Northeastern University
Khoury College of
Computer Sciences

DS 4400

Machine Learning and Data Mining |

Zohair Shafi
Spring 2026

Wednesday | January 7, 2026



Today’s Outline

1. Introductions
2. What is Machine Learning (ML)
3. Course outline & Logistics

4. What is Machine Learning (a little more detalil)



Today’s Outline

1. Introductions
2. What is Machine Learning (ML)
3. Course outline & Logistics

4. What is Machine Learning (a little more detalil)



Introductions
About Me

 B.E. In Computer Science from P.E.S University (2019) Zohair Shaf

(he/him)
 Performance Engineer at Akamai Technologies (2019-2021)
 Ph.D. at Northeastern University (2021-2026)
* Advised by Prof. Tina Eliassi-Rad

* | work at the intersection of Machine Learning and Network Science

* |’ve worked on graph machine learning for combinatorial optimization
problems, gene co-expression networks, adversarial robustness,
explainability & fairness and reasoning in LLMs



Introductions

Teaching Assistants

Zaiba Amla Wanrou Yang
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What is Machine Learning?

Input Data Model Predictions

# Bedrooms

Sq. Ft.

Zip Code :
1 2 3 4 5 6 1 2 3 4 5 6

Input Feature = # Bedrooms Input Feature = # Bedrooms

Let’s look at a concrete example
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Input Data Model Predictions
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What is Machine Learning?

Input Data Model Predictions

# Bedrooms

Zip Code

Price ($)
Price ($)

200 300 400 500 600 700 200 300 400 500 600 700
Input Feature = Sq. Ft. Input Feature = Sq. Ft.

What if we change the input data feature?



What is Machine Learning?

Price ($)

200 300 400 500 600 700 1 2 3 4 5 6
Input Feature = Sq. Ft. Input Feature = # Bedrooms

Notice that the curve learned for Sq. Ft. is very different from
the curve learned for # of Bedrooms



What is Machine Learning?

Machine Learning is the task of trying to learn these curves

Price ($)

200 300 400 500 600 700 1 2 3 4 5 6
Input Feature = Sq. Ft. Input Feature = # Bedrooms



What is Machine Learning?

Machine Learning is the task of trying to learn these curves
This task gets harder when you have multiple input features

Input Feature = Sq. Ft.
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Course Objectives

Types of ML ML Algorithms Applications
* Supervised vs . Lin_ear Regression,
Unsupervised Spline Regression . Eairness and Ethics
 (Classification vs « SVM, Decision Trees, . . -
Regression Naive Bayes, Explainability
Ensembles

* Generative Al * Security

e Neural Networks



Course Outline

Probability and Linear Algebra Neural Networks and Deep Learning (~2
Review (~1 Week) Weeks)
Linear Regression Backpropagation, gradient descent

and Regularization (~2 Weeks)

Classification (~5 Weeks) Various NN architectures

Linear classifiers: logistic regression, LDA Applications (~2 Weeks)

Non-linear classifiers: kNN, decision trees, Fairness and Ethics in Al

SVM, Naive Bayes
Security and Privacy

Ensembles: random forests, boosting and
bagging



Course Information

Course Website: https://zohairshafi.github.io/pages/sp26 ds4400.html
Course calendar and slides posted after each lecture

Canvas:
Assignments and grades posted here

Gradescope:
Assignent Submissions
Accessed via Canvas

Emails:
Please ensure all emails to instructor/TA’s have [sp26_ds4400] in the subject line.

