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Introductions
About Me

• B.E. in Computer Science from P.E.S University (2019) 


• Performance Engineer at Akamai Technologies (2019-2021)


• Ph.D. at Northeastern University (2021-2026)


• Advised by Prof. Tina Eliassi-Rad


• I work at the intersection of Machine Learning and Network Science 


• I’ve worked on graph machine learning for combinatorial optimization 
problems, gene co-expression networks, adversarial robustness, 
explainability & fairness and reasoning in LLMs

Zohair Shafi 
(he/him)



Introductions
Teaching Assistants 

Zaiba Amla Wanrou Yang

Hello everyone! I’m Wanrou Yang, a TA for DS4400: Machine Learning 1. I’ll be 
supporting you with course content, problem-solving, and office hours throughout the 
semester. I’m a Data Science combined Business Administration major, and I’m 
excited to work with you all and help make machine learning more approachable and 
engaging. 
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What is Machine Learning?
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Input Feature = Sq. Ft. 

Machine Learning is the task of trying to learn these curves 
This task gets harder when you have multiple input features  

# Bedrooms

Any other feature
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Course Objectives 

Types of ML ML Algorithms Applications

• Supervised vs 
Unsupervised


• Classification vs 
Regression 


• Generative AI

• Linear Regression, 
Spline Regression


• SVM, Decision Trees, 
Naive Bayes, 
Ensembles


• Neural Networks

• Fairness and Ethics


• Explainability 


• Security 



Course Outline 

Probability and Linear Algebra 
Review (~1 Week)


Linear Regression  
and Regularization (~2 Weeks)


Classification (~5 Weeks)


Linear classifiers: logistic regression, LDA


Non-linear classifiers: kNN, decision trees, 
SVM, Naive Bayes


Ensembles: random forests, boosting and 
bagging


Neural Networks and Deep Learning (~2 
Weeks)


Backpropagation, gradient descent 


Various NN architectures 


Applications (~2 Weeks)


Fairness and Ethics in AI 


Security and Privacy 




Course Information 

Course Website: https://zohairshafi.github.io/pages/sp26_ds4400.html  
Course calendar and slides posted after each lecture 


Canvas:  
Assignments and grades posted here 


Gradescope:  
Assignent Submissions 
Accessed via Canvas 


Emails:  
Please ensure all emails to instructor/TA’s have [sp26_ds4400] in the subject line. 
This helps attend to emails faster.

https://zohairshafi.github.io/pages/sp26_ds4400.html


Course Schedule  

Class Hours:  

Monday and Wednesday | 02:50 PM - 04:30 PM | Snell 033


Office Hours:  

Wanrou Yang: 1:30 PM - 3:00 PM - Tuesday (Location: TBD)


Zaiba Amla: 1:00 PM - 2:30 PM - Wednesday (Location: TBD)


Zohair Shafi: 1:30PM - 2:30 PM - Monday and Wednesday (Location: TBD)



Resources

Textbook:  
An Introduction to Statistical Learning 
https://hastie.su.domains/ISLP/ISLP_website.pdf.download.html 

Other Resources: 

• Elements of Statistical Learning (Trevor Hastie, Rob Tibshirani, and Jerry Friedman,) 
Second Edition, Springer, 2009 

• Pattern Recognition and Machine Learning (Christopher Bishop) 
Springer, 2006 

• Dive into Deep Learning (A. Zhang, Z. Lipton, and A. Smola) 

• Lecture notes by Andrew Ng from Stanford

https://hastie.su.domains/ISLP/ISLP_website.pdf.download.html


Policies 

Your Responsibilities 

• Please be on time, attend classes, and take notes


• Participate in interactive discussion in class


• Submit assignments / programming projects on time


Late Days for Assignments 

• 5 total late days, after that loose 20% for every late day


• Assignments are due at 11:59pm on the specified date


• We will use Gradescope for submitting assignments


• No need to email for late days



Grading

Assignments - 12.5% 

8 assignments and programming exercises based on studied material in class


Theory and practical assignments with Jupyter Notebooks 


Midterm Exam - 20% 

Tentative date: Wednesday, February 18


Final Exam - 25% 

Scheduled during finals week


Class participation - 5%



Academic Integrity 

• Homework is done individually.


