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Abstract. Machine learning (ML) approaches are increasingly being
used to accelerate combinatorial optimization (CO) problems. We inves-
tigate the Set Cover Problem (SCP) and propose Graph-SCP, a graph
neural network method that augments existing optimization solvers by
learning to identify a smaller sub-problem that contains the solution
space. Graph-SCP uses both supervised learning from prior solved in-
stances and unsupervised learning to minimize the SCP objective. We
evaluate the performance of Graph-SCP on synthetically weighted and
unweighted SCP instances with diverse problem characteristics and com-
plexities, and on instances from the OR Library, a canonical benchmark
for SCP. We show that Graph-SCP reduces the problem size by 60–80%
and achieves runtime speedups of up to 10x on average when compared
to Gurobi (a state-of-the-art commercial solver), while maintaining solu-
tion quality. This is in contrast to fast greedy solutions that significantly
compromise solution quality to achieve guaranteed polynomial runtime.
We showcase Graph-SCP’s ability to generalize to larger problem sizes,
training on SCP instances with up to 3,000 subsets and testing on SCP
instances with up to 10,000 subsets.

Keywords: Graph Neural Networks · Combinatorial Optimization · Set
Cover Problems

1 Introduction

A growing area of research explores machine learning (ML) solutions to combina-
torial optimization (CO) problems. These ML solutions can be divided into two
categories: (1) learning end-to-end models that generates feasible solutions (e.g.,
[11]) and (2) learning non-end-to-end models that predict branching heuristics
and aids existing CO solvers (e.g., [14, 31]). Bengio et al. [3] provide a compre-
hensive survey of methods used in each category. Here, we focus on the latter
approach and use ML to aid conventional CO solvers.

We focus on the set cover problem (SCP), an NP-hard CO problem. In SCP,
one is given the “universe,” which is a set of elements {1, 2, . . .m}. One is also
given a collection of n sets whose union corresponds to the universe. To solve
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the problem, one must identify the smallest sub-collection of the n sets whose
union is equal to the universe.

We use a graph neural network (GNN) model to accelerate the runtime of
SCP solvers without sacrificing solution quality. Concretely, we propose Graph-
SCP, where we cast an instance of SCP as a graph and learn a GNN to predict
a subgraph that encapsulates the solution space. The nodes of this subgraph
are passed into a conventional CO solver such as Gurobi [16] (a state-of-the-
art commercial solver). This method of reducing the size of the input problem
and passing it to traditional solvers enables them to run faster. Graph-SCP
achieves between 60–80% reduction in input problem size, which leads to runtime
improvements of up to 10x on average, while maintaining solution quality across
a range of SCP instance characteristics.

Traditional solvers swiftly generate incumbent solutions, but require addi-
tional time to reach optimality. In our comparative analysis, we examine the
incumbent solutions generated by both Graph-SCP and Gurobi, revealing that
the reduction of the search space by Graph-SCP allows the solver to find incum-
bent and finally, optimal solutions faster. Our contributions are as follows:

– We propose Graph-SCP, a non-end-to-end ML-based framework for finding a
subproblem to a given SCP instance. That subproblem is subsequently given
to any traditional CO solver. Graph-SCP achieves the optimal objective
value, while running up to 10x faster than conventional solvers.

– We provide insights into how features from alternative representations, such
as a hypergraph representation of an SCP instance can be used to improve
Graph-SCP’s search. Our findings show that features derived from this hy-
pergraph representation of the SCP instance lead to the largest speedup.

– We present a comprehensive evaluation of Graph-SCP, with SCP instances
ranging across various densities, sizes, and costs (weighted vs. unweighted),
as well as instances from the OR Library [2]. We demonstrate Graph-SCP’s
ability to generalize across problem characteristics. We compare against two
benchmark state-of-the-art solvers, Gurobi [16] and SCIP [4], and discuss
how various modeling choices affect the performance of Graph-SCP.

2 Background

Figure 1(A) shows an example of an SCP instance. We adopt an alternate for-
mulation for SCP. Given a binary matrix A ∈ Rm×n, SCP is defined as covering
all m rows (denoting the elements of the universe) by the minimum cost subset
of the n columns (denoting the collection of sets whose union corresponds to the
universe). Costs of each column are represented in the column vector c ∈ Rn.
The goal is to find the assignment vector x ∈ Rn, where

xj =

{
1 if column j is in solution
0 otherwise

∀j ∈ n, (1)

The optimization problem is:
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(B) Graph Representation

Universe:   
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} 

Sets: 
{1, 2}                                   (Cost = 1) 
{3, 4, 5, 6}                           (Cost = 1) 
{7, 8, 9, 10, 11, 12, 13, 14} (Cost = 1) 
{1, 3, 5, 7, 9, 11, 13}           (Cost = 1) 
{2, 4, 6, 8, 10, 12, 14}         (Cost = 1)

(A) Set Cover Instance
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(D) Hyperedge Dependent Vertex Weights
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Fig. 1. (A) A simple example of a set cover problem with equal cost subsets. (B) The
set cover instance represented using a bipartite graph abstraction. This graph is passed
into a GNN which then predicts whether nodes (i.e. subsets) belong to the SCP solution
(green highlighted nodes). The prediction values for Layer 0 and Layer 1 nodes (white-
colored nodes) are discarded, since only Layer 2 nodes contribute to the solution. (C)
The hypergraph representation for the same set cover instance. Each subset corresponds
to a hyperedge shown as bounding boxes around the element nodes. (D) For each
hyperedge e, we define hyperedge dependent weights γe(v) for each element v of the
universe as the inverse of the size of its associated hyperedge as shown.

min
x

∑
j∈n

cjxj s.t.
∑
j∈n

Aijxj ≥ 1, ∀1 ≤ i ≤ m,xj ∈ {0, 1}. (2)

Given such a matrix, we can define its density as d = q
m×n , where q is the

number of non-zero entries in the matrix A [24].