This helps attend to emails faster.


https://zohairshafi.github.io/pages/sp26_ds4400.html

Course Schedule

Class Hours:
Monday and Wednesday | 02:50 PM - 04:30 PM | Snell 033
Office Hours:
Wanrou Yang: 1:30 PM - 3:00 PM - Tuesday (Location: TBD)
Zaiba Amla: 1:00 PM - 2:30 PM - Wednesday (Location: TBD)
Zohair Shafi: 1:30PM - 2:30 PM - Monday and Wednesday (Location: TBD)



Resources

Gareth James - Daniela Witten - Trevor Hastie -

| Robert Tibshirani - Jonathan Taylor

Textbook:
An Introduction to Statistical Learning
https://hastie.su.domains/ISLP/ISLP website.pdf.download.html

with Applications in Python

) Springer

Other Resources:

 Elements of Statistical Learning (Trevor Hastie, Rob Tibshirani, and Jerry Friedman,)
Second Edition, Springer, 2009

 Pattern Recognition and Machine Learning (Christopher Bishop)
Springer, 2006

 Dive into Deep Learning (A. Zhang, Z. Lipton, and A. Smola)

 Lecture notes by Andrew Ng from Stanford


https://hastie.su.domains/ISLP/ISLP_website.pdf.download.html

Policies

Your Responsibilities
* Please be on time, attend classes, and take notes
* Participate in interactive discussion in class
* Submit assignments / programming projects on time
Late Days for Assignments
* 5 total late days, after that loose 20% for every late day
* Assignments are due at 11:59pm on the specified date
* We will use Gradescope for submitting assignments

* No need to email for late days



Grading

Assignments - 12.5%
8 assignments and programming exercises based on studied material in class
Theory and practical assignments with Jupyter Notebooks
Midterm Exam - 20%
Tentative date: Wednesday, February 18
Final Exam - 25%
Scheduled during finals week

Class participation - 5%



Academic Integrity

* Homework is done individually.
* Rules
e Can discuss with colleagues or instructors
* Code cannot be shared with colleagues
* Cannot use code from the Internet/LLMs
* Use python packages, but not directly code for ML analysis written by someone else
* No LLM usage.
* No cheating will be tolerated.
* Any cheating will automatically result in grade F and report to the university administration

e http://www.northeastern.edu/osccr/academic-integrity-policy/
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What is Machine Learning?

Machine Learning is the task of trying to learn these curves
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What is Machine Learning?

This type of ML is called Supervised Learning

Price ($)

200 300 400 500 600 700

Input Feature = Sq. Ft.

Price # Bedrooms
2000 1
2100 2
2400 3
2450 4
3000 5
3500 6




What is Machine Learning?

What about when you do not have training labels to learn from?
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What is Machine Learning?

What about when you do not have training labels to learn from?

Lets assume that each data point here is a song
How would you learn from this data?
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For example, we can use Clustering algorithms to chunk this data into groups
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What is Machine Learning?

What about when you do not have training labels to learn from?

This is where Unsupervised Learning Algorithms come in.
For example, we can use Clustering algorithms to chunk this data into groups

- | 0
Maybe this cluster is rock songs ® ® Cluster Centroid

and this cluster is EDM songs

and this cluster is R&B songs



What have we learned so far?

ML can be split into

Supervised Learning Unsupervised Learning

# Bedrooms

@® Cluster Centroid

200 300 400 500 600 700

Input Feature = Sq. Ft.




Let’s look at some concrete examples

Supervised Learning - Classification

e MNIST Dataset

g ;  Handwriting Recognition
''''''''''''  Each image is an array of

o | 28 x 28 pixels

O ‘ * One of the first commercial
0 |/ and widely used ML systems

for zip code detection and
other checks

llllllllllll



Let’s look at some concrete examples

Supervised Learning - Classification

e MNIST Dataset

oo o o 0 0 0 o] e Handwriting Recognition
: * Each image is an array of
= B B ' 28 x 28 pixels
- . +| « One of the first commercial
s % + « ... andwidely used ML systems
i for zip code detection and
0 other checks



Let’s look at some concrete examples

Supervised Learning - Regression

NVIDIA » Stock Price Prediction
?ﬁi‘}iy * (Given some input features,
$0.28 (-0.15%) After-hours predict the price of the stock

at a future time

* Given stock price of other
M companies, predict price of a
given company of interest

e Predict a real-valued
number instead of a class



Regression vs Classification

Supervised Learning - Regression

NVIDIA
$183.32

+$2.61 (+1.44%) Today
-$0.28 (-0.15%) After-hours

Let’s look at some concrete examples

Supervised Learning - Classification




Let’s look at some concrete examples

Other Supervised Learning Examples

o Spam Classification

* |s the email you received spam or not??

