FORGE:
Foundational Optimization
Representations from Graph Embeddings

Zohair Shafi, Serdar Kadioglu

Background

Mixed Integer Programming

f(x) =min{c'x |Ax < b,x € R x, € ZVjel}

Background

Mixed Integer Programming

f(x) = miAx <b,x € R”,xj e ZVjel}

Objective
Function

Background

Mixed Integer Programming
Decision Variables

f(x) = min{cl Ax<b,xe R x, € ZVjel}

Background

Mixed Integer Programming

f(x) = min{c’x |x cRx; e ZVjel]

Constraints

Background

Mixed Integer Programming

f(x) =min{c'x |Ax < b,x € R”@E Z Nj E)

Some subset of these decision
variables must have integer
values

Motivation

* There is an abundance of mixed integer programming (MIP) instances.
* E.g., vehicle routing, job scheduling, flight scheduling, fibre optic network
design
« Can we use these instances without solving them to create a “foundational” model?
 Why?
* Recent advances in ML for CO problems are problem type or task specific.
* Alot of training data is needed for current methods.

* This training data is collected by solving instances which is extremely
expensive.

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised
manner.

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.
e How?
As is commonly done, we first represent a MIP instance as a bipartite graph

O
O
} Variables

Constraints { Q
o

@

Input Bipartite
Representation of a
MIP Instance

H®E O

@) e

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

e How?
As is commonly done, we first represent a MIP instance as a bipartite graph

O
O

Constraints Q
Node Features: Node Features:

Sense « {=,<,>} Type < {integer, binary, continuous}
RHS . S Upper Bound

Lower Bound

Coefficient in Objective
Input Bipartite

Representation of a
MIP Instance

Variables

OO

@ .-

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

 How?

f(x) = min{c’x <bxe R”,xj eZVjel}

Variables
Node Features:

Type « {integer, binary, continuous}

As is commonly done, we first represent a MIP instance as a bipartite graph
Upper Bound
Lower Bound

—@ Coefficient in Objective

Constraints

Node Features:
Sense « {=,<,>}
RHS

Non-zero entries of
A€ R#constmints X #variables

90006

Input Bipartite
Representation of a
MIP Instance

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

e How?
As is commonly done, we first represent a MIP instance as a bipartite graph

f(x):min{chSb,xER”,ijZVjEI} C

Constraints C
Node Features: Node Features:

Sense « {=,<,>} Type « {integer, binary, continuous}
RHS . S Upper Bound

Edge weights are the magnitude ’ Lower Bound

. o ; oot
of the non-zero entries of C Coefficient in Objective
A = R#constraints X #variables

Variables

©©E©S

Input Bipartite
Representation of a
MIP Instance

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

e How?
As is commonly done, we first represent a MIP instance as a bipartite graph

O~ {®
f(x)=min{c Abe,xeR”,xjeZVjel} Q >@

N .
Constraints Q @ Variables
Node Features: Q > Node Features:

Sense « {=,<,>} Type « {integer, binary, continuous}
RHS Upper Bound
Lower Bound

Variables O_@ Coefficient in Objective

Input Bipartite
Representation of a
MIP Instance

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

e How?
As is commonly done, we first represent a MIP instance as a bipartite graph

f(x)=mixleSb,xER”,ijZVjEI} Q

Constraints Q
Node Features: Node Features:

Sense « {=,<,>} Type « {integer, binary, continuous}
RHS . S Upper Bound

Lower Bound

(Coefficient in Objective)
Input Bipartite

Representation of a
MIP Instance

Variables

OO

@ .-

Methodology

 We aim to first learn the structure of a MIP problem in an unsupervised manner.
e How?
As is commonly done, we first represent a MIP instance as a bipartite graph

O

f(x) = min{c’x | Ax S@xe R”,ijZ Vjiel} Q

Constraints Q
Node Features: Q

Variables
Node Features:

Type « {integer, binary, continuous}
Upper Bound

Lower Bound

Coefficient in Objective

OO

“.RS&{ZKQ}
@

Input Bipartite
Representation of a
MIP Instance

@) e

Methodology

« This bipartite graph is then passed into a Graph Neural Network (GNN)
« But GNNs are not very good at preserving global structure due to inherence locality bias.

* Preserving global structure is important in CO problems, especially to generalize across
problem types.