Graph Abstractions for SCP. By treating the covering matrix as an adja-
cency matrix, with elements in the universe as rows and sets as columns, we
can represent the SCP instance as a directed bipartite graph (see Figure 1(B)).
A node representing the universe is connected to each element node, and the
element nodes are connected to the sets in which they appear.

We also represent the SCP instance as a hypergraph. Here, each element of
the universe is a vertex and each set is a hyperedge (Figure 1(C)). The hyper-
edges are demarcated by bounding boxes around the associated element nodes.
This hypergraph representation offers an additional lens through which to ex-
plore the connections between elements and sets. For example, it enables an
investigation into the structural characteristics of an SCP instance by examin-
ing features inherent to the hypergraph structure (such as hyperedge dependent
vertex weights in Figure 1(D)).

Graph Neural Networks. GNNs combine node-wise updates with message
updates from neighboring nodes. Throughout this work, we utilize GraphSAGE
[17], a message passing neural network. Formally, given a graph G = (V,E,X)
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Fig. 2. Graph-SCP takes an SCP instance represented as a graph as input. The graph
is augmented with a set of features on its nodes (Gf ). A GNN is trained on this graph
to predict a subgraph of nodes that likely contains the solution to the SCP instance.
At runtime, the GNN is used (only once) to generate predictions. Graph-SCP picks
nodes at a predefined percentile threshold as the subgraph. If the objective criteria are
not met, the threshold is reduced, thus selecting a larger subgraph.

with nodes V , edges E, and node features X, GraphSAGE computes node rep-
resentations as:

h0
v = xv, (3)

hk
N(v) ← AGGREGATE({hk−1

u ,∀u ∈ N(v)}), (4)

hk
v ← σ(W k · CONCAT (hk−1

k , hk
N(v)), (5)

where xv is the node feature vector for node v, k is the number of message passing
layers, hk

v is the hidden representation of node v at layer k, W k is the weight
matrix at layer k, N(v) is the set of node v’s neighbors, and AGGREGATE can
be any permutation invariant aggregation method like sum or average.

3 Proposed Method: Graph-SCP

Figure 2 provides an overview of Graph-SCP, which takes as input an SCP
instance represented as a graph G (a.k.a. an SCP graph). Graph-SCP augments
G with a set of features on its nodes (described in the next section). Then, a
GNN is trained on the augmented graph, Gf , to predict whether a subgraph
(i.e., a set of nodes) is likely to appear in the solution. The output of the GNN
is subsequently given to a thresholding procedure that selects which subgraphs
should be given to the solver. If the solver cannot find a solution, Graph-SCP
reduces the threshold and selects a larger subgraph. This process continues until
a solution is found.

3.1 Augmenting a SCP Graph with Features

Before Graph-SCP trains a GNN, it adds the following features to each node of
the SCP graph:
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Cost: We assign costs of 0 to the “Universe” node in layer 0 and “Element”
nodes in layer 1 of the graph (Figure 1(B)). The “Columns” nodes in layer 2
(representing subsets) have their costs set according to the input problem.

Cover: This feature is the cardinality of the set of elements represented by the
node. For each of the “Columns” nodes in layer 2, it is the size of the set. For
the “Elements” nodes in layer 1 of the graph, it is set to 1. For the “Universe”
node, it is set to 0. This feature is similar to the one used by the standard greedy
approximation algorithm for SCP [10].

Random Walks with Restarts (RWR) [34]: This feature represents the
relative importance of nodes based on the structure of the graph. Our RWR al-
gorithm starts a random walk from the “Universe” node (layer 0) and restarts the
walk from the same node (see Figure 1(B)). When the walker reaches stationary
distribution, the score between each node in layers 1 and 2 and the universe node
is used as a node feature. This feature value for the “Universe” node is set as
0. The restart probability is a hyperparameter and is set to 0.45 since the SCP
graph is shallow.

Degree-based features: For each node in the SCP graph (Figure 1(B)), we
capture its degree and the average degree of its neighbors.