* |s the attachment safe?
* Weather prediction

* Question: Is this classification or regression?
* |Image classification

 What objects are in the image?

 Where is each object in the image”?



Let’s look at some concrete examples

Some Unsupervised Learning Examples

e Clustering

* Group similar points into clusters

 Example: k-means clustering, hierarchical clustering, density based clustering
 Dimensionality Reduction

* Project input data into lower dimensional space

 Example: Principle Component Analysis (PCA)
 Feature Learning

* Find low dimensional feature representations

* Think of this as a “learned” PCA

 Example: Autoencoders



What does the overall pipeline look like?

Input Data ——— Model — Predictions
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What does the overall pipeline look like?

Training Pipeline:

Input Data —» Pre-processing —» Eiﬁﬂgn — Model —» Predictions —>

Labeled Data

X5 i} J(x) 2y f(x)



What is a loss function?

Learned Function f(x)
\ -
’
Y
Y
¢

;@ £y )

True data point y;

200 300 400 500 600 700

Input Feature = Sq. Ft.



Price ($)

What is a loss function?

J £ (3 f(x)) = Zyl - fix;)
True data point ;

Learned Function f()C)

200 300 400 500 600 700

Input Feature = Sq. Ft.



What does the overall pipeline look like?

Training Pipeline:

Input Data —» Pre-processing —» Feat”'fe — —» Predictions —» Loss Function
Extraction

Labeled Data

X5 i} J(x) 2y f(x)



What are some common models and their loss functions?

* Linear Regression
» Goal: Predict continuous output y from input features x

e Model: y — W() + Wl.xl —+ W2X2

|
. A N2
) Loss Function: Z Z (yl- — y,-)
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* Linear Regression
» Goal: Predict continuous output y from input features x

e Model: 5\7 — W() + Wl.xl —+ W2X2

|
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These are the predicted values



What are some common models and their loss functions?

* Linear Regression
» Goal: Predict continuous output y from input features x

e Model: y — WO + Wl.xl —+ W2X2

|
. A N2
) Loss Function: Z Z (yl- — y,-)

These are the learnable weights/parameters



What are some common models and their loss functions?

* Linear Regression
» Goal: Predict continuous output y from input features x

e Model: y — W() + Wlxl —+ W2X2

|
. A N2
) Loss Function: Z Z (yl- — y,-)

These are the input features



What are some common models and their loss functions?

* Linear Regression
» Goal: Predict continuous output y from input features x

e Model: y — W() + Wl.xl —+ W2X2

|
. A N2
) Loss Function: Z Z (y,- — y,-)

This is the true label



What are some common models and their loss functions?

* | ogistic Regression

 Goal: Predict probability of binary class membership (classification)

» Model: P(y = 1 |x) = a(wy + w;x; + wyx,)

|
) Loss Function: ——— 2 yl-log()Ail-) + (1 — y,-)l()g(l — yi)
m i

This is the sigmoid operator - it caps outputs within a range of 0-1



What are some common models and their loss functions?

* | ogistic Regression

 Goal: Predict probability of binary class membership (classification)

» Model: P(y = 1 |x) = o(wy + wix; + wyx,)

|
) Loss Function: ——— 2 yl-log()Ail-) + (1 — y,-)l()g(l — yi)
m i

Notice how this looks similar to the linear regression model



What are some common models and their loss functions?

* | ogistic Regression

 Goal: Predict probability of binary class membership (classification)

» Model: P(y = 1|x) = a(wy + w;x; + wyx,)

1
) Loss Function: ——— Z inOg(ﬁl-) + (1 — y,-)IOg(l — }A’i)
i i

But the loss function is now different, this is the binary cross entropy loss
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Probability

Basic Concepts

e« Sample Space and Events
« The sample space €2 is the set of all possible outcomes of an experiment.
« An event A is a subset of the sample space (2.

