
Wednesday | February 11, 2026

Linear Discriminant Analysis & Naive Bayes
DS 4400 | Machine Learning and Data Mining I
Zohair Shafi
Spring 2026

Updates

• Wanrou 
 
1:30-3:00 PM Tuesday (17th) - In person - Richards
Hall 243 
 
5:00-6:30 PM Wednesday (18th) - Virtual

1. Linear algebra

1a. Vectors

1b. Matrices

1c. Vector and Matrix operations

2. Probabilities

2a. Bayes’ rule and conditional probability

2b. Distributions

2c. CDFs and PDFs

• Zaiba 
 
1:00-2:30PM Wednesday (18th) - In person - EL 311 
 
2:00-3:00 PM Thursday (19th) - Virtual

1. Probabilities

1a. Bayes’ rule and conditional probability

1b. Distributions

1c. CDFs and PDFs

2. Derivatives

2a. Gradients

2b. Derivatives of some common functions

2c. Chain Rule, Product Rule, Quotient Rule

Today’s Outline

• Linear Discriminant Analysis

• Naive Bayes

Linear Discriminant Analysis (LDA)

• LDA is a generative classifier

• Instead of directly predicting like logistic regression, it models the
joint distribution by modeling:

• : How features are distributed within each class

• : Prior probability of each class

• Then it uses Bayes' theorem to compute for classification.

ℙ(Y |X)
ℙ(X, Y)

ℙ(X |Y)

ℙ(Y)

ℙ(Y |X)

Linear Discriminant Analysis (LDA)

• LDA is a generative classifier

• Instead of directly predicting like logistic regression, it models the
joint distribution by modeling:

• : How features are distributed within each class

• : Prior probability of each class

• Then it uses Bayes' theorem to compute for classification.

ℙ(Y |X)
ℙ(X, Y)

ℙ(X |Y)

ℙ(Y)

ℙ(Y |X)

Linear Discriminant Analysis (LDA)

• LDA is a generative classifier

• Key idea:

• Assume each class generates data from a Gaussian distribution.

• Find the decision boundary that optimally separates these Gaussian clouds.

Linear Discriminant Analysis (LDA)
Assumptions

• Assumption 1:

• Class conditional probabilities are Gaussian (normal distribution)

•

• Assumption 2:

• All classes share the same co-variance matrix (homoscedasticity)

• Assumption 3:

• Classes differ only in their means

• These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

Σ

μk

Linear Discriminant Analysis (LDA)
Assumptions

• Assumption 1:

• Class conditional probabilities are Gaussian (normal distribution)

•

• Assumption 2:

• All classes share the same co-variance matrix (homoscedasticity)

• Assumption 3:

• Classes differ only in their means

• These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

Σ

μk

Linear Discriminant Analysis (LDA)
Assumptions

• Assumption 1:

• Class conditional probabilities are Gaussian (normal distribution)

•

• Assumption 2:

• All classes share the same co-variance matrix (homoscedasticity)

• Assumption 3:

• Classes differ only in their means

• These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

Σ

μk

Linear Discriminant Analysis (LDA)
Assumptions

• Assumption 1:

• Class conditional probabilities are Gaussian (normal distribution)

•

• Assumption 2:

• All classes share the same co-variance matrix (homoscedasticity)

• Assumption 3:

• Classes differ only in their means

• These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

Σ

μk

Linear Discriminant Analysis (LDA)
Gaussian Conditional Probability

• Assumption:

• Class conditional probabilities are Gaussian (normal distribution)

•

Gaussian PDF:

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

f(x) =
1

2πσ2
⋅ e− (x − μ)2

2σ2

ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))

Linear Discriminant Analysis (LDA)
Gaussian Conditional Probability

• Assumption:

• Class conditional probabilities are Gaussian (normal distribution)

•

Gaussian PDF:

ℙ(X |Y = k) = 𝒩(X |μk, Σ)

f(x) =
1

2πσ2
⋅ e− (x − μ)2

2σ2

ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))

Linear Discriminant Analysis (LDA)
Computing Predictions

Have:  
 

Want:  
 

Use Bayes’ Theorem:

ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))

ℙ(Y |X)

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A) ⋅ P(A)
P(B)

Linear Discriminant Analysis (LDA)
Computing Predictions

Have:  
 

