Northeastern University
Khoury College of
Computer Sciences

Linear Discriminant Analysis & Naive Bayes

DS 4400 | Machine Learning and Data Mining |
Zohair Shafi
Spring 2026

Wednesday | February 11, 2026

Updates

« Wanrou o« Zaiba

1:30-3:00 PM Tuesday (17th) - In person - Richards

1:00-2:30PM Wednesday (18th) - In person - EL 311
Hall 243

2:00-3:00 PM Thursday (19th) - Virtual
5:00-6:30 PM Wednesday (18th) - Virtual

1. Probabilities
1. Linear algebra

1a. Bayes’ rule and conditional probability
1a. Vectors 1p. Distributions
1b. Matrices 1c. CDFs and PDFs

1c. Vector and Matrix operations 2. Derivatives

2. Probabillities 2a. Gradients

2a. Bayes’ rule and conditional probability 2b. Derivatives of some common functions

2b. Distributions 2c. Chain Rule, Product Rule, Quotient Rule

2¢c. CDFs and PDFs

Today’s Outline

 Linear Discriminant Analysis

 Nalve Bayes

Linear Discriminant Analysis (LDA)

 LDA is a generative classifier

Linear Discriminant Analysis (LDA)

 LDA is a generative classifier

» Instead of directly predicting [P(Y | X) like logistic regression, it models the
joint distribution P(X, Y) by modeling:

« P(X|Y): How features are distributed within each class

» [P(Y): Prior probability of each class

» Then it uses Bayes' theorem to compute P(Y | X) for classification.

Linear Discriminant Analysis (LDA)

 LDA is a generative classifier
 Key idea:

 Assume each class generates data from a Gaussian distribution.

* Find the decision boundary that optimally separates these Gaussian clouds.

Linear Discriminant Analysis (LDA)

Assumptions

 Assumption 1:

* Class conditional probabilities are Gaussian (normal distribution)

« PX|Y = k) = H(X| sy B)

Linear Discriminant Analysis (LDA)

Assumptions

 Assumption 1:

» Class conditional probabilities are Gaussian (normal distribution)
. PX|Y = k) = H(X | D)
 Assumption 2:

 All classes share the same co-variance matrix 2 (homoscedasticity)

Linear Discriminant Analysis (LDA)

Assumptions

 Assumption 1:

» Class conditional probabilities are Gaussian (normal distribution)
. PX|Y = k) = H(X | D)
 Assumption 2:

 All classes share the same co-variance matrix 2 (homoscedasticity)

 Assumption 3:

 Classes differ only in their means y;,

* These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

Linear Discriminant Analysis (LDA)

Assumptions

 Assumption 1:

» Class conditional probabilities are Gaussian (normal distribution)
. PX|Y = k) = N (X | D)
 Assumption 2:

 All classes share the same co-variance matrix 2 (homoscedasticity)

 Assumption 3:

 Classes differ only in their means y;,

* These assumptions lead to linear decision boundaries - hence Linear Discriminant Analysis.

Linear Discriminant Analysis (LDA)

Gaussian Conditional Probability

e Assumption:

» Class conditional probabilities are Gaussian (hormal distribution)

« PX|Y = k) = H(X| sy)

Linear Discriminant Analysis (LDA)

Gaussian Conditional Probability

e Assumption:

» Class conditional probabilities are Gaussian (hormal distribution)

¢ |

(XY = k) = N (X]|py, Z)

Gaussian PDF: f(x) =

Px|Y =k) =

Q27| Z]

(x — u)?
¢ O 262

\/ 270

—exp(—

2

1
-) T —)

Linear Discriminant Analysis (LDA)

Computing Predictions

Have:

| 1 1 Ty —1
Px|Y =k) = ————exp(=—(x — p)" 27 (x — i)
Qm:|E]? 2

Linear Discriminant Analysis (LDA)