» The probability P(A) is a number between 0 and 1 representing how likely
event A is to occur.



Probability

Basic Concepts

« Sample Space and Events
« P(A) >0
e Why?
» Because A is a subset of €2

. P(Q) =1

» For mutually exclusive events A and B:

. P(A U B) = P(A) + P(B)



Probability

Basic Concepts

e« Sample Space and Events
» For mutually exclusive events A and B:
« PAUB)=PA)+ P(B)
« Complement Rule:

. P(A) = 1 — P(A)

P(A’)



Probability

Conditional Probability

* Probability of A, given that B has already occurred
P(A N B)
P(B)

P(A|B) =

This is fundamental in machine learning. Why?

AN
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Conditional Probability

» Probability of A, given that B has already occurred

PANB)
P(A \.) B
spam emalil

This is fundamental in machine learning. Why?

AN



Probability

Conditional Probability

* Probability of A, given that B has already occurred

~ P(ANB)
Pe " ~ P(B)

spam emalil
Two events A and B are independent if
PANnB)=PA)- - P(B)
or

P(A)nP(B)  P(A) - P(B)
PB)  P(B)

P(A|B) = — P(A)

AN



Probability

Conditional Probability - Bayes’ Theorem

P(ANB) P(B|A)- PA)
PB)  P(B)

P(A|B) =

AN



Probability

Conditional Probability - Bayes’ Theorem

Prior - what we believe before
seeing the data B

Or probability of event A occurring
before having made any

observation about event B
P(ANB) P(B|A) - P(A)

P(A|B) = —
(B) P(B)

AN



Probability

Conditional Probability - Bayes’ Theorem

Likelihood - probability of Pr o ;’;’]ha; we Igelleve before
data B given A seeing the data

Or probability of event A occurring
before having made any

observation about event B

Or probability of event B

occurring, given event A
has already occurred

P(ANB) P(B|A) - P(A)

P(A|B) = —
(B) P(B)

AN



Probability

Conditional Probability - Bayes’ Theorem

Likelihood - probability of Pr o ;’;’Ihactj we Igelleve before
data B given A seeing the data

Or probability of event A occurring
before having made any

observation about event B

Or probability of event B

occurring, given event A
has already occurred

P(ANB) P(B|A)- P(A)

P(A|B) = —
(B) P(B)

Evidence - marginal

likelihood or A
Or probability of event B B
occurring before having Q

made any observation
about event A



Probability

Conditional Probability - Bayes’ Theorem

Likelihood - probability of Pr o ;’;’Ihactj we Igelleve before
data B given A seeing the data

Or probability of event A occurring
before having made any

observation about event B

Or probability of event B

occurring, given event A
has already occurred

P(ANB) P(B|A)- P(A)

P(A|B) = —
(B) P(B)

Posterior - updated belief

after seeing the data Evidence - marginal

likelihood
Or probability of event A A
occurring after having Or probability of event B B
made an observation about occurring before having Q
event B made any observation

about event A



Probability

Random Variables and Distributions

« A random variable X is a function that maps outcomes in the sample space
(€2) to real numbers.

 Random variables can be discrete (taking countable values) or continuous
(taking any value in an interval).



Probability

Random Variables and Distributions

* Probability Mass Function (PMF) - for discrete random variables

« P(X = x) gives the probability that X takes value x.
* The sum over all possible values equals 1.

* Probability Density Function (PDF) — for continuous random variables
b
. f(x)suchthat P(a < X < b) = J f(x)dx
a

 Note that f(x) itself is not a probability; it can exceed 1.

e Cumulative Distribution Function (CDF)
e F(x) =P(X < Xx)

 Works for both discrete and continuous variables.