[GNN Embedding for 01]

[GNN Embedding for cz}

Graph [GNN Embedding for c”}
Neural ->
Network

[GNN Embedding for vl}

[GNN Embedding for v2}

[GNN Embedding for vm]

@-0000
@00 @
'

Input Bipartite
Representation of a
MIP Instance

GNN Using Two Hidden Layer
GraphSAGE Layers Representation (R%

Methodology

 This is where Vector Quantization comes in.

@-000600

Input Bipartite
Representation of a
MIP Instance

SRISIOIONS)

v

Graph

Neural
Network

GNN Using Two
GraphSAGE Layers

Each embedding is replaced by its

[GNN Embedding for ¢,)

LGNN Embedding for CzJ

[GNN Embedding for cn)

[GNN Embedding for vlj

[GNN Embedding for vz)

[GNN Embedding for v,)

Hidden Layer

Representation (R9)

corresponding code-word

é { Code-word for ¢, }\
(ovie
R [Code-word for ¢, J
o .

{ Code-word for ¢, }

book [Code-word for v, j

{ Code-word for v, }

(Code-word for v,, }

_ Vector Quantizer)

Vector
Quantization

(k codes)

Code Word

Representation (R%

Methodology

 This is where Vector Quantization comes in.

Each embedding is replaced by its
corresponding code-word

@-000600

. ’ \
[GNN Embedding for ¢,) { Code-word for ¢, }
code,
LGNN Embedding for CzJ R [Code-word for ¢, J
. . .
[] []
Graph [GNN Embedding for cn) Cod { Code-word for ¢, }
Neural [GNN Embedding f] b::))olt(a [Code-word f j
mbedding 1or v ode-wordad for v .
Network 1 ‘ This code-book acts as a learned
[GNN Embedding for v2) { Code-word for v, } “glossary” or “vocabulary” of the different
: . : types of variables and constrains seen
° d °
across MIP problems
[GNN Embedding for va (Code-word for v,, }
_ Vector Quantizer)
Input Bipartite . ; Vector
Representation of a GI’GaNfl:lSlizrllfgLLWgrs . H'dde? I;.ayerR p Quantization . COdetVll_ord iy
MIP Instance p Y epresentation (R°) (k codes) epresentation (R)

Methodology

 This is where Vector Quantization comes in.

@-000600

Input Bipartite
Representation of a
MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

Each embedding is replaced by its

[GNN Embedding for ¢,)

LGNN Embedding for CzJ

[GNN Embedding for cn)

[GNN Embedding for vlj

[GNN Embedding for vz)

[GNN Embedding for v,)

Hidden Layer

Representation (R9)

corresponding code-word

f { Code-word for ¢, }\
code,

R [Code-word for ¢, J
o .
[]
o

{ Code-word for ¢, }

book [Code-word for v, j

{ Code-word for v, }

(Code-word for v,, }

_ Vector Quantizer)

Vector
Quantization

(k codes)

Code Word

Representation (R%

This helps capture the global context

This code-book acts as a learned
“glossary” or “vocabulary” of the different
types of variables and constrains seen
across MIP problems

Methodology

Vector Quantization Aside

ACTokenizer —

Methodology

Vector Quantization Aside

ETokenz'zer — -+

2

A—o(X-XT)

1 N v
ERec = =5 () +
NZ:: ||’Uz|| ||'v7,|| ,

>4 N -

node reconstruction edge reconstruction

v; is the original node feature
\?l- is the regenerated node feature
X is the matrix of all ¥,

Methodology

Vector Quantization Aside

Codebook Loss

N
1
LTOkenizer — EReC N ; ”Sg[h’z] — €z, ||g

Update codebook embeddings e,
to make them closer to encoder output 4;

N T A ,
1 Vi’ Ui g

»CRG(: — Z (1 - . ZA > + ’
N 2\ ol o] 2

A o N -
-~ o

node reconstruction edge reconstruction

A—o(X-XT)

Methodology

Vector Quantization Aside

Codebook Loss

N
1
LTokenz'ze'r' — ['Rec + N ; Hsg[h”&] €z; ||g

Update codebook embeddings e,
to make them closer to encoder output /;

This update is only applied to codebook variables.
Gradients are not applied to A,

N 2
1 T

Vi Vi Y
»CR(%C — (1 — - ZVA) +
N Z i | - [|o]]

A o A -
-~ o

node reconstruction edge reconstruction

A—o(X-XT)

)