• Rules


• Can discuss with colleagues or instructors


• Code cannot be shared with colleagues


• Cannot use code from the Internet/LLMs


• Use python packages, but not directly code for ML analysis written by someone else


• No LLM usage. 


• No cheating will be tolerated. 

• Any cheating will automatically result in grade F and report to the university administration


• http://www.northeastern.edu/osccr/academic-integrity-policy/
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What about when you do not have training labels to learn from? 

Lets assume that each data point here is a song 
How would you learn from this data? 
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What is Machine Learning?

What about when you do not have training labels to learn from? 

This is where Unsupervised Learning Algorithms come in. 
For example, we can use Clustering algorithms to chunk this data into groups  

Cluster Centroid

and this cluster is pop songs

Maybe this cluster is rock songs

and this cluster is R&B songs

and this cluster is EDM songs



What have we learned so far? 
ML can be split into 
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Cluster Centroid

Supervised Learning Unsupervised Learning
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Let’s look at some concrete examples
Supervised Learning - Regression 

• Stock Price Prediction 


• Given some input features, 
predict the price of the stock 
at a future time 


• Given stock price of other 
companies, predict price of a 
given company of interest 


• Predict a real-valued 
number instead of a class 



Let’s look at some concrete examples
Regression vs Classification 

Supervised Learning - Regression Supervised Learning - Classification



Let’s look at some concrete examples
Other Supervised Learning Examples

• Spam Classification 


• Is the email you received spam or not? 


• Is the attachment safe? 


• Weather prediction 


• Question: Is this classification or regression? 


• Image classification


• What objects are in the image? 


• Where is each object in the image? 



Let’s look at some concrete examples
Some Unsupervised Learning Examples

• Clustering  

• Group similar points into clusters


• Example: k-means clustering, hierarchical clustering, density based clustering 


• Dimensionality Reduction  

• Project input data into lower dimensional space 


• Example: Principle Component Analysis (PCA)


• Feature Learning 

• Find low dimensional feature representations 


• Think of this as a “learned” PCA


• Example: Autoencoders 
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True data point yi

Learned Function f(x)

   ℓ(yi, f(x)) = ∑ yi − f(xi)



What does the overall pipeline look like? 

Input Data Model PredictionsPre-processing Feature  
Extraction Loss Function

Training Pipeline:

Labeled Data 
{xi, yi} f(x) ℓ(yi, f(xi))
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What are some common models and their loss functions? 

• Linear Regression 


• Goal: Predict continuous output  from input features 


• Model: 


• Loss Function: 

̂y x

̂y = w0 + w1x1 + w2x2

1
m ∑

i

(yi − ̂yi)2

This is the true label
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• Model: 


• Loss Function: 
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yilog( ̂yi) + (1 − yi)log(1 − ̂yi)

This is the sigmoid operator - it caps outputs within a range of 0-1
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• Model: 
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Notice how this looks similar to the linear regression model



What are some common models and their loss functions? 

• Logistic Regression 


• Goal: Predict probability of binary class membership (classification) 


• Model: 


• Loss Function: 

ℙ(y = 1 |x) = σ(w0 + w1x1 + w2x2)

−
1
m ∑

i

yilog( ̂yi) + (1 − yi)log(1 − ̂yi)

But the loss function is now different, this is the binary cross entropy loss
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Probability 
Basic Concepts 

• Sample Space and Events


• The sample space  is the set of all possible outcomes of an experiment.


• An event  is a subset of the sample space . 


• The probability  is a number between 0 and 1 representing how likely 
event  is to occur.