Probability

Random Variables and Distributions

Probability (X)

| L

2 3 456 7 8 9 10 11

* Probability Mass Function (PMF) - for discrete random variables

« P(X = x) gives the probability that X takes value x.
* The sum over all possible values equals 1.

* Probability Density Function (PDF) — for continuous random variables
b
. f(x)suchthat P(a < X < b) = J f(x)dx
a

 Note that f(x) itself is not a probability; it can exceed 1.

e Cumulative Distribution Function (CDF)
e F(x) =P(X < Xx)

 Works for both discrete and continuous variables.



Probability

Random Variables and Distributions

Probability (X)

1 2 3 456 7 8 9 10 11 >

* Probability Mass Function (PMF) - for discrete random variables f(x) A

« P(X = x) gives the probability that X takes value x.

I
 P(a<X<b) |

* The sum over all possible values equals 1.

* Probability Density Function (PDF) — for continuous random variables o a b

b
. f(x)suchthat P(a < X < b) = J f(x)dx

 Note that f(x) itself is not a probability; it can exceed 1.

e Cumulative Distribution Function (CDF)
e F(x) =P(X < Xx)

 Works for both discrete and continuous variables.



Probability

Random Variables and Distributions

* Probability Mass Function (PMF) - for discrete random variables

« P(X = x) gives the probability that X takes value x.
* The sum over all possible values equals 1.

* Probability Density Function (PDF) — for continuous random variables
b
. f(x)suchthat P(a < X < b) = J f(x)dx
a

 Note that f(x) itself is not a probability; it can exceed 1.

e Cumulative Distribution Function (CDF)
e F(x) =P(X < Xx)

 Works for both discrete and continuous variables.

Probability (X)

|

2

f(x) A

3 456 7 8 9 10 11 >

I
 P(a<X<b) |

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

a b

| CDF(x)

| 1 | | |
-3 -2 -1 0 1 2 3
X



Probability

Key Distributions in ML

e Bernoulli Distribution
e Binomial Distribution

* Gaussian (Normal) Distribution



Probability

Key Distributions in ML

e Bernoulli Distribution

 Models binary outcomes (success/failure)

+ PX=1)=p

e pX=0)=¢g=1-p



Probability

Key Distributions in ML

 Binomial Distribution

 Models number of successes in n independent trials

n
.P@=m=(

ko o\ k
k) p*-(1—-p)



Probability

Key Distributions in ML

 Binomial Distribution

 Models number of successes in n independent trials

, PX =k = (Z) .pF- (1 =p)*

Number of combinations, or ways, of choosing
k items from a total of n items



Probability

Key Distributions in ML

 Gaussian (Normal) Distribution

* One of the most important distributions in ML
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Probability

Key Distributions in ML

 Gaussian (Normal) Distribution

* One of the most important distributions in ML

PDF : f(x) =

1

\/ 270
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Probability Density
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Standard Gaussian Distribution

Mean of the distribution

(x — /4)2

262




Standard Gaussian Distribution

o
W
o

Probability -

Key Distributions in ML

o
N
Ul

Probability Density
o
>

 Gaussian (Normal) Distribution

* One of the most important distributions in ML

1 B (x — u)?

PDF :f(x) - — . 2

A/ 2
271-0 Variance of the distribution




Probability

Key Distributions in ML

 Gaussian (Normal) Distribution

* One of the most important distributions in ML

PDF : f(x) =

1
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A standard normal distribution like the one
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Probability

Expectation

 EXxpectation of a random variable is also the mean value of that variable.

e For a discrete random variable X

[X]= ) x-P(X=x)

e For a continuous random variableX

Jx - f(x)dx



Probability

Expectation

For a discrete random variable X

the probability of achieving that value

— [X] — E : Y P(X — X) Sum over all possible values that x can take multiplied by

7\
 For a continuous random variableX l |

alT
1l

3 4 5 6 7 8 8 10

Probability (X)

Jx - f(x)dx

L

FiX]=1-PX=1)+2-PX=2)+3-PX=3)+--11-P(X = 11)



Probability

Properties of Expectations

“[aX + b] = aE[X] + b
(linearity)

(X + Y| =EIX][+ ELY]

(always true, even if variables are dependent)

- XY | =E[X] - E[Y]
(this only holds true if X and Y are independent)




Probability

Variance

Var(X) =

_[(X_

“[X])?] =

(X —(

- [X])?