Want:  
 

Use Bayes’ Theorem:

ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))

ℙ(Y |X)

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A) ⋅ P(A)
P(B)

Linear Discriminant Analysis (LDA)
Computing Predictions

Have:  
 

Want:  
 

Use Bayes’ Theorem:

ℙ(x |Y = k) =
1

(2π)d
2 |Σ |

1
2

exp(−
1
2

(x − μk)TΣ−1(x − μk))

ℙ(Y |X)

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A) ⋅ P(A)
P(B)

Linear Discriminant Analysis (LDA)
Computing Predictions

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

Linear Discriminant Analysis (LDA)
Computing Predictions

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

Linear Discriminant Analysis (LDA)
Computing Predictions

We classify to the class with highest posterior probability: 

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

̂y = argmax kℙ(Y = k |X = x)

Linear Discriminant Analysis (LDA)
Computing Predictions

We classify to the class with highest posterior probability: 

Note for all , the denominator is going to be the same

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

̂y = argmax kℙ(Y = k |X = x)

k

Linear Discriminant Analysis (LDA)
Computing Predictions

Taking log on RHS (monotonic transform)

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

∑k
j=1 ℙ(X = x |Y = j) ⋅ ℙ(Y = j)

̂y = argmax k ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

̂y = argmax k log(ℙ(X = x |Y = k)) + log(ℙ(Y = k))

Linear Discriminant Analysis (LDA)
Computing Predictions

Expanding the log of the Gaussian:

Using :

̂y = arg max
k

[log P(X = x |Y = k) + log P(Y = k)]

log P(X = x |Y = k) = log [1
(2π)d/2 |Σ |1/2 exp (−

1
2

(x − μk)TΣ−1(x − μk))]
log(ab) = log(a) + log(b)

log (1
(2π)d/2) + log (1

|Σ |1/2) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))

Linear Discriminant Analysis (LDA)
Computing Predictions

Expanding the log of the Gaussian:

Using :

̂y = arg max
k

[log P(X = x |Y = k) + log P(Y = k)]

log P(X = x |Y = k) = log [1
(2π)d/2 |Σ |1/2 exp (−

1
2

(x − μk)TΣ−1(x − μk))]
log(ab) = log(a) + log(b)

log (1
(2π)d/2) + log (1

|Σ |1/2) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))

Linear Discriminant Analysis (LDA)
Computing Predictions

Expanding the log of the Gaussian:

Using :

̂y = arg max
k

[log P(X = x |Y = k) + log P(Y = k)]

log P(X = x |Y = k) = log [1
(2π)d/2 |Σ |1/2 exp (−

1
2

(x − μk)TΣ−1(x − μk))]
log(ab) = log(a) + log(b)

log (1
(2π)d/2) + log (1

|Σ |1/2) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))

Linear Discriminant Analysis (LDA)
Computing Predictions

Simplifying each term:

log (1
(2π)d/2) + log (1

|Σ |1/2) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))

= −
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk)

Linear Discriminant Analysis (LDA)
Computing Predictions

Simplifying each term:

log (1
(2π)d/2) + log (1

|Σ |1/2) + log (exp (−
1
2

(x − μk)TΣ−1(x − μk)))

= −
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk)

The full expression to maximize is:

Terms that don't depend on :

 : depends only on dimensionality

 : for all classes (LDA assumption)

̂y = arg max
k

−
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)

k

− d
2 log(2π) d

−
1
2

log |Σ | Σ

Linear Discriminant Analysis (LDA)
Computing Predictions

Linear Discriminant Analysis (LDA)
Computing Predictions

The full expression to maximize is:

Terms that don't depend on :

 : depends only on dimensionality

 : is same for all classes (LDA assumption)

̂y = arg max
k

−
d
2

log(2π) −
1
2

log |Σ | −
1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)

k

− d
2 log(2π) d

−
1
2

log |Σ | Σ

Linear Discriminant Analysis (LDA)
Computing Predictions

The full expression to maximize is:

Expanding:

Note that and are both scalars, and since is symmetric:

̂y = arg max
k [−

1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)]
(x − μk)TΣ−1(x − μk) = xTΣ−1x − xTΣ−1μk − μT

k Σ−1x + μT
k Σ−1μk

xTΣ−1μk μT
k Σ−1x Σ−1

μT
k Σ−1x = (xTΣ−1μk)T = xTΣ−1μk

Linear Discriminant Analysis (LDA)
Computing Predictions

The full expression to maximize is:

Expanding:

Note that and are both scalars, and since is symmetric:

̂y = arg max
k [−

1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)]
(x − μk)TΣ−1(x − μk) = xTΣ−1x − xTΣ−1μk − μT

k Σ−1x + μT
k Σ−1μk

xTΣ−1μk μT
k Σ−1x Σ−1

μT
k Σ−1x = (xTΣ−1μk)T = xTΣ−1μk

The full expression to maximize is:

Expanding:

Note that and are both scalars, and since is symmetric:

̂y = arg max
k [−

1
2

(x − μk)TΣ−1(x − μk) + log P(Y = k)]
(x − μk)TΣ−1(x − μk) = xTΣ−1x − xTΣ−1μk − μT

k Σ−1x + μT
k Σ−1μk

xTΣ−1μk μT
k Σ−1x Σ−1

μT
k Σ−1x = (xTΣ−1μk)T = xTΣ−1μk

Linear Discriminant Analysis (LDA)
Computing Predictions

Linear Discriminant Analysis (LDA)
Computing Predictions

Therefore

Lets put this back into the original equation

(x − μk)TΣ−1(x − μk) = xTΣ−1x − xTΣ−1μk − μT
k Σ−1x + μT

k Σ−1μk

(x − μk)TΣ−1(x − μk) = xTΣ−1x − 2xTΣ−1μk + μT
k Σ−1μk

Linear Discriminant Analysis (LDA)
Computing Predictions

The term depends only on , not on . 
 

 When comparing classes, this is the same for all , so we drop it.

̂y = −
1
2 [xTΣ−1x − 2xTΣ−1μk + μT

k Σ−1μk] + log P(Y = k)

= −
1
2

xTΣ−1x + xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

− 1
2 xTΣ−1x x k

k

Linear Discriminant Analysis (LDA)
Computing Predictions

The term depends only on , not on . 
 

 When comparing classes, this is the same for all , so we drop it.

̂y = −
1
2 [xTΣ−1x − 2xTΣ−1μk + μT

k Σ−1μk] + log P(Y = k)

= −
1
2

xTΣ−1x + xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

− 1
2 xTΣ−1x x k

k

Linear Discriminant Analysis (LDA)
Computing Predictions

The term depends only on , not on . 
 

 When comparing classes, this is the same for all , so we drop it.

̂y = −
1
2 [xTΣ−1x − 2xTΣ−1μk + μT

k Σ−1μk] + log P(Y = k)

= −
1
2

xTΣ−1x + xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

− 1
2 xTΣ−1x x k

k

Linear Discriminant Analysis (LDA)
Computing Predictions

Finally:

This is linear in because:

• is linear in (dot product with a constant vector)

• The other terms are constants (don't depend on)

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

x

xTΣ−1μk x

x

Linear Discriminant Analysis (LDA)
Computing Predictions

Finally:

This is linear in because:

 is linear in (dot product with a constant vector)

 The other terms are constants (don't depend on)

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

x

xTΣ−1μk x

x

Linear Discriminant Analysis (LDA)
Computing Predictions

Finally:

We can also re-write as:

Where:

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

δk(x) = θT
1k

x + θ0k

θ1k
= Σ−1μk

θ0k
= −

1
2

μT
k Σ−1μk + log P(Y = k)

Linear Discriminant Analysis (LDA)
Parameter Estimation

What do we need?  
 

Class Priors:

Class Means:

Covariance:

δk(x) = xTΣ−1μk −
1
2

μT
k Σ−1μk + log P(Y = k)

ℙ(Y = k)

μk

Σ

Linear Discriminant Analysis (LDA)
Parameter Estimation

What do we need?  
 