Ω

A Ω

P(A)
A

Ω
A



Probability 
Basic Concepts 

• Sample Space and Events


• 


• Why? 


• Because  is a subset of 


• 


• For mutually exclusive events  and :


•

P(A) ≥ 0

A Ω

P(Ω) = 1

A B

P(A ∪ B) = P(A) + P(B)
Ω
A

B



Probability 
Basic Concepts 

• Sample Space and Events


• For mutually exclusive events  and :


• 


• Complement Rule: 


•

A B

P(A ∪ B) = P(A) + P(B)

P(A′￼) = 1 − P(A)

Ω
A

BP(A′￼)



Probability 
Conditional Probability 

• Probability of , given that  has already occurred





This is fundamental in machine learning. Why? 

A B

P(A |B) =
P(A ∩ B)

P(B)

Ω
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• Probability of , given that  has already occurred





This is fundamental in machine learning. Why? 

A B

P(A |B) =
P(A ∩ B)

P(B)

Ω
B

A

spam email



• Probability of , given that  has already occurred





Two events A and B are independent if





            or


A B

P(A |B) =
P(A ∩ B)

P(B)

P(A ∩ B) = P(A) ⋅ P(B)

P(A |B) =
P(A) ∩ P(B)

P(B)
=

P(A) ⋅ P(B)
P(B)

= P(A)

Probability 
Conditional Probability 

Ω
B

A

spam email



Probability 
Conditional Probability - Bayes’ Theorem

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A) ⋅ P(A)
P(B)

Ω
B

A



Probability 
Conditional Probability - Bayes’ Theorem

Ω
B

A

Prior - what we believe before 
seeing the data 


Or probability of event  occurring 
before having made any 
observation about event 
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Conditional Probability - Bayes’ Theorem

Ω
B
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Likelihood - probability of 
data  given 


Or probability of event  
occurring, given event  
has already occurred 

B A

B
A
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seeing the data 


Or probability of event  occurring 
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observation about event 

B

A

B
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Or probability of event  
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about event 
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Probability 
Conditional Probability - Bayes’ Theorem

Ω
B

A

Likelihood - probability of 
data  given 


Or probability of event  
occurring, given event  
has already occurred 

B A

B
A

Prior - what we believe before 
seeing the data 


Or probability of event  occurring 
before having made any 
observation about event 

B

A

B

Evidence - marginal 
likelihood


Or probability of event  
occurring before having 
made any observation 
about event 

B

A

Posterior - updated belief 
after seeing the data


Or probability of event  
occurring after having 
made an observation about 
event 

A

B



Probability 
Random Variables and Distributions 

• A random variable  is a function that maps outcomes in the sample space 
( ) to real numbers. 


• Random variables can be discrete (taking countable values) or continuous 
(taking any value in an interval).

X
Ω



Probability 
Random Variables and Distributions 

• Probability Mass Function (PMF) - for discrete random variables


•  gives the probability that  takes value .


• The sum over all possible values equals 1.


• Probability Density Function (PDF) — for continuous random variables


•  such that  = 


• Note that  itself is not a probability; it can exceed 1.


• Cumulative Distribution Function (CDF)


• 


• Works for both discrete and continuous variables.

P(X = x) X x

f(x) P(a ≤ X ≤ b) ∫
b

a
f(x)dx

f(x)

F(x) = P(X ≤ x)
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Probability 
Random Variables and Distributions 

• Probability Mass Function (PMF) - for discrete random variables


•  gives the probability that  takes value .


• The sum over all possible values equals 1.


• Probability Density Function (PDF) — for continuous random variables


•  such that  = 


• Note that  itself is not a probability; it can exceed 1.