2
o

Methodology

Vector Quantization Aside

Codebook Loss Commitment Loss
1 N N
ETokenz'zer — ['Rec + N Z ||Sg[hz] - ezz' ||g % Z ”Sg[ezz] - hz“ga
1=1 =1

Update encoder weights /; to be close to
chosen code e, to avoid fluctuations in

code assignment

This update is only applied to encoder

variables.
Gradients are not applied to e,

A—o(X-XT)

)

2
o

1 ’UZ'T’IAJZ‘, Y
£Rczc — (1 — ~) +
N Z Jvil| - |04l

A > -
-~ A

node reconstruction edge reconstruction

Methodology

Vector Quantization Aside

ETok:enize'r — LRec +

Codebook Loss

1 N
N Z Isglh:] — e, ||§
=1

Move cluster centroids only
(think standard k-means)

K Commitment Loss \

N

n

13 sglex] — hal
=1

_ J

Move data embedding only

%%
e o
@® Cluster 1
® o PY @ Cluster 2
o
° [
Cluster 3 @ @@
°® o0
[o
LA Cluster 4
.O.

Methodology

Vector Quantization Aside

ETok:enize'r — LRec +

Codebook Loss Commitment Loss
N
n
N

N
1
N Z Isg[hi] — e, [l2 |+ Z Isglez,] — hil|3,

A Y,

Move cluster centroids only Move data embedding only
(think standard k-means)
A
Vector Quantization essentially
o replaces each green point with
¢ o the closest purple point
@ Cluster 1
o o PY : Cluster 2
e ©®
Cluster 3 @ @@
0®®
® ®
....2Iuster4
>

Methodology

Vector Quantization Aside

(Codebook Loss \ (Commitment Loss \
1

N N
LTokenizer — LRec + N Z ”Sg[hz] - ez'i, ||§ + % Z ”Sg[ezz] - hz”ga
1=1 1=1

_ A\ S

Move cluster centroids only Move data embedding only
(think standard k-means)

Vector Quantization essentially
o replaces each green point with
¢ o the closest purple point

@® Cluster 1
o
J o, “**" " The index of the cluster each data
o °® point belongs to is the discrete
Cluster 3 :‘.‘. index/code assigned to that data
o ° point

oo Cluster 4
0..

Methodology

e Back to overview

@-000600

Input Bipartite
Representation of a
MIP Instance

SRISIOIONS)

v

Graph

Neural
Network

GNN Using Two
GraphSAGE Layers

Each embedding is replaced by its

[GNN Embedding for ¢,)

LGNN Embedding for CzJ

[GNN Embedding for cn)

[GNN Embedding for vlj

[GNN Embedding for vz)

[GNN Embedding for v,)

Hidden Layer

Representation (R9)

corresponding code-word

Code-word for ¢, }\

Code-word for ¢, J
o .
[]
o

{ Code-word for ¢, }

Code-word for v, j

{ Code-word for v, }

(Code-word for v,, }

_ Vector Quantizer)

Vector
Quantization

(k codes)

Code Word

Representation (R%

This helps capture the global context

This code-book acts as a learned
“glossary” or “vocabulary” of the different
types of variables and constrains seen
across MIP problems

Methodology

 The code-words are then used to reconstruct the input graph structure and node features.

@-000600

Input Bipartite
Representation of a
MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

[GNN Embedding for ¢,)

LGNN Embedding for CzJ

[GNN Embedding for cn)

[GNN Embedding for vlj

[GNN Embedding for vz)

[GNN Embedding for v,)

Hidden Layer

Representation (R9)

é { Code-word for ¢,
R [Code-word for ¢, J

{ Code-word for ¢,

book [Code-word for v,

{ Code-word for v,

(Code-word for v,,

N Vector Quantizer)
Vector
Quantization Code Word .
(k codes) Representation (R)

Node

Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

Reconstructed
Instance

Methodology

Overall Architecture of Unsupervised Pre-training

@-0000

Input Bipartite
Representation of a
MIP Instance

Neural
Network

GNN Using Two
GraphSAGE Layers

[GNN Embedding for ¢,)

[GNN Embedding for cz)

LGNN Embedding for C”J

[GNN Embedding for v,)

[GNN Embedding for sz

[GNN Embedding for v,)

Hidden Layer
Representation (R9)

(Code-word for ¢, }\

(Code-word for ¢, }

[Code-word for ¢, J

{ Code-word for v, }

[Code-word for v,]