Hypergraph features: Figure 1(C) shows an SCP instance cast as a hyper-
graph. For a hypergraph H(V,E, ω, γ), each hyperedge e has weights ω(e) (denot-
ing the cost of each set). The elements within each hyperedge e, denoted by v ∈ V
have hyperedge-dependent weights γe(v). These hyperedge-dependent weights
correspond to the inverse of the hyperedge degree as shown in Figure 1(D). Given
this hypergraph, we compute its Laplacian matrix [9]. The algebraic connectivity
of H, i.e., the second smallest eigenvalue of the Laplacian matrix of H, is denoted
by µ(H). The contribution of an individual hyperedge e to the algebraic connec-
tivity of H can be quantified as c(e) = µ(H)− µ(H − e) ≥ 0,∀e ∈ E. According
to the definition of algebraic connectivity, H is connected when µ(H) > 0. In
the context of SCP, connectedness implies the coverage of every element in the
universe. For unweighted SCP instances modeled as hypergraphs, the optimal so-
lution corresponds to a connected hypergraph with the fewest hyperedges. The
optimization objective can be expressed as maximizing algebraic connectivity
and minimizing the number of hyperedges. A greedy approach that iteratively
removes hyperedges with the smallest c(e) will return an approximate solution
to the SCP instance.

Compared to a standard greedy algorithm for SCP which relies only on the
hyperedge degree as a heuristic (i.e., number of uncovered elements in a set),
features derived from the hypergraph Laplacian capture richer information than
the hyperedge degree alone (see Figure 3).

Motivated by the above discussion, we compute two features derived from the
hypergraph representation of SCP. Observe that the hypergraph representation
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does not include the universe node. Thus the hypergraph feature values for the
“Universe” node are set to 0.

To generate hypergraph features for the “Elements” and “Columns” nodes,
we use the following procedure. First, each “Elements” node is assigned a weight
equal to the inverse of its hyperedge degree – i.e., the weight of an element within
a subset corresponds to the inverse of the set size (see Figure 1(D)). Second, we
define two probability transition matrices in order to generate the Laplacian
matrix of the SCP hypergraph with edge-dependent vertex weights [9]: (i) a
matrix for transitions from one “Elements” node to another via a hyperedge
(a “Columns” node), and (ii) a matrix for transitions from one hyperedge to
another via an “Elements” node. Third, we compute the eigenvalues of the two
Laplacian matrices. These eigenvalues become the hypergraph-based features of
the “Elements” and “Columns” nodes, respectively.

3.2 Using a GNN to Predict Membership in the Optimal Solution

Chen et al. [8] proved that given a dataset of SCP instances, a GNN can ap-
proximate the optimal solution of the linear program relaxation of the SCP
instance. Building on this observation, we formalize reducing the SCP problem
size as a subgraph selection learning task. In particular, our Graph-SCP uses a
message passing GNN to learn the following binary classification task: predict
which “Columns” nodes (see Figure 1(B)) are likely to be part of the optimal
solution. Formally, given a graph G = (V,E) with node features X, we learn a
GNN function f(G,X) to predict a binary classification vector y ∈ R|V |, where
1 indicates the nodes in the graph that are likely to contain the SCP solution
and 0 otherwise.

Objective Function. Graph-SCP’s objective function consists of supervised
and unsupervised components. The supervised component is a standard binary
cross entropy loss that uses labels generated by Gurobi, whereas the unsuper-
vised component directly minimizes the objective value of the linear program
relaxation of the SCP instance. Formally, let A ∈ Rm×n be the binary covering
matrix and c ∈ Rn×1 be the cost vector. Then the loss function is given by

L(y, ŷ) =α(y · log ŷ + (1− y) · log(1− ŷ)) + (6)

β[
∑

(ŷ · c)2 − γ
∑

(Aŷ − 1)− ω
∑

(1−Aŷ)] (7)

Observe that ŷ only considers nodes in the graph that represent sets (i.e.,
“Columns” nodes from layer 2, as shown in Figure 1(B)) and the log function
is taken element wise. The term ŷ · c penalizes the cost and the number of sets
picked. A feasible solution to the SCP instance requires that Aŷ ≥ 1. To that end,
the term

∑
(Aŷ−1) penalizes constraints in A that are not satisfied and the term∑

(1−Aŷ) encourages a sparse selections of sets. The hyperparameters α and β
control the relative importance of the supervised and unsupervised components,
whereas hyperparameters γ and ω control the constraint satisfaction and subset
sparsity, respectively. In practice, we set α = 1, β = 10−4, γ = 1 and ω = 0.4.
The model is trained with an Adam optimizer with a learning rate of 10−4.
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Inference. The trained model outputs continuous values between 0 and 1 for
each “Column” node from layer 2. To select a set of nodes, Graph-SCP selects
nodes at a predefined percentile threshold and passes the selected nodes into
a CO solver. Our experiments use Gurobi and SCIP; however, other solvers of
choice can be used. Subsequently, Graph-SCP checks if the objective value obj
returned by the solver with the reduced problem size is at least a user-defined
value uobj , i.e., obj ≤ uobj . If not, the percentile threshold is reduced (by a fixed
decrement size, set to 10 in our experiments), thus selecting a larger set of nodes
to pass into the solver. Graph-SCP uses solutions from each iteration to warm-
start the solver for the next iteration. This iterative refinement process mirrors
Column Generation [15] methods used in tackling large-scale CO problems.

In our experiments, we set uobj to be the optimal objective value, thereby
forcing Graph-SCP to run until the optimal value is reached. It is important
to note that uobj serves as a bound rather than a specific solution, indicating
the proximity to optimality required for the solution; an aspect often specified
in practical applications. In real-world scenarios where a predefined limit is not
available, an additional iteration can be run to determine if further improvements
are possible. Due to the warm-starting mechanism, where each iteration builds
on the results of the previous one, these additional runs incur relatively low com-
putational cost. Furthermore, we demonstrate that in situations constrained by
runtime rather than a specific objective limit, Graph-SCP consistently identifies
superior incumbent solutions compared to Gurobi (see Figure 6).