Computing Predictions

Have:
e 1 1 Tvy—1
Px|Y =k) = ————exp(=—(x — p)" 27 (x — i)
2n)7|Z|? 2
Want:

P(Y|X)

Linear Discriminant Analysis (LDA)

Computing Predictions

Have:
e 1 1 Tvy—1
Px|Y =k) = ————exp(=—(x — p)" 27 (x — i)
2n)7|Z|2 2
Want:
P(Y|X)

Use Bayes’ Theorem:
P(A N B) B P(B|A) - P(A)

P(A|B) = —
(B) P(B)

Linear Discriminant Analysis (LDA)

Computing Predictions

P(Y=k|X =x) =

PX=x|Y=k)-I

P(X = x)

(Y = k)

Linear Discriminant Analysis (LDA)

Computing Predictions

PX=x|Y=k) -P(Y=k)
P(X = x)

P(Y=k|X=x) =

PX =x|Y=k) P = k)

> PX=x]Y=))-P(Y=))

Linear Discriminant Analysis (LDA)

Computing Predictions

PX=x|Y=k) -P(Y=k)

L PX =x|Y=))-P(Y =)

P(Y=k|X =x) =

We classify to the class with highest posterior probability:

y = argmax P(Y = k| X = x)

Linear Discriminant Analysis (LDA)

Computing Predictions

PX=x|Y=k) -P(Y=k)

L PX=x|Y=))-P(Y=))

P(Y=k|X =x) =

We classify to the class with highest posterior probability:

y = argmax P(Y = k| X = x)

Note for all k£, the denominator is going to be the same

Linear Discriminant Analysis (LDA)

Computing Predictions

P(Y=k|X =x) =

k

j=1

A\

y=argmax , P(X=x|Y=k) -

PX=x|Y=k) -P(Y=k)

PX=x|Y=j)-I

(Y =

(Y =)

k)

Taking log on RHS (monotonic transform)

y = argmax ; log(P(X =x|Y =k)) + log(l

(Y =k))

Linear Discriminant Analysis (LDA)

Computing Predictions

y = arg max [logP(X =x|Y=k)+log P(Y = k)]
k

Linear Discriminant Analysis (LDA)

Computing Predictions

y = arg max [logP(X =x|Y=k)+log P(Y = k)]
k

Expanding the log of the Gaussian:

eX (—l —) e =)}
P\ =3 (X — 1) (X — 1)

logP(X =x|Y=k)=log
(2n)d2| 2|

Linear Discriminant Analysis (LDA)

Computing Predictions

y = arg max [logP(X =x|Y=k)+log P(Y = k)]
k

Expanding the log of the Gaussian:

eX (—l —) e =)}
P\ =3 (X — 1) (X — 1)

logP(X =x|Y=k)=log
(2n)d2| 2|

Using log(ab) = log(a) + log(b):

1 : 1 : 1 : Iy~
8\ 2 + log SIE +log | exp | =5 (X =) 27 (r = i)

Linear Discriminant Analysis (LDA)

Computing Predictions

1 : 1 : 1 : I'y-1
8\ 2 + log SIE Tlog | exp | ——0r = p) 27 (=)

Simplifying each term:

Linear Discriminant Analysis (LDA)

Computing Predictions

1 : 1 : 1 : I'y-1
8\ 2 + log SIE Tlog | exp | ——0r = p) 27 (=)

Simplifying each term:

d 1 1 T~—1
— —EIOg(Zﬂ)—5108|Z| _E(X_'uk) 27 (X —)

Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

d 1 1
y = arg max — 5 log(2r) — 5 log | 2| — E(X — ,uk)TZ_l(x — ;) + log P(Y = k)
k

Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

d 1 1
y = arg max — 5 log(2r) — 5 log | 2| — E(X — ,uk)TZ_l(x — u) +log P(Y = k)
k

Terms that don't depend on k:

—% log(2x) : depends only on dimensionality d

—5 log| 2| : X is same for all classes (LDA assumption)

Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

|
y = arg max —E(X — ,uk)TZ‘l(x — ;) +1log P(Y = k)]
k

Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

|
y = arg max _E(X — ,uk)TZ_l(x — i) +log P(Y = k)]
k

Expanding:
(x — //tk)TZ_l(x — H) = xIz— 1y — xTZ_l//tk — ,ukTZ_lx + ,ukTZ_lluk

Linear Discriminant Analysis (LDA)

Computing Predictions

The full expression to maximize is:

|
y = arg max _E(X — ,uk)TZ_l(x — i) +log P(Y = k)]
k

Expanding:
(=) T =) = X" = X2y — W T e +) 2y,
Note that x>y, and u, >~ !x are both scalars, and since ™! is symmetric:

wE = (T E T)t = X1

Linear Discriminant Analysis (LDA)

Computing Predictions

(x — //tk)TE_l(x — //lk) — XTZ_IX — XTZ_I//tk — ﬂgz_lx + ﬂgZ_lﬂk
Therefore
(x — ,uk)TZ_l(x — U) = xIx—1y — ZXTZ_l,uk + ,ukTZ_l,uk

Lets put this back into the original equation

Linear Discriminant Analysis (LDA)

Computing Predictions

1
y = 5 [xTZ_lx — 21 + //tkTE_l//tk] + log P(Y = k)

Linear Discriminant Analysis (LDA)

Computing Predictions

1
P = -5 2 = 2Ty + 2 | + log P(Y = k)

| |
_= — EXTZ_IX —+ XTZ_I//tk — EﬂkTZ_l,btk —+ lOg P(Y — k)

Linear Discriminant Analysis (LDA)

Computing Predictions

1
y = 5 [xTZ_lx — 21 + //tkTE_l//tk] + log P(Y = k)

| |
— — EXTZ_IX —+ XTZ_I//tk — EﬂkTZ_l,btk —+ lOg P(Y — k)

1

The term —ExTZ_lx depends only on x, not on k.

When comparing classes, this is the same for all k, so we drop it.

Linear Discriminant Analysis (LDA)

Computing Predictions

Finally:

I
Sux) = xTZ 7y — 5#{ "y + log P(Y = k)

Linear Discriminant Analysis (LDA)

Computing Predictions

Finally:

I
Sux) = xTZ 7y — 5#{ "y + log P(Y = k)

This Is linear in x because:
xTZ_l,uk s linear in x (dot product with a constant vector)

The other terms are constants (don't depend on x)

Linear Discriminant Analysis (LDA)

Computing Predictions

Finally:
5(x) = xTZ7 py — %//tkT >~y + log P(Y = k)
We can also re-write as:
0,(x) = ‘91Tk x+ 6y
Where:

0, = IRy

1
Op, = — 5,4,{ >~y +log P(Y = k)

Linear Discriminant Analysis (LDA)

Parameter Estimation

I
S(x) = x Ty — 5#{ X~y + log P(Y = k)

What do we need?

Class Priors: P(Y = k)

Class Means: y,

Covariance: 2

Linear Discriminant Analysis (LDA)

Parameter Estimation

What do we need?

Nk
Class Priors: P(Y = k) = N

1
Class Means: i, = Z X;

Nk 1y.=k

Covariance: 22 = ———— 2 Z (xX; — p)(x; — ,btk)T

k—lly =k

Linear Discriminant Analysis (LDA)

Parameter Estimation

Suppose you have a dataset with
d = 3 features (height, weight, age)
k = 2 classes (male, female)

Index Height Weight Age Sex

1 175 70 25
180 30 30
170 63 22
185 33 35
170 50 25
175 60 30
170 33 22
165 65 35

0 OB W
SN R

Linear Discriminant Analysis (LDA)

Parameter Estimation

Index Height Weight Age Sex
1 175 70 25 F
2 180 80 30 F
3 170 68 22 F
4 185 85 35 F
5 170 50 25 M
6 175 60 30 M
7 170 58 22 M

8 165 65 35 M |

Then:
- _ 175+ 180 + 170 + 185 |
xheight 4 _1775_

70 + 80 + 68 + 85

Up = | *weight y = |75.75

Xage 25 430 + 22 + 35 28
- - 1

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

 Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation.