{ Code-word for v,, }

Vector Quantizer)

Vector
Quantization

(k codes)

Code Word
Representation (R9)

Node @

Feature -

Decoder @@

coge | o @)

Decoder .
[]

Linear Decoder
Layers

Reconstructed
Instance

Methodology

Overall Architecture of Unsupervised Pre-training

@-0000

Input Bipartite
Representation of a
MIP Instance

Neural
Network

GNN Using Two
GraphSAGE Layers

Observe that we get 2 types of embeddings

[GNN Embedding for ¢,)

[GNN Embedding for cz)

LGNN Embedding for C”J

[GNN Embedding for v,)

[GNN Embedding for sz

[GNN Embedding for v,)

Hidden Layer

Representation (R9)

=
((Code-word for ¢, J\
R (Code-word for ¢, }

Y

Code-word for ¢,

Code-word for v,

(o3
o
®)
>
'

'R

Code-word for v,

{ Code-word for v,,

N Vector Quantizer)
Vector
Quantization Code VV_OFd .
(k codes) Representation (R¢)

Node

Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

1. Embedding vector per variable and constraint

Reconstructed
Instance

Methodology

Overall Architecture of Unsupervised Pre-training

@-0000

Input Bipartite
Representation of a
MIP Instance

Neural
Network

GNN Using Two
GraphSAGE Layers

Observe that we get 2 types of embeddings

[GNN Embedding for ¢,)

[GNN Embedding for cz)

LGNN Embedding for C”J

[GNN Embedding for v,)

[GNN Embedding for sz

[GNN Embedding for v,)

Hidden Layer
Representation (R9)

(RN
(Code-word for ¢, i Node @ @

. (Code-word for ¢,

. - Feature -

° E D eco d er @ .] @

Code-word for ¢, J
Code-word for v, } @ @

Code-word for v,

. Edge

Decoder . .
{ Code-word for v, } . o

Y

(o3
o
®)
>
'

v
\
®
®

_ Vector Quantizer)
Vector .
Quantization Code Word Linear Decoder Reconstructed
(k codes) Representation ([Rd) Layers Instance

1. Embedding vector per variable and constraint

2. Distribution of codes assigned to get one vector per instance

Methodology

MIP Embedding Aside

Code 1 @ @ Code 3 3
Code2| () () [Codes] F 5
c
Code 1 @ @ Code 4 ?,)—
Code 2 @ Code 3 i 1
Code 1 é @ Code 4 0 Code1 Code2 Code3 Code4 Codeb5

MIP Embedding: 3 2 3 2 0

Methodology

Overall Architecture of Unsupervised Pre-training

@-0000

Input Bipartite
Representation of a
MIP Instance

Neural
Network

GNN Using Two
GraphSAGE Layers

[GNN Embedding for ¢,)

[GNN Embedding for cz)

LGNN Embedding for C”J

[GNN Embedding for v,)

[GNN Embedding for sz

[GNN Embedding for v,)

Hidden Layer
Representation (R9)

(Code-word for ¢, }\

(Code-word for ¢, }

[Code-word for ¢, J

{ Code-word for v, }

[Code-word for v,]

{ Code-word for v,, }

Vector Quantizer)

Vector
Quantization

(k codes)

Code Word
Representation (R9)

Node @

Feature -

Decoder @@

coge | o @)

Decoder .
[]

Linear Decoder
Layers

Reconstructed
Instance

Datasets

* MIPLIB

* 600 instances

Datasets

* MIPLIB

600 instances

For each instance, create two more
instances by randomly deleting 5% and
10% of constraints

Each instance maintains feasibility

These 1800 instances are used to train the
unsupervised FORGE model

Datasets

* MIPLIB

600 instances

For each instance, create two more
instances by randomly deleting 5% and
10% of constraints

Each instance maintains feasibility

These 1800 instances are used to train the
unsupervised FORGE model

* Distributional MIPLIB

Set Cover (easy, medium, hard)
Maximum Independent Set (easy, medium)
Minimum Vertex Cover (easy, medium, hard)

Generalized Independent Set (easy, medium,
hard, very-hard, very-hard2, ext-hard)

Combinatorial Auction (very-easy, easy,
medium, very-hard, very-hard2)

ltem Placement (very-hard)

Maritime Inventory Routing Problem (medium)