Node Feature Importance. Figure 3 demonstrates the value of the node fea-
tures described in the previous section for Graph-SCP’s prediction task. For
each “Elements” node and each “Columns” node, we extract the node embed-
dings from the penultimate layer of their GNN. To visualize these embeddings,
we use PaCMAP [38] and map the embeddings in 2 dimensions. To quantify how
well various sets of features can separate solution nodes from non-solution nodes,
we measure the average distance of a solution node to other solution nodes (intra
distance) and the average distance of a solution node to non-solution nodes (inter
distance) in the GNN embedding space. Ideally, the intra distance is small, the
inter distance is large and difference between inter and intra distance is large.
With this definition in place, we see in Figure 3 that separability is the highest
when using all of the aforementioned node features, i.e., subplots (A) and (E)
where the difference between inter and intra distances is the largest.

4 Experimental Setup

GNN Architecture. Graph-SCP uses GraphSAGE [17] with 2 message-passing
layers with 1024 neurons and ReLU activation, followed by a fully connected
layer with 1024 neurons and sigmoid activation. Each layer is followed by a
dropout layer (dropout rate of 0.4) and batch normalization. The model has
approximately 2.1 million parameters.
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Fig. 3. Visualization of node embeddings in two dimensions using PaCMAP [38]. The
embeddings are extracted from the penultimate layer of Graph-SCP’s message passing
GNN with different sets of node features. The features used are displayed above each
column. Each row shows embeddings for a different type of SCP instance (see Table
1). To quantify how well various sets of features can separate solution nodes from non-
solution nodes, we measure the average distance of a solution node to other solution
nodes (intra distance) and the average distance of a solution node to non-solution
nodes (inter distance) in the GNN embedding space. Observe how (A) and (E) have
the largest inter distance with small intra distances, which indicates that Cost, Cover,
RWR, degree-based, and hypergraph-based features are useful in separating solution
nodes from non-solution nodes.

Training Data. To generate training data, we create SCP instances (see Table
1) and solve them using Gurobi [16], a state-of-the-art CO solver. We label the
sets that are part of the solution with 1 and all other sets with 0. In the case
of multiple solutions, all sets that are part of any solution are labeled as 1.
The SCP instances are generated with various densities and characteristics. We
also use the canonical OR Library at the testing stage. The instances generated
for training reflect the OR library in range of densities, number of columns,
and number of rows, but incorporate additional variation in the distribution
of costs. We categorize the instances into 5 instance types and show results
for each. Detailed characteristics of each instance type are shown in Table 1.
Graph-SCP was trained using 75 instances from each type for a total of 300
instances, excluding Instance Type 5, which is used only during testing. The
test set consists of 30 instances from each type. Observe that we train up to
a maximum of 3000 columns (Type 4) but test on instances with up to 10,000
columns.

We train and test on an Intel Xeon Gold 6148 CPU with 24 cores and one
NVIDIA Tesla V100 GPU (16 GB). Our code repository is available at
https://github.com/zohairshafi/Graph-SCP

Baseline methods. We compare Graph-SCP against several approaches w.r.t.
runtime and objective achieved.

– Gurobi: A state-of-the-art, commercial CO solver [16].
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Table 1. Characteristics of SCP instances used during training and testing of Graph-
SCP. Here, m is the number of rows, n the number of columns, and d is the density of
the instance. Details of the sets in the OR Library and their results are in Table 2.

Instance m n d Cost
Type 1 100-400 100-1000 0.22-0.29 Uniform [100-200]
Type 2 100-300 100-500 0.16-0.28 Equal
Type 3 200-350 300-350 0.13-0.18 Poisson (λ = 20)
Type 4 200-250 1000-3000 0.04-0.05 Poisson (λ = 20)

Type 5 (OR Library) 100-500 1000-10000 0.02-0.2 Uniform [1-100]

– Greedy Baseline: Sets with the largest number of uncovered elements are
picked at each step. The greedy baseline has faster runtimes but an approx-
imation ratio of ln(n) where n is the size of the universe [10].

– Lagrangian Relaxation Heuristic: Recent works highlight how well de-
signed heuristics can outperform a learned ML model for CO problems [1] or
how ML methods only marginally improve simpler alternatives [29]. To that
end, we also compare against a heuristic algorithm for SCP that combines
Lagrangian relaxation and the greedy method as proposed by [41].

– Predict and Search (PS-Gurobi): [18] use a GNN to predict the marginal
probability of each set (i.e., a “Columns” node) followed by searching for a
solution in a well-defined ball around the predicted solution.

– Random Subset Selection: As a sanity check for the subgraph selection
and to understand the contribution of learning from solved SCP instances,
we test against a random node selection strategy. Given an initial relative
subgraph size parameter k, we randomly select k% nodes to pass to the
solver. For our experiments, we repeat this process for k = {20, 50, 80}.

– GCNN Branching: We compare against the GCNN branching framework
by Gasse et al. [14], where a GNN is used to approximate the strong branch-
ing heuristic of a branch-and bound-solver. To replicate their setup exactly,
we allow cutting plane generation at the root node only and deactivate solver
restarts and test on SCIP [4] only.