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

 Beyond classification, LDA can project high-dimensional data onto a lower-
dimensional subspace that maximizes class separation.

* This Is sometimes called Fisher's Linear Discriminant Analysis.

« \What do we want?

7= Wlx

Wherez € R” X € R and W € R%*"

We want the projected data to have maximum separation between classes and
minimum spread within classes.

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

o Scatter Matrix (1/3)
 Within Scatter Matrix

Sy = ZSk Z Z (x; — (G —)"

k=1 i:y,=k

axd

» where § is the scatter matrix for class k of shape |

e Intuition: Small Sy, means points are tightly clustered around their class
means.

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

o Scatter Matrix (2/3)

e Between Scatter Matrix

K
. O = Z Ny — 1)y —)"
k=1

1 X
where u = N Z X; Is the global mean

l

« Intuition: Large Sz means class centers are far apart from each other.

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

o Scatter Matrix (3/3)

 Total Scatter Matrix

¢ ST=SW+SB

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Optimization Objective
* \We want projections where:

« Between-class scatter is large (classes far apart - Large Sp)

« Within-class scatter is small (classes compact - Small Sy;)

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Optimization Objective
* \We want projections where:

« Between-class scatter is large (classes far apart - Large Sp)
« Within-class scatter is small (classes compact - Small Sy;)

* For a single projection direction w

» Projected within-class scatter = wTSWw

- Projected between-class scatter = w'S W

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Optimization Objective
* \We want projections where:

« Between-class scatter is large (classes far apart - Large Sp)
« Within-class scatter is small (classes compact - Small Sy;)

* For a single projection direction w

» Projected within-class scatter = wTSWw

- Projected between-class scatter = w'S W

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

* Optimization Objective
* \We want projections where:

« Between-class scatter is large (classes far apart - Large Sp)
« Within-class scatter is small (classes compact - Small Sy;)

* For a single projection direction w

» Projected within-class scatter = wTSWw

- Projected between-class scatter = w'S W

w!Spw

Maximize : J(w) =
wlSyw

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

o wTSBw
Maximize : J(W) = ————
wlSyw
To maximize, compute derivative and set to zero.
SB W = /ISW * W
—1] _
Sy Sp = Aw

This is the standard Eigen-decomposition

The optimal w* is the Eigenvector corresponding to the largest Eigenvalue

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

w! Spw

Maximize : J(w) =
W) wlSyw

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

w! Spw

Maximize : J(w) =
wlSyw

To maximize, compute derivative and set to zero.

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

w! Spw

Maximize : J(w) =
wlSyw

To maximize, compute derivative and set to zero.
SB W = /ISW * W

Sy Sp = Aw

Linear Discriminant Analysis (LDA)

LDA For Dimensionality Reduction

o wTSBw

Maximize : J(W) = ————

wlSyw

To maximize, compute derivative and set to zero.
SB W = /ISW * W
S‘;}SB W = AW

This is the standard Eigen-decomposition

The optimal w* is the Eigenvector corresponding to the largest Eigenvalue

Linear Discriminant Analysis (LDA)
LDA Summary

Pros Cons
 Simple, fast, closed-form solution * Assumes Gaussian distributions
* No hyperparameters to tune Assumes shared covariance (linear boundaries only)
* Works well when assumptions approximately hold * Sensitive to outliers (affect mean and covariance
estimates)

* Provides probabilistic outputs
e Cannot capture non-linear relationships

e Built-in dimensionality reduction
* Fails if features are highly non-Gaussian

e Stable with small datasets

Today’s Outline

* Linear Discriminant Analysis

 Naive Bayes

Naive Bayes Classifier

* Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k) -P(Y=k)
P(X = x)

P(Y=k|X=x) =

Naive Bayes Classifier

* Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k) -P(Y=k)
P(X = x)

P(Y=k|X=x) =

* The challenge:

 Estimating P(X | Y = k) for high-dimensional X is difficult.