• Cumulative Distribution Function (CDF)


• 


• Works for both discrete and continuous variables.
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a
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Probability 
Key Distributions in ML 

• Bernoulli Distribution  

• Models binary outcomes (success/failure)


• 


•

P(X = 1) = p

p(X = 0) = q = 1 − p



Probability 
Key Distributions in ML 

• Binomial Distribution  

• Models number of successes in  independent trials


•

n

P(X = k) = (n
k) ⋅ pk ⋅ (1 − p)n−k



• Binomial Distribution  

• Models number of successes in  independent trials


•

n

P(X = k) = (n
k) ⋅ pk ⋅ (1 − p)n−k

Probability 
Key Distributions in ML 

Number of combinations, or ways, of choosing 
 items from a total of  itemsk n
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• Gaussian (Normal) Distribution  

• One of the most important distributions in ML 


PDF : f(x) =
1

2πσ2
⋅ e− (x − μ)2

2σ2

Probability 
Key Distributions in ML 

Mean of the distribution 

Variance of the distribution 

A standard normal distribution like the one 
shown above, has 

mean  and variance (μ) = 0 (σ2) = 1



Probability 
Expectation

• Expectation of a random variable is also the mean value of that variable. 


• For a discrete random variable 





• For a continuous random variable 





X

𝔼[X] = ∑ x ⋅ P(X = x)

X

∫ x ⋅ f(x)dx



Probability 
Expectation

• For a discrete random variable 





• For a continuous random variable 


X

𝔼[X] = ∑ x ⋅ P(X = x)

X

∫ x ⋅ f(x)dx

Sum over all possible values that  can take multiplied by 
the probability of achieving that value

x

𝔼[X] = 1 ⋅ ℙ(X = 1) + 2 ⋅ ℙ(X = 2) + 3 ⋅ ℙ(X = 3) + ⋯11 ⋅ ℙ(X = 11)



Probability 
Properties of Expectations 

 
(linearity) 




(always true, even if variables are dependent) 

  
(this only holds true if  and  are independent)

𝔼[aX + b] = a𝔼[X] + b

𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

𝔼[XY] = 𝔼[X] ⋅ 𝔼[Y]
X Y



Probability 
Variance


Var(X) = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[𝕏])2



Probability 
Variance


Var(X) = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[𝕏])2

Expectation of the squared difference between the 
random variable and the mean of the random 
variable 




Var(X) = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[𝕏])2

Probability 
Variance

Expectation of the square of the random variable 




Var(X) = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[𝕏])2

Probability 
Variance

Expectation of the random variable squared






 
 

Var(X) = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[𝕏])2

Var(aX + b) = a2 ⋅ Var(X)

Var(X + Y) = Var(X) + Var(Y) + 2 ⋅ Cov(X, Y)

Probability 
Properties of Variance 



Probability 
Properties of Variance 




 
 

Var(X) = 𝔼[(X − 𝔼[X])2] = 𝔼[X2] − (𝔼[𝕏])2

Var(aX + b) = a2 ⋅ Var(X)

Var(X + Y) = Var(X) + Var(Y) + 2 ⋅ Cov(X, Y)
This is the covariance of random variables  and X Y



Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Probability 
Covariance and Correlation

How much  moves from its mean  X 𝔼[X]



Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Probability 
Covariance and Correlation

How much  moves from its mean  Y 𝔼[Y]



Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Probability 
Covariance and Correlation

Product of means of  and X Y






 

Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Probability 
Covariance and Correlation

Covariance measures how  and  vary together.  
Positive means they tend to increase/decrease together 
Negative means one increases as the other decreases.

X Y






 

Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Corr(X, Y) = ρ(X, Y) =
Cov(X, Y)

σX ⋅ σY

Probability 
Covariance and Correlation

Covariance measures how  and  vary together.  
Positive means they tend to increase/decrease together 
Negative means one increases as the other decreases.

X Y






 

Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Corr(X, Y) = ρ(X, Y) =
Cov(X, Y)

σX ⋅ σY

Probability 
Covariance and Correlation

Covariance measures how  and  vary together.  
Positive means they tend to increase/decrease together 
Negative means one increases as the other decreases.