* 50 instances from each category - 1050 instances
used as the test set

1.0

0.8 A

0.6

0.4 -

0.2 4

0.0 +

Visualizing MIP Instances from Unsupervised Pre-training

(a) FORGE Embedding

(b) Mean Readout

NMI: 0.843 = 0.003 NMI: 0.087 = 0.035 NMI: 0.7907 = 0.025

(c) Label Propagation

1.0
1.0 A °
® \“ '
° °. 3P o, g ® 0.8 - Y
0.8 1 . S &% :: % o °
) o
0., ® ‘
I " @ 4 % < ° P D
ry ® e 0.6 +
» . 0-61 ° s B2 Salo® *
..)) oo
¢ &
° ' 2 0,08° 0 o 4
o &8 o° O @y
8 ° .“‘\“ ’
4 ¢ ° 4
?’ 0.4 x.:. . . ° 0.4
» — a 0
~ A \
)f", (38 Y ogo 0‘..
o ('):'“':‘ % o. °
0.2 1 ' . {72’ 0.2
. o 2 +@
e
T T T T T T T 0.0 L T T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
Takeaway:

FORGE can cleanly cluster out previously unseen MIP
instances with the highest NMI

o CA-easy

CA-medium
CA-very-easy
CA-very-hard

e CA-very-hard2

GISP-easy

e GISP-ext-hard

GISP-hard

e GISP-medium

GISP-very-hard

e GISP-very-hard2

IP-very-hard
MIRP-medium
MIS-easy

e MIS-medium

MVC-easy
MVC-hard
MVC-medium

» SC-easy

SC-hard
SC-medium

Supervised Fine-tuning - Integrality Gap

e Can we fine tune FORGE to predict the integrality gap?

Supervised Fine-tuning - Integrality Gap

 What is an integrality gap?

Supervised Fine-tuning - Integrality Gap

 What is an integrality gap?

LP Relaxation
> 80323 of the Instance
c
Incumbent o) - LP Relaxati
Solution 1 5 E 1000 5 % 853.23 at Noed:x1a on
Incumbent & £ s3 LP Relaxati
Solution2 H 35 989 - 00 897.99 at Noedzxza on
D L = Q0
Incumbent & oo Q¢ LP Relaxati
Solution 3 O S 966 o8 Q¢ 003.78 Lfpeaxation
(@) + N D
Incumbent N O < = O LP Relaxati
Solution4 £ OO 945 J g DE 915.23 " Noedzx:+l1on
: | -
) ©c
Incumbent S o o LP Relaxati
Solions ~ S 1| 923 =5] 92010 s

Integer Program (IP) Linear Program (LP)
Relaxation

Supervised Fine-tuning - Integrality Gap

 We add a simple single layer prediction head to predict the integrality gap.
 The predicted gap is then used to compute a “pseudo-cut”.
e This pseudo-cut is added as a constraint to a solver.

 Note that a overestimation of the pseudo-cut would lead to a suboptimal
solution.

 FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as
well as 1050 Distributional MIPLIB instances.

Supervised Fine-tuning - Integrality Gap

 We add a simple single layer prediction head to predict the integrality gap.
* The predicted gap is then used to compute a “pseudo-cut”.
e This pseudo-cut is added as a constraint to a solver.

* Note that a overestimation of the pseudo-cut would lead to a suboptimal
solution.

 FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as well
as 1050 Distributional MIPLIB instances.

* Fine Tuning Training Data: CA (very-easy, easy, medium), SC (easy, medium,
hard), and GIS (easy, medium, hard) with 50 instances for each. In total, we obtain
a total of 450 training instances.

Primal Gap (log scale)

101_

Results - Integrality Gap

Tests are run on 50 ‘very-hard’ unseen instances from Distributional MIPLIB.

(@) Combinatorial Auction
Primal Gap Gain: 76.77%

(N

Pseudo-Cut

—— Gurobi

—

0 1000

2000
Time (s)

3000

(b) Set Cover

Primal Gap Gain: 29.59%

. 1074 Pseudo-Cut
9 —— Gurobi
©
(9}
0n
o)
o
o
©
(O]
‘©
£
—_
a
101,
0 1000 2000 3000
Time (s)
Takeaway:

Primal Gap (log scale)

102_

101_

(c) Generalized Ind. Set
Primal Gap Gain: 84.52%

Pseudo-Cut
—— Gurobi

0

1000 2000
Time (s)

3000

FORGE generated pseudo-cuts lead to a significant
decrease in primal gaps.