5 Results

Figure 4 shows runtime speed-up performance and solution quality of Graph-
SCP, greedy, heuristic, PS-Gurobi and random subgraph selection baselines rel-
ative to Gurobi’s performance. Note that speedups are shown in the log scale.
The runtime speedup factor is equal to Gurobi runtime

Graph-SCP runtime . The runtime for Gurobi
and Graph-SCP are calculated as the wall clock time until the optimal objective
is found. In the case of Graph-SCP, this includes the time taken to propagate
through the GNN as well as every run of the solver if the threshold is reduced
and the solver is rerun, until the optimal solution is found. For the heuristic,
greedy and random baselines, the runtime is the wall clock time until the algo-
rithm returns an output. We see that Graph-SCP achieves the optimal objective
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Table 2. Results for the sets of instances defined in the OR Library [2]. Each set (A,
B, NRE etc.) has its own definitive characteristics. Here, m is the number of rows, n
the number of columns, d is the density of the instance and ‘(s)’ is seconds. Graph-SCP
has an average speedup of 3.2x across all sets while achieving the optimal objective
and an average of approximately 84% reduction in problem size.

Set # m n Cost d Speedup Mean Runtime Size
Instances [Uniform] Factor Gurobi (s) Reduction

6 5 200 1000 1–100 0.05 1.26 0.10 75%
A 5 300 3000 1–100 0.02 1.28 0.22 84%
B 5 300 3000 1–100 0.05 2.34 0.97 89%
C 5 400 4000 1–100 0.02 2.19 0.69 83%
D 5 400 4000 1–100 0.05 3.48 2.92 86%

NRE 5 500 5000 1–100 0.1 5.96 36.90 94%
NRF 5 500 5000 1–100 0.2 8.15 32.6 96%
NRG 5 1000 10000 1–1000 0.02 1.17 2003.27 71%

across all instances. In terms of speedup, the largest speedup is about 70x for
Instance Type 2 (Figure 4(B)) and the smallest speedup is about 3x for Instance
Type 4 (Figure 4(D)).

Note that the greedy algorithm runs significantly faster across all 5 instances,
however it has poor objective values. The heuristic algorithm achieves better ob-
jective values than greedy, albeit at the cost of runtime speedup. In each subplot
in Figure 4, the area of the plot above the red line (random subgraph selection
baseline) corresponds to the benefits of learning offline strategies for picking
a smaller problem size that contains the solution. Observe how the slope of
the line indicates that random selection performs poorly if a better objective
is required. We analyze the reduction in problem size as the ratio of number
of subsets passed to Gurobi by Graph-SCP to the original number of subsets.
For each of the four instances shown, Graph-SCP achieves a size reduction of
72.29% ± 11.21%, 87.76% ± 8.19%, 65.53% ± 15.31% and 73.21% ± 7.46%, re-
spectively. We present a detailed breakdown of results and characteristics for
Instance Type 5 (instances from the OR Library [2]) in Table 2. These results
highlight the ability of Graph-SCP to generalize to other instances given that
Instance Type 5 was not part of the training set. We see an average speedup
across Type 5 instances of 3.2x and an average problem size reduction of 84.75%

Generalization. We highlight generalization properties of Graph-SCP by test-
ing against problem instances with varying complexities as defined in [14], where
instances are classified as ‘easy’, ‘medium’ or ‘hard’, with 500 rows and 500, 1000
and 2000 columns, respectively, and a density of 0.05. To replicate the setting
exactly, we use SCIP [4] as our back-end solver instead of Gurobi, with cutting
plane generation at the root node only and solver restarts disabled. Figure 5
shows results from this experiment, where we see that Graph-SCP outperforms
the GCNN branching method from [14]. Note that we use the same model trained
on Instance Types 1–4 (with a maximum of 400 rows).
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Fig. 4. Graph-SCP achieves the optimal objective with faster runtimes. We see the
largest speedup of about 70x for Instance Type 2 (B) and the smallest speedup of
about 3x for Instance Type 4 (D). Note that the greedy algorithm runs significantly
faster across all 4 instances, but obtains poor objective values. In each subplot, the
area above the red line (random sample) correspond to the benefits of learning. Thirty
instances were used across each type with error bars showing standard error.

We observe that traditional CO solvers find high quality incumbent solutions
relatively quickly, with the majority of the time spent trying to find the optimal
solution. To investigate the impact of Graph-SCP on these incumbent solutions,
we set timeout limits to the solver and examine the primal gap achieved. Here,
if objbound is the best known objective bound and objval is the current best
objective solution, then the primal gap is defined as: primal gap = objbound−objval

objval

Figure 6 shows results averaged across 30 instances in each of the instance types
defined in Table 1. Graph-SCP achieves better incumbent solutions before both
Gurobi and Graph-SCP reach the optimal value.

Gurobi vs. SCIP. We compare Graph-SCP with a Gurobi backend vs. Graph-
SCP with a SCIP backend in Table 3. Graph-SCP hyperparameters like the
initial threshold are held constant across both solvers. We see that Graph-SCP
yields higher acceleration with SCIP than with Gurobi. We posit this could be
due to SCIP being more sensitive to the size of the input problem than Gurobi.