Class Priors:

Class Means:

Covariance:

ℙ(Y = k) =
Nk

N

μk =
1
Nk ∑

i:yi=k

xi

Σ =
1

N − K

K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

Linear Discriminant Analysis (LDA)
Parameter Estimation

Suppose you have a dataset with

 features (height, weight, age)

 classes (male, female)

d = 3

k = 2

Index Height Weight Age Sex
1 175 70 25 F
2 180 80 30 F
3 170 68 22 F
4 185 85 35 F
5 170 50 25 M
6 175 60 30 M
7 170 58 22 M
8 165 65 35 M

Linear Discriminant Analysis (LDA)
Parameter Estimation

Then:

Index Height Weight Age Sex
1 175 70 25 F
2 180 80 30 F
3 170 68 22 F
4 185 85 35 F
5 170 50 25 M
6 175 60 30 M
7 170 58 22 M
8 165 65 35 M

μF =

x̄height
x̄weight

x̄age

=

175 + 180 + 170 + 185
4

70 + 80 + 68 + 85
4

25 + 30 + 22 + 35
4

=
177.5
75.75

28

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation.

• This is sometimes called Fisher's Linear Discriminant Analysis.

• What do we want?

Where , and

We want the projected data to have maximum separation between classes and
minimum spread within classes.

z = WTx

z ∈ ℝr X ∈ ℝd W ∈ ℝd×r

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation.

• This is sometimes called Fisher's Linear Discriminant Analysis.

• What do we want?

Where , and

We want the projected data to have maximum separation between classes and
minimum spread within classes.

z = WTx

z ∈ ℝr X ∈ ℝd W ∈ ℝd×r

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Scatter Matrix (1/3)

• Within Scatter Matrix

•

• where is the scatter matrix for class of shape

• Intuition: Small means points are tightly clustered around their class
means.

SW =
K

∑
k=1

Sk =
K

∑
k=1

∑
i:yi=k

(xi − μk)(xi − μk)T

Sk k ℝd×d

SW

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Scatter Matrix (2/3)

• Between Scatter Matrix

•

• where is the global mean

• Intuition: Large means class centers are far apart from each other.

SB =
K

∑
k=1

Nk(μk − μ)(μk − μ)T

μ =
1
N

N

∑
i

xi

SB

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Scatter Matrix (3/3)

• Total Scatter Matrix

• ST = SW + SB

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Optimization Objective

• We want projections where:

• Between-class scatter is large (classes far apart - Large)

• Within-class scatter is small (classes compact - Small)

• For a single projection direction

• Projected within-class scatter =

• Projected between-class scatter =

Maximize :

SB

SW

w

wTSWw

wTSBw

J(w) =
wTSBw
wTSWw

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Optimization Objective

• We want projections where:

• Between-class scatter is large (classes far apart - Large)

• Within-class scatter is small (classes compact - Small)

• For a single projection direction

• Projected within-class scatter =

• Projected between-class scatter =

Maximize :

SB

SW

w

wTSWw

wTSBw

J(w) =
wTSBw
wTSWw

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Optimization Objective

• We want projections where:

• Between-class scatter is large (classes far apart - Large)

• Within-class scatter is small (classes compact - Small)

• For a single projection direction

• Projected within-class scatter =

• Projected between-class scatter =

Maximize :

SB

SW

w

wTSWw

wTSBw

J(w) =
wTSBw
wTSWw

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

• Optimization Objective

• We want projections where:

• Between-class scatter is large (classes far apart - Large)

• Within-class scatter is small (classes compact - Small)

• For a single projection direction

• Projected within-class scatter =

• Projected between-class scatter =

Maximize :

SB

SW

w

wTSWw

wTSBw

J(w) =
wTSBw
wTSWw

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

Maximize :

To maximize, compute derivative and set to zero.

This is the standard Eigen-decomposition

The optimal is the Eigenvector corresponding to the largest Eigenvalue

J(w) =
wTSBw
wTSWw

SB ⋅ w = λSW ⋅ w

S−1
W SB = λw

w*

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

Maximize :

To maximize, compute derivative and set to zero.

This is the standard Eigen-decomposition

The optimal is the Eigenvector corresponding to the largest Eigenvalue

J(w) =
wTSBw
wTSWw

SB ⋅ w = λSW ⋅ w

S−1
W SB = λw

w*

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

Maximize :

To maximize, compute derivative and set to zero.

This is the standard Eigen-decomposition

The optimal is the Eigenvector corresponding to the largest Eigenvalue

J(w) =
wTSBw
wTSWw

SB ⋅ w = λSW ⋅ w

S−1
W SB = λw

w*

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

Maximize :

To maximize, compute derivative and set to zero.