X Y

Standard Deviation: σX = Var(X)






 

Cov(X, Y) = 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Corr(X, Y) = ρ(X, Y) =
Cov(X, Y)

σX ⋅ σY

Probability 
Covariance and Correlation

Covariance measures how  and  vary together.  
Positive means they tend to increase/decrease together 
Negative means one increases as the other decreases.

X Y

This simply normalizes the Covariance to between -1 and +1
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2. Linear Algebra 



• Lets a vector ⃗u = [u1, u2, u3, ⋯, un]

Linear Algebra 
Vectors



• Lets a vector 


• Then, this vector obeys the following operations: 


• Addition: 


•

⃗u = [u1, u2, u3, ⋯, un]

⃗u + ⃗v = [u1 + v1, u2 + v2, u3 + v3, ⋯, un + vn]

Linear Algebra 
Vector Operations



• Lets a vector 


• Then, this vector obeys the following operations: 


• Addition: 


•

⃗u = [u1, u2, u3, ⋯, un]

⃗u + ⃗v = [u1 + v1, u2 + v2, u3 + v3, ⋯, un + vn]

Linear Algebra 
Vector Operations

This is simply the addition of each element of the vector 
“Element-wise” addition 



• Lets a vector 


• Then, this vector obeys the following operations: 


• Scalar Multiplication: 


•

⃗u = [u1, u2, u3, ⋯, un]

c ⋅ ⃗u = [c ⋅ u1, c ⋅ u2, c ⋅ u3, ⋯, c ⋅ un]

Linear Algebra 
Vector Operations



• Lets a vector 


• Then, this vector obeys the following operations: 


• Scalar Multiplication: 


•

⃗u = [u1, u2, u3, ⋯, un]

c ⋅ ⃗u = [c ⋅ u1, c ⋅ u2, c ⋅ u3, ⋯, c ⋅ un]

Linear Algebra 
Vector Operations

This is simply the multiplication of each element of the vector 
with a scalar  

“Element-wise” multiplication 
c



• Lets a vector 


• Then, this vector obeys the following operations: 


• Inner Product / Dot Product: 


•  

⃗u = [u1, u2, u3, ⋯, un]

⃗u ⋅ ⃗v = ∑ ui ⋅ vi
= u1 ⋅ v1 + u2 ⋅ v2 + u3 ⋅ v3 + ⋯ + un ⋅ vn

Linear Algebra 
Vector Operations



• Lets a vector 


• Then, this vector obeys the following operations: 


• Inner Product / Dot Product: 


•  

⃗u = [u1, u2, u3, ⋯, un]

⃗u ⋅ ⃗v = ∑ ui ⋅ vi
= u1 ⋅ v1 + u2 ⋅ v2 + u3 ⋅ v3 + ⋯ + un ⋅ vn

Linear Algebra 
Vector Operations

Notice that this returns a scalar value, not another vector



The dot product also relates to the angle  
between the two vectors as 

θ

⃗u ⋅ ⃗v = ∥ ⃗u∥∥ ⃗v∥cos(θ)
• Lets a vector 


• Then, this vector obeys the following operations: 


• Inner Product / Dot Product: 


•  

⃗u = [u1, u2, u3, ⋯, un]

⃗u ⋅ ⃗v = ∑ ui ⋅ vi
= u1 ⋅ v1 + u2 ⋅ v2 + u3 ⋅ v3 + ⋯ + un ⋅ vn

Linear Algebra 
Vector Operations

Notice that this returns a scalar value, not another vector

⃗u

⃗v
θ



• Lets a vector 


• Then, this vector obeys the following operations: 


• Inner Product / Dot Product: 


•  

⃗u = [u1, u2, u3, ⋯, un]