Table 3. Speedup factors and mean runtimes in seconds (s) of Graph-SCP on two
different back-end solvers: Gurobi and SCIP. All Graph-SCP hyperparameters are held
constant between the runs. The speedup factors for Graph-SCP are higher with SCIP
than with Gurobi. However, Gurobi uses parallelism better than SCIP, and thus has
lower mean runtimes.

Instance Speedup Factor Mean Runtime Speedup Factor Mean Runtime
Type Gurobi Gurobi (s) SCIP SCIP (s)

Type 1 8.19± 3.82 5.61± 0.53 11.61± 3.02 21.87± 3.07
Type 2 70.94± 16.11 17.2± 4.87 491.53± 134.74 168.15± 48.07
Type 3 12.26± 4.2 35.57± 4.11 18.48± 5.05 313.5± 46.26
Type 4 3.65± 0.24 40.74± 7.02 11.96± 5.28 751.16± 176.33
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Fig. 5. Generalization properties of Graph-SCP against problem instances with com-
plexities as defined in [14]. Here, m is the size of the universe and n is the number
of subsets, with densities d = 0.05. We use the same model trained on instances of
Types 1 through 4, that are smaller with a maximum of 400 rows. Graph-SCP achieves
faster speedups in runtimes when compared to GCNN Branching. Ten instances were
sampled for each problem type with error bars showing standard error.

GurobiGraph-SCP
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orFig. 6. Incumbent solutions generated by Graph-SCP and Gurobi at specific timeout
values. The y-axis shows the primal gap (lower is better) and the x-axis shows the
timesteps at which the solver was stopped. Graph-SCP achieves better incumbent
solutions at each time step. Results are averaged over 30 instances from each type.

5.1 Discussions & Limitations

Graph-SCP has optimal performance on instances with densities within the
range of 0.1 and 0.2. However, the acceleration in runtime diminishes for in-
stances below a density of 0.02. We attribute this to the highly imbalanced
nature of the classification task, where the number of solution sets relative to
all possible sets becomes skewed. To demonstrate, we test on instances with a
fixed number of rows (600) and columns (1000) while varying the density. Costs
are picked uniformly between 0 and 100. Results are shown in Figure 7, where
we see that the speedup achieved by Graph-SCP is stable across a wide range
of densities and gradually decreases as the density of the problem decreases.

Figure 8 shows the distribution of the number of times the threshold is re-
duced for each instance type as well as the initial starting threshold values. All
instance types can share the same initial threshold since Graph-SCP automati-
cally reduces it as needed. In our experiments, we determine the initial threshold
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GurobiGraph-SCP

Fig. 7. Speedup factors of Graph-SCP for problems with varying densities. We generate
instances with 600 rows (size of universe), 1000 columns (number of sets), and costs
picked uniformly in [0, 100]. Speed up remains stable across a wide range of densities
and as density gradually reduces, the speed up achieved by Graph-SCP reduces.

value empirically by scanning threshold values until most validation instances
yield a feasible (but not necessarily optimal) solution within the selected sub-
graph. Figure 8 demonstrates that different instance types exhibit varying pat-
terns in how thresholds are reduced and highlights the flexibility of our setup.
This approach enables Graph-SCP to dynamically adapt to the unique char-
acteristics of each instance type, optimizing performance based on the specific
demands of the problem.

For larger SCP instances, Graph-SCP is faster than directly solving the prob-
lem because the reduction in the problem size is substantial. For smaller SCP
instances, Graph-SCP can be marginally slower than directly solving the prob-
lem, because the overhead of a forward pass through the GNN is larger than
the benefit of reducing the problem size. We also show the impacts of various
components of Graph-SCP through an ablation study in Table 4.

Fig. 8. For each instance type, we show the distribution of the number of times Graph-
SCP reduces the threshold. The initial staring threshold is shown above each subplot.
Observe that different instance types exhibit varying patterns in how thresholds are
reduced, highlighting the flexibility of this setup. This enables Graph-SCP to dynami-
cally adapt to the unique characteristics of each instance type, optimizing performance
based on the specific demands of the problem.
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Table 4. Speedup factors when training Graph-SCP without the unsupervised com-
ponent result in lower acceleration. Further removal of hypergraph node features leads
to an additional decline in acceleration.

Method Type 1 Type 2 Type 3 Type 4
Graph-SCP 9.97± 2.13 70.148± 18.27 11.76± 2.43 3.20± 0.84

w/o Unsupervised 6.75± 3.43 64.59± 22.00 5.83± 0.56 2.23± 0.32
w/o Unsupervised

& Hypergraph 4.45± 1.73 60.869± 18.85 3.54± 0.45 2.014± 0.427

Finally, we also compare Graph-SCP’s performance by replacing Graph-
SAGE as the GNN used with Graph Attention Networks (GAT) [36], Graph Con-
volutional Network (GCN) [22], Graph Isomorphism Networks (GIN) [39], and
Chebyshev GCN [12] with average runtime speed-ups of 3.52± 0.51, 3.74± 0.92,
4.16±0.68 and 7.98±0.74, respectively, on Instance Type 1. We posit that differ-
ences in performance are due to limiting the sizes of each model to approximately
2 million parameters to be comparable to each other.