This is the standard Eigen-decomposition

The optimal is the Eigenvector corresponding to the largest Eigenvalue

J(w) =
wTSBw
wTSWw

SB ⋅ w = λSW ⋅ w

S−1
W SB = λw

w*

Linear Discriminant Analysis (LDA)
LDA For Dimensionality Reduction

Maximize :

To maximize, compute derivative and set to zero.

This is the standard Eigen-decomposition

The optimal is the Eigenvector corresponding to the largest Eigenvalue

J(w) =
wTSBw
wTSWw

SB ⋅ w = λSW ⋅ w

S−1
W SB ⋅ w = λw

w*

Linear Discriminant Analysis (LDA)
LDA Summary

Pros Cons

• Simple, fast, closed-form solution

• No hyperparameters to tune

• Works well when assumptions approximately hold

• Provides probabilistic outputs

• Built-in dimensionality reduction

• Stable with small datasets

• Assumes Gaussian distributions

• Assumes shared covariance (linear boundaries only)

• Sensitive to outliers (affect mean and covariance
estimates)

• Cannot capture non-linear relationships

• Fails if features are highly non-Gaussian

Today’s Outline

• Linear Discriminant Analysis

• Naive Bayes

Naive Bayes Classifier

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem

• The challenge:

• Estimating for high-dimensional is difficult.

• With features, each taking possible values, we'd need to estimate
parameters per class - exponential in dimensionality.

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X |Y = k) X

d v vd

Naive Bayes Classifier

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem

• The challenge:

• Estimating for high-dimensional is difficult.

• With features, each taking possible values, we'd need to estimate
parameters per class - exponential in dimensionality.

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X |Y = k) X

d v vd

Naive Bayes Classifier

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem

• The challenge:

• Estimating for high-dimensional is difficult.

• With features, each taking possible values, we'd need to estimate
parameters per class - exponential in dimensionality.

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X |Y = k) X

d v vd

Naive Bayes Classifier

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem

• The challenge:

• Estimating for high-dimensional is difficult.

• With features, each taking possible values, we'd need to estimate
parameters per class - exponential in dimensionality.

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X |Y = k) X

d v vd

Naive Bayes assumes features are conditionally independent given the class

Naive Bayes Classifier

• Like LDA, Naive Bayes is a generative classifier using Bayes' theorem

•

• This is almost always wrong in practice - features are usually correlated.

• But it reduces parameters from exponential to linear: parameters per class instead of  

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X = x |Y = k) = ℙ(x1, x2, x3, . . . , xd |Y = k) = Πd
j=1ℙ(xj |Y = k)

d vd

Naive Bayes Classifier

• Example:

• For spam classification with words “free” and “money”

• Reality: ("free", "money" | spam) ("free"|spam) (“money" | spam)

• These words are correlated in spam emails

• Naive Bayes pretends they're independent

ℙ ≠ ℙ ⋅ ℙ

Naive Bayes Classifier

Want to predict:

Naive Assumption:

ℙ(Y = k |X = x) =
ℙ(X = x |Y = k) ⋅ ℙ(Y = k)

ℙ(X = x)

ℙ(X = x |Y = k) = ℙ(x1, x2, x3, . . . , xd |Y = k) = Πd
j=1ℙ(xj |Y = k)

Naive Bayes Classifier

For numerical stability, we take logs

̂y = arg max
k

ℙ(Y = k) ⋅ Πd
j=1ℙ(xj |Y = k)

̂y = arg max
k

log(ℙ(Y = k)) +
d

∑
j=1

log(ℙ(xj |Y = k))

Naive Bayes Classifier

For numerical stability, we take logs

How do you find ?