Naive Bayes Classifier

* Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k) -P(Y=k)
P(X = x)

P(Y=k|X=x) =

* The challenge:

 Estimating P(X | Y = k) for high-dimensional X is difficult.

» With d features, each taking v possible values, we'd need to estimate pa

parameters per class - exponential in dimensionality.

Naive Bayes Classifier

Naive Bayes assumes features are conditionally independent given the class

* Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
PX=x|Y=k) -P(Y=k)
P(X = x)

P(Y=k|X=x) =

* [he challenge:

 Estimating P(X | Y = k) for high-dimensional X is difficult.

» With d features, each taking v possible values, we'd need to estimate pa

parameters per class - exponential in dimensionality.

Naive Bayes Classifier

* Like LDA, Naive Bayes is a generative classifier using Bayes' theorem
P(X =x|Y=k) P = k)
P(X = x)

PY=k|X=x) =

e PX=x|Y=k) =1 (xl,xz,x3,...,xd\Y=k)=HJ‘."':1l (x;| Y = k)

* This is almost always wrong in practice - features are usually correlated.

« But it reduces parameters from exponential to linear: d parameters per class instead of pd

Naive Bayes Classifier

 Example:

 For spam classification with words “free” and “money”

» Reality: P("free", "money" | spam) # [P("free"|spam) - P(“money" | spam)

 These words are correlated in spam emails

* Naive Bayes pretends they're independent

Naive Bayes Classifier

Want to predict:
P(X=x|Y=k)-P(Y = k)
P(X = x)

P(Y=k|X=x) =

Naive Assumption:

.(X=X‘Y=k)=.(x1,)€2,x3 xd‘Y=k)=Hd_(x]‘Y=k)

Naive Bayes Classifier

y = argmlflxt (Y = k)-H;Z:lL (x;| Y = k)

For numerical stability, we take logs

d
y = arg max log(P(Y = k)) + Z log(l (xj\ Y = k))
k
=1

Naive Bayes Classifier

y = argmlflxt (Y = k)-H;Z:lL (x;| Y = k)

For numerical stability, we take logs

d
y = arg max log(P(Y = k)) + Z log(l (xj\ Y = k))
k
=1

How do you find P(x; | Y = k)?

Naive Bayes Classifier

Gaussian Naive Bayes

For continuous features, assume each feature follows a Gaussian Distribution

(% — ,Mkj)z

1 262

PO | Y =k) = ———-¢ %
1/27m,§j

2

Each class-teature combination has its own mean f;; and variance O}

Naive Bayes Classifier

Gaussian Naive Bayes k joy=k

For continuous features, assume each feature follows a Gaussian Distribution

(% — ,Mkj)z

1 262

PO | Y =k) = ———-¢ %
1/27m,§j

2

Each class-teature combination has its own mean f;; and variance O}

Naive Bayes Classifier

Multinomial Naive Bayes

For discrete features/count data like word frequencies

umY=m=%

Where 0, is the probability of feature j in class k and x; is the count of feature j

count of feature j in class k
Oy,

total count of all features in class k

Naive Bayes Classifier

Bernoulli Naive Bayes

For binary data like word frequencies

P | Y =k) =67 (1-6, "

Where 0, is the probability of feature j in class k and x; is the count of feature j

count of feature j in class k

total samples in class k

Example

Task

Classify emails as spam or not spam

Training Data

Naive Bayes Classifier

X_1 — X_2 = X_3 = X_4 —
Document| .- ., |« n | S , Class
free money” | “meeting lunch
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam

Naive Bayes CIaSSifier ij _ count of feature j in class k

total count of all features in class &
Example

2
TaSk P(spam) = 2 = 0.5
Classify emails as spam or not spam ,
P(not spam) = 1 = 0.5

Training Data

X_1 — X_2 = X_3 = X_4 —
Document| .- ., |« n | S , Class
free money” | “meeting lunch
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam

count of feature j in class k

Naive Bayes Classifier g =

total count of all features in class k

Example
TaSk P(spam) = % = 0.5
Classify emails as spam or not spam ,
P(not spam) = — = 0.5
Training Data
For spam class:
X_1= X_2 = X_3 = X_4 = 5401) 6
Document ccfreeu umOneyu umeetingu ulunchu Class . [Ij’("free"lspam) — ((8)) — g — 075
1 3 2 0 0 spam
2 2 1 0 0 spam
3 0 0 2 1 not spam
4 0 0 1 2 not spam

count of feature j in class k

Naive Bayes Classifier g =

total count of all features in class k

Example
2
TaSk P(spam) = 2 = 0.5
Classify emails as spam or not spam ,
P(not spam) = — = 0.5
Training Data
For spam class:
X_1= X_2 = X_3= X_4 = 541) 6
Document ccfreeu umOneyu umeetingu ulunchu Class . [Ij’("free"lspam) — ((8)) — g — 075
1 3 2 0 0 spam " " (3G+D) 4
. P("money"|spam) = ®) =3 = 0.5
2 2 1 0 0 spam
. P("meeting"|spam) = (O(:;)l) = % = 0.125
3 0 0 2 1 not spam
. P("lunch"|spam) = O+1D = l = 0.125
4 0 0 1 2 not spam (8) 3

Naive Bayes CIaSSifier ij _ count of feature j in class k

total count of all features in class &
Example

2
TaSk P(spam) = 2 = 0.5
Classify emails as spam or not spam ,
P(not spam) = 1 = 0.5

Training Data

For not spam class:

X 1= X 2 = X 3= X 4 = O+ 1) 1
Document ccfreeu umOneyu umeetingu ulunchu Class . P("free"lnot Spam) e (6) — g o 0166
1 3 2 0 0 spam 0+ 1 1
P . P("money"|not spam) = O+D =—=0.166
(6) 6
2 2 1 0 0 spam | G+1) 4
. P("meeting"|not spam) = ©) = o = 0.66
3 0 0 2 1 not spam
B3+1) 4
. P("lunch"|not spam) = =—=0.66
4 0 0 1 2 not spam (6) 6

count of feature j in class k

0 . —

k .
/" total count of all features in class k

Naive Bayes Classifier

Example

For spam class:

S+1) 6 New Email: x = “free money”

. P("free"|spam) = ® =3 =0.75
3+1 4
. P("money"|spam) = () =—=0.5
(8) 8
0+ 1 1
. P("meeting"|spam) = () =—=0.125
(8) 8
0+ 1 1
. P("lunch"|spam) = () =—=0.125
(3) 8
For not spam class:
0+ 1 1
. P("free"|not spam) = () =—=0.166
(6) 6
O+1 1
. P("money"|not spam) = () =—=0.166
(6) 6
3+1 4
. P("meeting"|not spam) = () =—=0.66
(6) 6
3+1 4
. P("lunch"|not spam) = () =—=0.66

(6) 6

count of feature j in class k

0 . —

k .
/" total count of all features in class k

Naive Bayes Classifier

Example

For spam class:

S+1) 6 New Email: x = “free money”

. P("free"|spam) = ® =3 =0.75
3+1) 4 — — . 14 1Y =
 P(*money*[spam) = < -) -2 - 03 P(spam|x) = P(Y = spam) IT_, P(x; | Y = spam)
O+1 1
. P("meeting"|spam) = O+1D =—=0.125
(8) 8
0+ 1 1
. P("lunch"|spam) = () =—=0.125
(3) 8
For not spam class:
O+ 1 1
. P("free"|not spam) = O+D =—=0.166
(6) 6
0+ 1 1
. P("money"|not spam) = () =—=0.166
(6) 6
3+1 4
. P("meeting"|not spam) = C+D =—=0.66
(6) 6
3+1 4
. P("lunch"|not spam) = C+1D =—=0.66