6 Related Work and Conclusions

Existing literature explores the use of ML to replace or augment traditional
solvers for various CO problems with the objective of accelerating runtimes and,
where appropriate, improving the quality of solutions. The proposed methods
can be classified into two approaches: learning a model in an end-to-end manner
to replace a CO solver, or learning a model to aid an existing CO solver.

Under the category that uses ML to replace a solver, Numeroso et al. [28]
apply the Neural Algorithmic Reasoning framework proposed by Veličković et
al. [35] to jointly optimize for the primal and dual of a given problem. They
train models to find joint solutions for both the min-cut and max-flow problems
and show that their solution leads to better overall performance. For NP-hard
problems, Khalil et al. [11] propose a reinforcement learning approach that uses
graph embeddings to learn a greedy policy that incrementally builds a solution.
Heydaribeni et al. [19] model constrained CO problems as a hypergraph followed
by mapping continuous values generated by the Hypergraph Neural Network to
integer node assignments using simulated annealing. Schuetz et al. [30] and Hu
et al. [20] use GNNs to minimize the Quadratic Unconstrained Binary Opti-
mization (QUBO) formulations of CO problems. Boisvert et al. [5] provide a
generic method for encoding arbitrary CO problems into a graph structure for
use with GNNs. Yau et al. [40] propose GNNs that can capture provably opti-
mal message passing algorithms for a large class of combinatorial optimization
problems. The aim of our work is to focus on accelerating an existing solver,
allowing us to carry over its performance guarantees. In a similar context, Ire-
land et al. [21] and Tian et al. [33] look at problems like minimum vertex cover
and max-cut and use a GNN to identify promising nodes for large scale graphs.
Han et al. [18] train a GNN to predict a marginal probability of each variable
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and then construct a trust region to search for high quality feasible solutions.
Verhaeghe et al. [37] cast the resource constrained project scheduling problem
as a directed graph and use GNNs to extract information to help speed up a
traditional solver. Li et al. [25] use a GNN to predict if a vertex is part of the
optimal solution followed by a tree search to arrive at the final solution. How-
ever, Bother et al. [6] later showed that the results in [25] are not reproducible.
Liu et al. [26] investigate the performance of branching rules with respect to the
size of the search neighborhood and devise a framework for guiding the search
of the branching heuristic. Ding et al. [13] also use a learned GCN model to pre-
dict branching cuts. They modify the solver by adding a local branching rule in
their approximate case and performing an actual branch at the root node in the
exact case. Nair et al. [27] propose two methods, Neural Branching and Neural
Diving. While we operate exclusively on the input space irrespective of a solver,
neural diving aims to explore the branch and bound tree in a depth-first man-
ner. They differ from traditional diving in that they do not start from the root
and explore all the way to the leaf node, but start from root, stop mid way and
allow a solver to solve the remaining subproblem. Our method similarly uses a
traditional solver to find a solution. Gasse et al. [14] use a GNN to learn compu-
tationally expensive branch-and-bound heuristics for MIP solvers. The learning
is done offline and the learned models are then used at runtime in place of the
heuristic to achieve faster runtimes while maintaining the quality of the solution.
This work is similar to our approach in that it uses ML to aid a CO solver; how-
ever, it does so by speeding up the internal workings (branching heuristic) of the
solver. These methods lie on the lines of modifying or improving the branch and
bound heuristic. Kruber et al. [23] use supervised learning to determine when
a Dantzig-Wolfe decomposition should be applied to a Mixed Integer Program
(MIP). Graph-SCP differs in that it reduces the input problem size complexity,
and therefore can be used in conjunction with any existing solver, while achiev-
ing the optimal solution. Shen et al. [32] use support vector machines to speed
up column generation methods by predicting the solution to the pricing problem
at each step. We point the interested reader to surveys by Bengio et al. [3] and
Cappart et al. [7] that provide a detailed summary of research in this field.

Our contribution is Graph-SCP, a GNN framework to accelerate runtimes
for both conventional and ML augmented CO solvers. By identifying a smaller
subproblem that encapsulates the solution space, Graph-SCP achieves runtimes
up to approximately 10x faster, while maintaining the reliability associated with
traditional solvers. A distinguishing feature of Graph-SCP is its GNN prediction
module, which is executed only once. This efficiency is in contrast to many
ML solutions for CO problems. We illustrate Graph-SCP’s robust generalization
across SCP instances with diverse characteristics and complexities, showing its
effectiveness on instances from the canonical OR Library. Through comparative
studies, we offer insights into the impact of different modeling choices on Graph-
SCP’s performance. Crucially, since Graph-SCP operates only in the input space,
it seamlessly integrates with any traditional or ML-augmented CO solver.