̂y = arg max
k

ℙ(Y = k) ⋅ Πd
j=1ℙ(xj |Y = k)

̂y = arg max
k

log(ℙ(Y = k)) +
d

∑
j=1

log(ℙ(xj |Y = k))

ℙ(xj |Y = k)

Naive Bayes Classifier

Gaussian Naive Bayes

For continuous features, assume each feature follows a Gaussian Distribution

Each class-feature combination has its own mean and variance

ℙ(xj |Y = k) =
1

2πσ2
kj

⋅ e
−

(xj − μkj)
2

2σ2
kj

μkj σ2
kj

Naive Bayes Classifier

Gaussian Naive Bayes

For continuous features, assume each feature follows a Gaussian Distribution

Each class-feature combination has its own mean and variance

ℙ(xj |Y = k) =
1

2πσ2
kj

⋅ e
−

(xj − μkj)
2

2σ2
kj

μkj σ2
kj

μkj =
1
Nk ∑

i:yi=k

xij

σ2
kj =

1
Nk ∑

i:yi=k

(xij − μkj)2

Naive Bayes Classifier

Multinomial Naive Bayes

For discrete features/count data like word frequencies

Where is the probability of feature in class and is the count of feature

ℙ(xj |Y = k) = θxj
kj

θkj j k xj j

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier

Bernoulli Naive Bayes

For binary data like word frequencies

Where is the probability of feature in class and is the count of feature

ℙ(xj |Y = k) = θxj
kj ⋅ (1 − θkj)1−xj

θkj j k xj j

θkj =
count of feature j in class k

total samples in class k

Naive Bayes Classifier

Task 
Classify emails as spam or not spam

Training Data

Example

Document x_1 =
“free”

x_2 =
“money”

x_3 =
“meeting”

x_4 =
“lunch” Class

1 3 2 0 0 spam

2 2 1 0 0 spam

3 0 0 2 1 not spam

4 0 0 1 2 not spam

For spam class:

•

•

•

•

ℙ(spam) =
2
4

= 0.5

ℙ(not spam) =
2
4

= 0.5

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

Naive Bayes Classifier

Task 
Classify emails as spam or not spam

Training Data

Example

Document x_1 =
“free”

x_2 =
“money”

x_3 =
“meeting”

x_4 =
“lunch” Class

1 3 2 0 0 spam

2 2 1 0 0 spam

3 0 0 2 1 not spam

4 0 0 1 2 not spam

For spam class:

•

•

•

•

ℙ(spam) =
2
4

= 0.5

ℙ(not spam) =
2
4

= 0.5

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier

Task 
Classify emails as spam or not spam

Training Data

Example

Document x_1 =
“free”

x_2 =
“money”

x_3 =
“meeting”

x_4 =
“lunch” Class

1 3 2 0 0 spam

2 2 1 0 0 spam

3 0 0 2 1 not spam

4 0 0 1 2 not spam

For spam class:

•

•

•

•

ℙ(spam) =
2
4

= 0.5

ℙ(not spam) =
2
4

= 0.5

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier

Task 
Classify emails as spam or not spam

Training Data

Example

Document x_1 =
“free”

x_2 =
“money”

x_3 =
“meeting”

x_4 =
“lunch” Class

1 3 2 0 0 spam

2 2 1 0 0 spam

3 0 0 2 1 not spam

4 0 0 1 2 not spam

For spam class:

•

•

•

•

ℙ(spam) =
2
4

= 0.5

ℙ(not spam) =
2
4

= 0.5

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier

Task 
Classify emails as spam or not spam

Training Data

Example

Document x_1 =
“free”

x_2 =
“money”

x_3 =
“meeting”

x_4 =
“lunch” Class

1 3 2 0 0 spam

2 2 1 0 0 spam

3 0 0 2 1 not spam

4 0 0 1 2 not spam

For not spam class:

•

•

•

•

ℙ(spam) =
2
4

= 0.5

ℙ(not spam) =
2
4

= 0.5

ℙ("free"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("money"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("meeting"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

ℙ("lunch"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier
Example

For not spam class:

•

•

•

•

ℙ("free"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("money"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("meeting"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

ℙ("lunch"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

For spam class:

•

•

•

•

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

New Email: “free money”

 

x =

ℙ(spam |x) = ℙ(Y = spam) ⋅ Πd
j=1ℙ(xj |Y = spam)

ℙ(spam |x) = 0.5 ⋅ (0.75)1 ⋅ (0.5)1 = 0.1875

ℙ(not spam |x) = ℙ(Y = not spam) ⋅ Πd
j=1ℙ(xj |Y = not spam)

ℙ(not spam |x) = 0.5 ⋅ (0.166)1 ⋅ (0.166)1 = 0.013

ℙ(xj |Y = k) = θxj
kj

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier
Example

For not spam class:

