don't need accurate probabilities - just 
need  when the email is actually spam. 


• The independence assumption can distort probabilities while preserving the ranking.


• High bias, low variance tradeoff: The strong assumption reduces model complexity, 
preventing overfitting especially with limited data.


• Conditional independence may approximately hold: Within a class, features are 
sometimes less correlated than across classes.

ℙ(spam |X) > ℙ(not spam |X)

Why does it work? 



Naive Bayes Classifier 

Pros Cons

• Extremely fast training (just counting)


• Fast prediction


• Handles high-dimensional data well


• Works with small training sets


• Handles missing features naturally


• Easy to implement and interpret


• Often surprisingly accurate

• Independence assumption is usually wrong


• Probability estimates are unreliable


• Cannot learn feature interactions


• Continuous features require distributional 
assumptions


• Correlated features are “double-counted”



Classifiers

Comparison Naive Bayes Logistic Regression LDA

Type Generative Discriminative Generative

Assumption Conditional Independence 
Between Features

Conditional Independence 
Between Rows of Data

Gaussian and shared 
covariance 

Training Closed Form / Counting Gradient Descent Closed Form

Data Better with small data Better with large data else 
risk overfitting Works well across data sizes 

Probabilities Poorly calibrated, care more 
about correct ranking Well calibrated Well calibrated 

Missing features Handles naturally Requires pre-processing Requires pre-processing



Next Class

• Recap and if we have time, decision trees. 