Probability

Variance

Var(X) =

_[(X_

“[X])?] =

(X —(

Expectation of the squared difference between the
random variable and the mean of the random

variable

- [X])?




Probability

Variance

Var(X) = E[(X — E[X])*] = E[X7] - (E[X])*

Expectation of the square of the random variable




Probability

Variance

Var(X) =

_[(X_

“[X])?] =

- [X4] — (E[X])*

Expectation of the random variable squared




Probability

Properties of Variance

Var(X) = E[(X — E[X])*] = E[X7] = (E[X])*

Var(aX + b) = a* - Var(X)

Var( X+ Y) = Var(X) + Var(Y) + 2 - Cov(X, Y)



Probability

Properties of Variance

Var(X) = E[(X — E[X])*] = E[X7] = (E[X])*

Var(aX + b) = a* - Var(X)

Var( X+ Y) = Var(X) + Var(Y) + 2 - Cov(X, Y)

This is the covariance of random variables X and Y



Probability

Covariance and Correlation

Cov(X,Y) = E[(X —

=X -

—[YD] =

How much X moves from its mean [E[X]

—[ XY | =

=[X]

=Y ]




Probability

Covariance and Correlation

Cov(X,Y) =

_[(X_

How much Y moves from its mean

(XD =

[ Y]] =

—[ XY | =

=[Y]

=[X]

=Y ]




Probability

Covariance and Correlation

Cov(X, Y) = E[(X = E[XD(Y = E[Y]D] = EIXY] — E[X]E[Y]

Product of means of X and Y



Probability

Covariance and Correlation

Cov(X,Y) = E[(X —

—[X DAY =

—[YD] =

—[ XY | =

Covariance measures how X and Y vary together.
Positive means they tend to increase/decrease together
Negative means one increases as the other decreases.

=[X]

=Y ]




Probability

Covariance and Correlation

Cov(X,Y) = E[(X —

—[X DAY =

—[YD] =

—[ XY | =

Covariance measures how X and Y vary together.
Positive means they tend to increase/decrease together
Negative means one increases as the other decreases.

Corr(X,Y) =p(X,Y) =

Cov(X,Y)

GX.GY

=[X]

=Y ]




Probability

Covariance and Correlation

Cov(X,Y) = E[(X —

—[X DAY =

—[YD] =

“[XY] —

Covariance measures how X and Y vary together.
Positive means they tend to increase/decrease together
Negative means one increases as the other decreases.

Corr(X,Y) =p(X,Y) =

Standard Deviation: oy = \/ Var(X)

Cov(X,Y)

Ox ° Oy

=[X]

=Y ]




Probability

Covariance and Correlation

Cov(X,Y) = E[(X —

—[X DAY =

—[YD] =

“[XY] —

Covariance measures how X and Y vary together.
Positive means they tend to increase/decrease together
Negative means one increases as the other decreases.

Corr(X,Y) =p(X,Y) =

Cov(X,Y)

Ox * Oy

=[X]

=Y ]

This simply normalizes the Covariance to between -1 and +1
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2. Linear Algebra
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Linear Algebra

Vectors

o Lets avectoru = [uy, u,, Uz, =+, U |



Linear Algebra

Vector Operations

+ Lets avector u = [uy, u,, Uy, -+, |
* Then, this vector obeys the following operations:

e Addition:

e U+ V =[uy+V, U+ Vo, ty + Vg, oo u, + V]



Linear Algebra

Vector Operations

+ Lets avector u = [uy, u,, Uy, -+, |
* Then, this vector obeys the following operations:

e Addition:

e U+V=[u+V,lU+Vy, Uy + Vg e u, + V]