•

•

•

•

ℙ("free"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("money"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("meeting"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

ℙ("lunch"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

For spam class:

•

•

•

•

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

New Email: “free money”

 

x =

ℙ(spam |x) = ℙ(Y = spam) ⋅ Πd
j=1ℙ(xj |Y = spam)

ℙ(spam |x) = 0.5 ⋅ (0.75)1 ⋅ (0.5)1 = 0.1875

ℙ(not spam |x) = ℙ(Y = not spam) ⋅ Πd
j=1ℙ(xj |Y = not spam)

ℙ(not spam |x) = 0.5 ⋅ (0.166)1 ⋅ (0.166)1 = 0.013

ℙ(xj |Y = k) = θxj
kj

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier
Example

For not spam class:

•

•

•

•

ℙ("free"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("money"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("meeting"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

ℙ("lunch"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

For spam class:

•

•

•

•

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

New Email: “free money”

 

x =

ℙ(spam |x) = ℙ(Y = spam) ⋅ Πd
j=1ℙ(xj |Y = spam)

ℙ(spam |x) = 0.5 ⋅ (0.75)1 ⋅ (0.5)1 = 0.1875

ℙ(not spam |x) = ℙ(Y = not spam) ⋅ Πd
j=1ℙ(xj |Y = not spam)

ℙ(not spam |x) = 0.5 ⋅ (0.166)1 ⋅ (0.166)1 = 0.013

ℙ(xj |Y = k) = θxj
kj

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier
Example

For not spam class:

•

•

•

•

ℙ("free"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("money"|not spam) =
(0 + 1)

(6)
=

1
6

= 0.166

ℙ("meeting"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

ℙ("lunch"|not spam) =
(3 + 1)

(6)
=

4
6

= 0.66

For spam class:

•

•

•

•

ℙ("free"|spam) =
(5 + 1)

(8)
=

6
8

= 0.75

ℙ("money"|spam) =
(3 + 1)

(8)
=

4
8

= 0.5

ℙ("meeting"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

ℙ("lunch"|spam) =
(0 + 1)

(8)
=

1
8

= 0.125

New Email: “free money”

 

x =

ℙ(spam |x) = ℙ(Y = spam) ⋅ Πd
j=1ℙ(xj |Y = spam)

ℙ(spam |x) = 0.5 ⋅ (0.75)1 ⋅ (0.5)1 = 0.1875

ℙ(not spam |x) = ℙ(Y = not spam) ⋅ Πd
j=1ℙ(xj |Y = not spam)

ℙ(not spam |x) = 0.5 ⋅ (0.166)1 ⋅ (0.166)1 = 0.013

ℙ(xj |Y = k) = θxj
kj

θkj =
count of feature j in class k

total count of all features in class k

Naive Bayes Classifier

• Despite violating independence assumption, Naive Bayes often performs surprisingly well.

• Why?

• Classification only needs correct ranking: We don't need accurate probabilities - just
need when the email is actually spam.

• The independence assumption can distort probabilities while preserving the ranking.

• High bias, low variance tradeoff: The strong assumption reduces model complexity,
preventing overfitting especially with limited data.

• Conditional independence may approximately hold: Within a class, features are
sometimes less correlated than across classes.

ℙ(spam |X) > ℙ(not spam |X)

Why does it work?

Naive Bayes Classifier

Pros Cons

• Extremely fast training (just counting)

• Fast prediction

• Handles high-dimensional data well

• Works with small training sets

• Handles missing features naturally

• Easy to implement and interpret

• Often surprisingly accurate

• Independence assumption is usually wrong

• Probability estimates are unreliable

• Cannot learn feature interactions

• Continuous features require distributional
assumptions

• Correlated features are “double-counted”

Classifiers

Comparison Naive Bayes Logistic Regression LDA

Type Generative Discriminative Generative

Assumption Conditional Independence
Between Features

Conditional Independence
Between Rows of Data

Gaussian and shared
covariance

Training Closed Form / Counting Gradient Descent Closed Form

Data Better with small data Better with large data else
risk overfitting Works well across data sizes

Probabilities Poorly calibrated, care more
about correct ranking Well calibrated Well calibrated

Missing features Handles naturally Requires pre-processing Requires pre-processing

Next Class

• Recap and if we have time, decision trees.