16 Z. Shafi et al.

Acknowledgments. Distribution Statement A. Approved for public release. Distribu-
tion is unlimited. This material is based upon work supported by the Under Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001.
Any opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Under Secretary of
Defense for Research and Engineering. © 2025 Massachusetts Institute of Technology.
Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part
252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Govern-
ment rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014.
Use of this work other than as specifically authorized by the U.S. Government may
violate any copyrights that exist in this work.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Angelini, M.C., Ricci-Tersenghi, F.: Modern graph neural networks do worse than
classical greedy algorithms in solving combinatorial optimization problems like
maximum independent set. Nature Machine Intelligence 5(1), 29–31 (2023)

2. Beasley, J.E.: Or-library: distributing test problems by electronic mail. Journal of
the Operational Research Society 41(11), 1069–1072 (1990)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. European Journal of Operational Research
290(2), 405–421 (2021)

4. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van
Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L.,
Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T.,
Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B.,
Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.:
Enabling research through the scip optimization suite 8.0. ACM Transactions on
Mathematical Software 49(2) (2023)

5. Boisvert, L., Verhaeghe, H., Cappart, Q.: Towards a generic representation of com-
binatorial problems for learning-based approaches. In: CPAIOR (2024)

6. Böther, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., Friedrich, T.: What’s wrong
with deep learning in tree search for combinatorial optimization. In: ICLR (2021)

7. Cappart, Q., Chételat, D., Khalil, E.B., Lodi, A., Morris, C., Velickovic, P.: Combi-
natorial optimization and reasoning with graph neural networks. JMLR 24, 130–1
(2023)

8. Chen, Z., Liu, J., Wang, X., Yin, W.: On representing linear programs by graph
neural networks. In: ICLR (2022)

9. Chitra, U., Raphael, B.: Random walks on hypergraphs with edge-dependent vertex
weights. In: ICML. pp. 1172–1181 (2019)

10. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

11. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. NeurIPS (2017)



Accelerated Discovery of Set Cover Solutions via Graph Neural Networks 17

12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. NeurIPS (2016)

13. Ding, J.Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L.: Accelerating
primal solution findings for mixed integer programs based on solution prediction.
In: AAAI (2020)

14. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial
optimization with graph convolutional neural networks. In: NeurIPS (2019)

15. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Operations Research pp. 849–859 (1961)

16. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023),
https://www.gurobi.com

17. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. NeurIPS (2017)

18. Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R., Luo, X.: A
gnn-guided predict-and-search framework for mixed-integer linear programming.
In: ICLR (2022)

19. Heydaribeni, N., Zhan, X., Zhang, R., Eliassi-Rad, T., Koushanfar, F.: Distributed
constrained combinatorial optimization leveraging hypergraph neural networks.
Nature Machine Intelligence pp. 1–9 (2024)

20. Hu, C.: Assessing and enhancing graph neural networks for combinatorial optimiza-
tion: Novel approaches and application in maximum independent set problems.
arXiv preprint arXiv:2411.05834 (2024)

21. Ireland, D., Montana, G.: Lense: Learning to navigate subgraph embeddings for
large-scale combinatorial optimisation. In: ICML (2022)

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

23. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decompo-
sition. In: International Conference on AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (2017)

24. Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the
set covering problem. European Journal of Operational Research 176(3), 1387–
1403 (2007)

25. Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional
networks and guided tree search. In: NeurIPS (2018)

26. Liu, D., Fischetti, M., Lodi, A.: Learning to search in local branching. In: AAAI
(2022)

27. Nair, V., Bartunov, S., Gimeno, F., Von Glehn, I., Lichocki, P., Lobov, I.,
O’Donoghue, B., Sonnerat, N., Tjandraatmadja, C., Wang, P., et al.: Solving mixed
integer programs using neural networks. arXiv preprint arXiv:2012.13349 (2020)

28. Numeroso, D., Bacciu, D., Veličković, P.: Dual algorithmic reasoning. In: ICLR
(2023)

29. Santana, Í., Lodi, A., Vidal, T.: Neural networks for local search and crossover in
vehicle routing: a possible overkill? In: CPAIOR (2023)

30. Schuetz, M.J., Brubaker, J.K., Katzgraber, H.G.: Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence (2022)

31. Shafi, Z., Miller, B.A., Chatterjee, A., Eliassi-Rad, T., Caceres, R.S.: Grasp: Accel-
erating shortest path attacks via graph attention. arXiv preprint arXiv:2310.07980
(2023)

32. Shen, Y., Sun, Y., Li, X., Eberhard, A., Ernst, A.: Enhancing column generation
by a machine-learning-based pricing heuristic for graph coloring. In: AAAI (2022)



18 Z. Shafi et al.

33. Tian, H., Medya, S., Ye, W.: Combhelper: A neural approach to reduce search
space for graph combinatorial problems. In: AAAI (2024)

34. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applica-
tions. In: ICDM (2006)

35. Veličković, P., Blundell, C.: Neural algorithmic reasoning. Patterns 2(7), 100273
(2021)

36. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

37. Verhaeghe, H., Cappart, Q., Pesant, G., Quimper, C.G.: Learning precedences
for scheduling problems with graph neural networks. In: Constraint Programming
(2024)

38. Wang, Y., Huang, H., Rudin, C., Shaposhnik, Y.: Understanding how dimension
reduction tools work: An empirical approach to deciphering t-sne, umap, trimap,
and pacmap for data visualization. JMLR 22(201), 1–73 (2021)

39. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2018)

40. Yau, M., Lu, E., Karalias, N., Xu, J., Jegelka, S.: Are graph neural networks optimal
approximation algorithms? In: NeurIPS (2024)

41. Zhu, G.: A new view of classification in astronomy with the archetype tech-
nique: An astronomical case of the np-complete set cover problem. arXiv preprint
arXiv:1606.07156 (2016)