(6) 6

count of feature j in class k

0 . —

k .
/" total count of all features in class k

Naive Bayes Classifier

Example

For spam class:

 P(“free’lspam) = 5+1) 6 _ 075 New Email: x = “free money
(8) 8
_ _ d _
. B(*money*jspam) = (3(;1) _ % 05 P(spam|x) = P(Y = spam) - szll]j’(le Y = spam)
. O+1) 1 _ 1 1 _
. P("meeting"|spam) = ® =§ = 0.125 P(Spam ‘X) = 0.5 - (075) . (05) = 0.1875
" " ~O+1) l B
. P("lunch"|spam) = ® 8 0.125
For not spam class:
. P("free"|not spam) = O+1D = l = 0.166
(6) 6
" " _O+1) l B
. P("money"|not spam) = © == 0.166
. P("meeting"|not spam) = (3(2)1) = % = 0.66
. P("lunch"|not spam) = C+1D = i = 0.66

(6) 6

For spam class:
S5+1 6
. P("free"|spam) = () =—=0.75
(8) 8
3+1 4
. P("money"|spam) = () =—=0.5
(8) 8
0+ 1 1
. P("meeting"|spam) = () =—=0.125
(8) 8
O+ 1 1
. P("lunch"|spam) = () =—=0.125
(8) 8
For not spam class:
0+ 1 1
. P("free"|not spam) = () =—=0.166
(6) 6
O+1 1
. P("money"|not spam) = () =—=0.166
(6) 6
3+1 4
. P("meeting"|not spam) = () =—=0.66
(6) 6
3+1 4
. P("lunch"|not spam) = () =—=0.66

(6) 6

Naive Bayes Classifier

count of feature j in class k

0, —
K total count of all features in class k

New Email: x = “free money”
P(spam|x) = P(Y = spam) - H]‘.lzll]j’(xj| Y = spam)

P(spam|x) = 0.5 - (0.75)" - (0.5)! = 0.1875

P(not spam|x) = P(Y = not spam) - ijlzll]j’(xj| Y = not spam)

P(not spam|x) = 0.5 - (0.166)! - (0.166)! = 0.013

Naive Bayes Classifier
Why does it work?

* Despite violating independence assumption, Naive Bayes often performs surprisingly well.
e Why?

* (Classification only needs correct ranking: \We don't need accurate probabilities - just
need P(spam | X) > P(not spam | X) when the email is actually spam.

* The independence assumption can distort probabilities while preserving the ranking.

* High bias, low variance tradeoff: The strong assumption reduces model complexity,
preventing overfitting especially with limited data.

» Conditional independence may approximately hold: Within a class, features are
sometimes less correlated than across classes.

Naive Bayes Classifier

Pros

* Extremely fast training (just counting)
e Fast prediction

 Handles high-dimensional data well
* Works with small training sets
 Handles missing features naturally
 Easy to implement and interpret

» Often surprisingly accurate

Cons

Independence assumption is usually wrong
Probability estimates are unreliable
Cannot learn feature interactions

Continuous features require distributional
assumptions

Correlated features are “double-counted”

Classifiers

Comparison Naive Bayes Logistic Regression LDA

Type Generative Discriminative Generative

. Conditional Independence | Conditional Independence Gaussian and shared
Assumption .
Between Features Between Rows of Data covariance
Training Closed Form / Counting Gradient Descent Closed Form
Data Better with small data Setter W'th Iargg Qata else Works well across data sizes
risk overfitting
Probabilities Poorly calibrated, care more Well calibrated Well calibrated
about correct ranking
Missing features Handles naturally Requires pre-processing Requires pre-processing

Next Class

 Recap and if we have time, decision trees.