This is simply the addition of each element of the vector
“Element-wise” addition



Linear Algebra

Vector Operations

+ Lets avector u = [uy, u,, Uy, -+, |
* Then, this vector obeys the following operations:

 Scalar Multiplication:

e c-uUu=[c-u,c-u,cC- Uy, U



Linear Algebra

Vector Operations

+ Lets avector u = [uy, u,, Uy, -+, |
* Then, this vector obeys the following operations:

 Scalar Multiplication:

e c-u=1[c-u,c-u,c-uy-,c-u

This is simply the multiplication of each element of the vector

with a scalar ¢
“Element-wise” multiplication



Linear Algebra

Vector Operations

+ Lets avector u = [uy, u,, Uy, -+, |
* Then, this vector obeys the following operations:

 Inner Product / Dot Product:

° u~v=2ui°\/’i
U

{1 Vit U VT U3 V3+ T+ U -V,



Linear Algebra

Vector Operations

+ Lets avector u = [uy, u,, Uy, -+, |
* Then, this vector obeys the following operations:
* Inner Product / Dot Product:

® M°V=2ul°vl

= U VT U VT U V3t T UV

Notice that this returns a scalar value, not another vector



Linear Algebra

Vector OPeratiOT\S The dot product also relates to the angle €

between the two vectors as
~ u - v = |lull||v|lcos(0)
o Lets avectoru = [uy, u,, Uz, =+, U |
* Then, this vector obeys the following operations: U
* Inner Product / Dot Product:

i T=Y ey, ’

= U VT U VT U V3t T UV

<l

Notice that this returns a scalar value, not another vector



Linear Algebra

Vector OPeratiOT\S The dot product also relates to the angle €

between the two vectors as

- -

u - v = |[ull[|vllcos(6)

» Lets a vector u = [I/tl, Ury Uzy =", I/tn] This denotes the magnitude of the vector
* Then, this vector obeys the following operations: U

 Inner Product / Dot Product:

JiS=Y 0

= U VT U V)T U3 V3+ T U,

<l

Notice that this returns a scalar value, not another vector



Linear Algebra

Vector Norms

[, Norm (Euclidean Norm)

91, = /() vD)

e [, Norm (Manhattan Norm)

19l = ) vl

« L., Norm

V]l = max(v;)

o0



Linear Algebra

Vector Norms

[, Norm (Euclidean Norm)

91, = /() vD)

o L, Norm (Manhattan Norm) These norms appear in regularization tasks later
19l = ) vl

e [ Norm
V]l = max(v))



Linear Algebra

Matrices

e A matrix A € R™" has m rows and 1 columns

d11 dyp dy3 *** dyy
2 ty) Upp Up3 ** Uy
O
< (31 U3y d33 *** U3,
Al Qo Az 0 Ay

n columns



Linear Algebra

Matrix Operations

e Addition:

e Element-wise

» Same dimensions needed, i.e., to perform A + B, A, B € R"*"

 Scalar Multiplication:

e Element-wise

* This simply multiplies each entry of the matrix by some scalar ¢

 Transpose:

» Denoted by A’

* This simply swaps the rows and columns.

- IfA € R™" then Al € R™™

I roOws

d11 dyp dy3 = dyy
Uy Uy Up3z =+ Uy,

(31 U3y d33 *** U3,

Al Ay Az 0 Uy

n columns



Linear Algebra

Matrix Operations

 Matrix Multiplication

Let A € |

Then the product matrix (AB),-’J- = Z AikBkj

Xl and B € |

JXk

I FOWS

11 d1p d13 = dy;

J
Uy Upyy Upz =+ Uy;
sy Uzp U3z *** d3;
aj;1 djp diz =+ dj
J columns



Linear Algebra

Matrix Operations

 Matrix Multiplication

Let A € |

Then the product matrix (AB),-’J- = Z AikBkj

The inner dimensions must be the same

Xl'and B € |

JXk

I FOWS

11 d1p d13 = dy;