⃗u ⋅ ⃗v = ∑ ui ⋅ vi
= u1 ⋅ v1 + u2 ⋅ v2 + u3 ⋅ v3 + ⋯ + un ⋅ vn

Linear Algebra 
Vector Operations

Notice that this returns a scalar value, not another vector

The dot product also relates to the angle  
between the two vectors as 

θ

⃗u ⋅ ⃗v = ∥ ⃗u∥∥ ⃗v∥cos(θ)

⃗u

⃗v
θ

This denotes the magnitude of the vector



•  Norm (Euclidean Norm)





•  Norm (Manhattan Norm) 





•  Norm


L2

∥ ⃗v∥2 = (∑ v2
i )

L1

∥ ⃗v∥1 = ∑ |vi |

L∞

∥ ⃗v∥∞ = max(vi)

Linear Algebra 
Vector Norms



•  Norm (Euclidean Norm)





•  Norm (Manhattan Norm) 





•  Norm


L2

∥ ⃗v∥2 = (∑ v2
i )

L1

∥ ⃗v∥1 = ∑ |vi |

L∞

∥ ⃗v∥∞ = max(vi)

Linear Algebra 
Vector Norms

These norms appear in regularization tasks later



• A matrix  has  rows and  columns A ∈ ℝm×n m n

Linear Algebra 
Matrices

a11 a12 a13 ⋯ a1n

a21 a22 a23 ⋯ a2n

a31 a32 a33 ⋯ a3n

am1 am2 am3 ⋯ amn

⋯

 ro
w

s
m

 columnsn



• Addition:


• Element-wise


• Same dimensions needed, i.e., to perform , 


• Scalar Multiplication: 


• Element-wise


• This simply multiplies each entry of the matrix by some scalar 


• Transpose: 


• Denoted by 


• This simply swaps the rows and columns. 


• If , then 

A + B A, B ∈ ℝm×n

c

AT

A ∈ ℝm×n AT ∈ ℝn×m

Linear Algebra 
Matrix Operations

a11 a12 a13 ⋯ a1n

a21 a22 a23 ⋯ a2n

a31 a32 a33 ⋯ a3n

am1 am2 am3 ⋯ amn

⋯

 ro
w

s
m

 columnsn



• Matrix Multiplication 

Let  and 


Then the product matrix 

A ∈ ℝi×j B ∈ ℝj×k

(AB)i,j = ∑
k

AikBkj

Linear Algebra 
Matrix Operations

a11 a12 a13 ⋯ a1j

a21 a22 a23 ⋯ a2j

a31 a32 a33 ⋯ a3j

ai1 ai2 ai3 ⋯ aij

⋯

 ro
w

s
i

 columnsj



• Matrix Multiplication 

Let  and 


Then the product matrix 

A ∈ ℝi×j B ∈ ℝj×k

(AB)i,j = ∑
k

AikBkj

Linear Algebra 
Matrix Operations

a11 a12 a13 ⋯ a1j

a21 a22 a23 ⋯ a2j

a31 a32 a33 ⋯ a3j

ai1 ai2 ai3 ⋯ aij

⋯

 ro
w

s
i

 columnsj

The inner dimensions must be the same



• Matrix Multiplication 

Let  and 


Then the product matrix 

A ∈ ℝi×j B ∈ ℝj×k

(AB)i,j = ∑
k

AikBkj

Linear Algebra 
Matrix Operations

a11 a12 a13 ⋯ a1j

a21 a22 a23 ⋯ a2j

a31 a32 a33 ⋯ a3j

ai1 ai2 ai3 ⋯ aij

⋯

 ro
w

s
i

 columnsj

a11 a12

a21 a22

b11 b12

b21 b22

(a11 ⋅ b11) + (a12 ⋅ b21) (a11 ⋅ b12) + (a12 ⋅ b22)

