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Some subset of these decision
variables must have integer
values




Motivation

* There is an abundance of mixed integer programming (MIP) instances.
* E.g., vehicle routing, job scheduling, flight scheduling, fibre optic network
design
« Can we use these instances without solving them to create a “foundational” model?
 Why?
* Recent advances in ML for CO problems are problem type or task specific.
* Alot of training data is needed for current methods.

* This training data is collected by solving instances which is extremely
expensive.



Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised
manner.
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Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

e How?
As is commonly done, we first represent a MIP instance as a bipartite graph
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Methodology

« This bipartite graph is then passed into a Graph Neural Network (GNN)
« But GNNs are not very good at preserving global structure due to inherence locality bias.

* Preserving global structure is important in CO problems, especially to generalize across
problem types.

[GNN Embedding for 01]

[GNN Embedding for cz}

Graph [GNN Embedding for c”}
Neural ->
Network

[GNN Embedding for vl}

[GNN Embedding for v2}

[GNN Embedding for vm]

@-0000
@00 @
'

Input Bipartite
Representation of a
MIP Instance

GNN Using Two Hidden Layer
GraphSAGE Layers Representation (R%



Methodology
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 This is where Vector Quantization comes in.

Each embedding is replaced by its
corresponding code-word
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Vector Quantization Aside
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Vector Quantization Aside
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Vector Quantization Aside

Codebook Loss Commitment Loss
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Vector Quantization Aside
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e Back to overview
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Methodology

 The code-words are then used to reconstruct the input graph structure and node features.
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Methodology

Overall Architecture of Unsupervised Pre-training
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Overall Architecture of Unsupervised Pre-training
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Overall Architecture of Unsupervised Pre-training
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MIP Embedding Aside
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Overall Architecture of Unsupervised Pre-training
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Datasets

* MIPLIB

600 instances

For each instance, create two more
instances by randomly deleting 5% and
10% of constraints

Each instance maintains feasibility

These 1800 instances are used to train the
unsupervised FORGE model

* Distributional MIPLIB

Set Cover (easy, medium, hard)
Maximum Independent Set (easy, medium)
Minimum Vertex Cover (easy, medium, hard)

Generalized Independent Set (easy, medium,
hard, very-hard, very-hard2, ext-hard)

Combinatorial Auction (very-easy, easy,
medium, very-hard, very-hard2)

ltem Placement (very-hard)

Maritime Inventory Routing Problem (medium)

* 50 instances from each category - 1050 instances
used as the test set
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Visualizing MIP Instances from Unsupervised Pre-training
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FORGE can cleanly cluster out previously unseen MIP
instances with the highest NMI
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Supervised Fine-tuning - Integrality Gap

e Can we fine tune FORGE to predict the integrality gap?
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Supervised Fine-tuning - Integrality Gap

 What is an integrality gap?
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Supervised Fine-tuning - Integrality Gap

 We add a simple single layer prediction head to predict the integrality gap.
 The predicted gap is then used to compute a “pseudo-cut”.
e This pseudo-cut is added as a constraint to a solver.

 Note that a overestimation of the pseudo-cut would lead to a suboptimal
solution.

 FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as
well as 1050 Distributional MIPLIB instances.



Supervised Fine-tuning - Integrality Gap

 We add a simple single layer prediction head to predict the integrality gap.
* The predicted gap is then used to compute a “pseudo-cut”.
e This pseudo-cut is added as a constraint to a solver.

* Note that a overestimation of the pseudo-cut would lead to a suboptimal
solution.

 FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as well
as 1050 Distributional MIPLIB instances.

* Fine Tuning Training Data: CA (very-easy, easy, medium), SC (easy, medium,
hard), and GIS (easy, medium, hard) with 50 instances for each. In total, we obtain
a total of 450 training instances.
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Results - Integrality Gap

Tests are run on 50 ‘very-hard’ unseen instances from Distributional MIPLIB.
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(c) Generalized Ind. Set
Primal Gap Gain: 84.52%
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FORGE generated pseudo-cuts lead to a significant
decrease in primal gaps.
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Supervised Fine-tuning - Warm Start

* Can we predict which variables will be part of the solution?
 How do we train this?

* Binary Cross Entropy - commonly used approach but has a large class
Imbalance issue



Supervised Fine-tuning - Warm Start

» Can we predict which variables will be part of the solution?
 How do we train this?

» Binary Cross Entropy - commonly used approach but has a large class imbalance issue
» Triplet Loss:
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solutions similar to each other Make Similar
e Variables appearing in none of O @ Anchor |2
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solution but are closest to positive variables O @ 5

in unsupervised embedding space
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Supervised Fine-tuning - Warm Start

* Fine Tuning Training Data: 100 instances each from CA (easy, medium), SC

(easy, medium, hard) and GIS (easy, medium) for a total of 700 training
Instances.

/Make Dissimilar

Make Similar
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Primal Gap (log scale)

Results - Warm Start

Tests are run on 50 ‘medium’ unseen instances from Distributional MIPLIB.

(@) Combinatorial Auction
Primal Gap Gain: 31.16%
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(c) Generalized Ind. Set
Primal Gap Gain: 31.62%
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Gurobi with FORGE generated warm starts leads to a
significant decrease in primal gaps and faster run times.
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Additional Results

Integrality Gaps

e Lietal [1] train a GNN on 38,256 instances from 643 generated problem
types and test on 11,584 instances spanning 157 problem types.

* We train on no additional data and test on 17,500 previously unseen
instances spanning 400 problem types, from the dataset in [1].

 FORGE achieves a mean deviation of 18.63% in integrality gap prediction,
outperforming the 20.14% deviation reported.

[1]1Li, S., Kulkarni, J., Menache, |., Wu, C. and Li, B., Towards Foundation Models for Mixed Integer Linear Programming. In The Thirteenth International Conference on Learning
Representations.



Additional Results e o

Warm Starts T 72 Gurabi + FORGE
8 —— PS Gurobi + Random
« We also compare warm starts with PS-Gurobi [2]. 5
: : £
« FORGE embeddings for each variable and 5o
constraint are added to PS-Gurobi. S a0 o
* Since adding these embeddings increases model (b) Generalized Ind. Set
complexity significantly, we also add random i imal Gap Gain: 50.51%
embeddings of the same size to ensure any gains 2
: 5 10
are not due to larger model size. 2
e FORGE + PS-Gurobi outperforms the original 8
variant in terms of primal gap and run time. £ | Gt « roRee
] PS Gurobi + Random

0 250 500 750 1000 1250 1500
Time (s)
[2] Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R. and Luo, X., A GNN-Guided Predict-and-Search Framework for Mixed-Integer Linear Programming. In The Eleventh
International Conference on Learning Representations.



FORGE in Practice

 Integrality Gap
* Easiest to use
 Passin a.lp or a.mps file - get back a real number

* Add constraint that the integer solution is greater than the real number
generated

 Warm Starts
 Passin a.lp or a.mps file - get back a list of variables

e Set initial values of variables - solver specific - for example, hint values in
Gurobi



Summary

* FORGE uses a single model with ~3.25M parameters.

* FORGE can generate one embedding vector per MIP instance and can
effectively cluster unseen instances and place them within the space of all
MIP instances.

* FORGE can be fine tuned on a variety of tasks for multiple problem types.

* A single FORGE model can be used to predict both warm-starts as well
as integrality gaps for a variety of problem type and difficulty pairs.

arXiv Paper



Thank you!
Questions?