J
Uy Upyp Upz =+ Uy;
sy Uzp U3z *** d3;
aj1 djp diz =+ dj;
J columns



Linear Algebra

Matrix Operations

 Matrix Multiplication

Let A € |

Then the product matrix (AB),-’J- = Z AikBkj
k

Xl and B € |

[ 258! 5112] [bn bi>
dy1 Uro b,y by,

JXk

(ay; - byy) + (ap, - byy)
(ay; - byy) + (ayy - Dyy)

I FOWS

11 d1p d13 = dy;

J
Uy Upyy Upz =+ Uy;
sy Uzp U3z *** d3;
aj;1 djp diz =+ dj
J columns

(ay; - byy) + (ag; - byy)
(ay1 - b1y) + (ay, - byy)



Linear Algebra

Matrix Operations

 Matrix Multiplication

Let A € |

Then the product matrix (AB),-’J- = Z AikBkj
k

Xl and B € |

[ 258 6112] [bn bi>
dy1 Uro by by,

JXk

(ay; - byy) + (ap, - byy)
(ay; - byy) + (ayy - Dyy)

I FOWS

11 d1p d13 = dy;

J
Uy Upyy Upz =+ Uy;
sy Uzp U3z *** d3;
aj;1 djp diz =+ dj
J columns

(ay; - byy) + (ag; - byy)
(ay1 - b1y) + (ay, - byy)



Linear Algebra

Matrix OperatiOnS [ di 412 ] [ bll b12 ] . (@1 - b1y) +(ay - by1)  (ag - byp) + (ayp - byy)
Uy Uy bzl b22 (ay; - b1y + (ayy - byy)  (any - byp) + (ay; - byy)

 Matrix Multiplication

Let A € R™ and B € R/*k

Then the product matrix (AB); ; = Z A By
k

- Not Commutative: AB # BA
- Associative: A(BC) = (AB)C
- Distributive: A(B+ C) = AB+ AC

- Transpose: (AB)! = B’ A"



Linear Algebra

Special Matrices

Identity

c AI=IA=A

[ is a matrix where all diagonal entries are 1 and everything else is 0
Diagonal

* A more general case of I where all diagonal entries are non-zero and all non-diagonal elements are zero

Symmetric
« A=A
* For example, covariance matrices are symmetric

Orthogonal
« ATA=AAT =1

* The dot product of each column is zero



Linear Algebra

Systems of Linear Equations

» Consider the equation Ax = b

'AEmen

. x € R™!

'bELle




Linear Algebra

Systems of Linear Equations

» Consider the equation Ax = b

e A €

e X € |

e b el

mxn

nxl1

mx 1

This is a system of m equations
with n unknown parameters

a; X, + apx, = b,
ay1X| + dypXy = by
az1X| + azpX, = by

ay1X) + agpXy = by



Linear Algebra

Systems of Linear Equations

» Consider the equation Ax = b

Hxn
« A € R™
. [ nxl1 This IS a system of m equations
X € with n unknown parameters
mx1
*beEl ai s =0 apy app
ay1 Xy + AyXy = by ary Oy [ X,
_> —
a31X) + a3pXy = by ayy Adzy X,

Cl41x1 —+ a42x2 — b4 a41 a42



Conclusion

 We looked at supervised vs unsupervised algorithms
 \We looked at regression vs classification problems
 \We looked at a few models and their loss functions

* We reviewed probability and linear algebra



Conclusion

 Performance of any learned model depends on

* Data * Model
* Distribution of data * Type of model used
* Quality and labelling of data * Neural Networks vs Decision
» Dimensionality of data Tree vs XGBoost
» Type of data * Loss functions used
» Images vs audio vs graphs * Mean Squared Error vs Mean

Absolute Error vs Root Mean
Squared Error



Looking Ahead

* Next Class:

* Review - Linear Algebra and Calculus, Linear regression
 Next Couple Weeks:

* Linear regression, gradient descent, regularization
 Goal For This Course:

* (Give students the ability to read and understand papers on their own