(a21 ⋅ b11) + (a22 ⋅ b21) (a21 ⋅ b12) + (a22 ⋅ b22)[ ] [ ] [ ]=



• Matrix Multiplication 

Let  and 


Then the product matrix 

A ∈ ℝi×j B ∈ ℝj×k

(AB)i,j = ∑
k

AikBkj

Linear Algebra 
Matrix Operations

a11 a12 a13 ⋯ a1j

a21 a22 a23 ⋯ a2j

a31 a32 a33 ⋯ a3j

ai1 ai2 ai3 ⋯ aij

⋯

 ro
w

s
i

 columnsj

a11 a12

a21 a22

b11 b12

b21 b22

(a11 ⋅ b11) + (a12 ⋅ b21) (a11 ⋅ b12) + (a12 ⋅ b22)

(a21 ⋅ b11) + (a22 ⋅ b21) (a21 ⋅ b12) + (a22 ⋅ b22)[ ] [ ] [ ]=



• Matrix Multiplication 

Let  and 


Then the product matrix 


- Not Commutative: 


- Associative: 


- Distributive: 


- Transpose: 

A ∈ ℝi×j B ∈ ℝj×k

(AB)i,j = ∑
k

AikBkj

AB ≠ BA

A(BC) = (AB)C

A(B + C) = AB + AC

(AB)T = BT AT

Linear Algebra 
Matrix Operations a11 a12

a21 a22

b11 b12

b21 b22

(a11 ⋅ b11) + (a12 ⋅ b21) (a11 ⋅ b12) + (a12 ⋅ b22)

(a21 ⋅ b11) + (a22 ⋅ b21) (a21 ⋅ b12) + (a22 ⋅ b22)[ ] [ ] [ ]=



• Identity  

•  

•  is a matrix where all diagonal entries are 1 and everything else is 0 

• Diagonal  

• A more general case of  where all diagonal entries are non-zero and all non-diagonal elements are zero


• Symmetric 

•  

• For example, covariance matrices are symmetric 


• Orthogonal  

• 


• The dot product of each column is zero

AI = IA = A

I

I

A = AT

AT A = AAT = I

Linear Algebra 
Special Matrices



Linear Algebra 
Systems of Linear Equations

• Consider the equation  


• 


• 


•

Ax = b

A ∈ ℝm×n

x ∈ ℝn×1

b ∈ ℝm×1



Linear Algebra 
Systems of Linear Equations

• Consider the equation  


• 


• 


•

Ax = b

A ∈ ℝm×n

x ∈ ℝn×1

b ∈ ℝm×1

This is a system of  equations 
with  unknown parameters

m
n

 
 

 
 

 
 

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 = b3

a41x1 + a42x2 = b4



Linear Algebra 
Systems of Linear Equations

• Consider the equation  


• 


• 


•

Ax = b

A ∈ ℝm×n

x ∈ ℝn×1

b ∈ ℝm×1

This is a system of  equations 
with  unknown parameters

m
n

 
 

 
 

 
 

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 = b3

a41x1 + a42x2 = b4

]=

a11 a12

a21 a22

b1
b2[ ]a31 a32

a41 a42

x1

x2
][ = b3

b4
[ ]



Conclusion 

• We looked at supervised vs unsupervised algorithms 


• We looked at regression vs classification problems 


• We looked at a few models and their loss functions 


• We reviewed probability and linear algebra 



Conclusion 

• Performance of any learned model depends on 

• Data

• Distribution of data

• Quality and labelling of data

• Dimensionality of data

• Type of data

• Images vs audio vs graphs 

• Model

• Type of model used 

• Neural Networks vs Decision 

Tree vs XGBoost 

• Loss functions used 

• Mean Squared Error vs Mean 

Absolute Error vs Root Mean 
Squared Error



Looking Ahead

• Next Class: 


• Review - Linear Algebra and Calculus, Linear regression 


• Next Couple Weeks:


• Linear regression, gradient descent, regularization 


• Goal For This Course: 

• Give students the ability to read and understand papers on their own