Primal Gap (log scale)

(d) Minimum Vertex Cover
Primal Gap Gain: 32.38%

_

Pseudo-Cut

—— Gurobi

1000

2000
Time (s)

3000

Supervised Fine-tuning - Warm Start

* Can we predict which variables will be part of the solution?
 How do we train this?

* Binary Cross Entropy - commonly used approach but has a large class
Imbalance issue

Supervised Fine-tuning - Warm Start

» Can we predict which variables will be part of the solution?
 How do we train this?

» Binary Cross Entropy - commonly used approach but has a large class imbalance issue
» Triplet Loss:

. Negative
* Generate 5 solutions Q @ 0
. . : /vMake Dissimilar

» Make variables appearing in O @ Positive | D)

solutions similar to each other Make Similar
e Variables appearing in none of O @ Anchor |2

the solutions are used as negative

variables O 5
* Negative variables are further filtered Make Similar

as variables that don’t appear in any

solution but are closest to positive variables O @ 5

in unsupervised embedding space

Input Bipartite # of Solutions each
Representation of a Variable has

MIP Instance Appeared In

Supervised Fine-tuning - Warm Start

* Fine Tuning Training Data: 100 instances each from CA (easy, medium), SC

(easy, medium, hard) and GIS (easy, medium) for a total of 700 training
Instances.

/Make Dissimilar

Make Similar

@-0000
®E®E

[] []
. . Make Similar
w5
Input Bipartite # of Solutions each
Representation of a Variable has

MIP Instance Appeared In

Primal Gap (log scale)

Results - Warm Start

Tests are run on 50 ‘medium’ unseen instances from Distributional MIPLIB.

(@) Combinatorial Auction
Primal Gap Gain: 31.16%

10°;

Warm-Start

—— Gurobi

0 200

400 600
Time (s)

800

(b) Set Cover
Primal Gap Gain: 39.17%

- Warm-Start -

o —— Gurobi @ 1]
< < 10
O 1094 o]

()] ()]

o o 1004
iel iel

o 10-14 o 19-1
210 210
O O

‘© © 1072
£ 102 £

— —

o o 10—3

0 100 200 300 400 500
Time (s)
Takeaway:

(c) Generalized Ind. Set
Primal Gap Gain: 31.62%

Warm-Start
—— Gurobi

0 200

400 600
Time (s)

800

Gurobi with FORGE generated warm starts leads to a
significant decrease in primal gaps and faster run times.

—
<)
R

Primal Gap (log scale)
5 B

(d) Minimum Vertex Cover
Primal Gap Gain: 48.75%

Warm-Start
—— Gurobi

0 200 400 600
Time (s)

800 1000

Additional Results

Integrality Gaps

e Lietal [1] train a GNN on 38,256 instances from 643 generated problem
types and test on 11,584 instances spanning 157 problem types.

* We train on no additional data and test on 17,500 previously unseen
instances spanning 400 problem types, from the dataset in [1].

 FORGE achieves a mean deviation of 18.63% in integrality gap prediction,
outperforming the 20.14% deviation reported.

[1]1Li, S., Kulkarni, J., Menache, |., Wu, C. and Li, B., Towards Foundation Models for Mixed Integer Linear Programming. In The Thirteenth International Conference on Learning
Representations.

Additional Results e o

Warm Starts T 72 Gurabi + FORGE
8 —— PS Gurobi + Random
« We also compare warm starts with PS-Gurobi [2]. 5
: : £
« FORGE embeddings for each variable and 5o
constraint are added to PS-Gurobi. S a0 o
* Since adding these embeddings increases model (b) Generalized Ind. Set
complexity significantly, we also add random i imal Gap Gain: 50.51%
embeddings of the same size to ensure any gains 2
: 5 10
are not due to larger model size. 2
e FORGE + PS-Gurobi outperforms the original 8
variant in terms of primal gap and run time. £ | Gt « roRee
] PS Gurobi + Random

0 250 500 750 1000 1250 1500
Time (s)
[2] Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R. and Luo, X., A GNN-Guided Predict-and-Search Framework for Mixed-Integer Linear Programming. In The Eleventh
International Conference on Learning Representations.

FORGE in Practice

 Integrality Gap
* Easiest to use
 Passin a.lp or a.mps file - get back a real number

* Add constraint that the integer solution is greater than the real number
generated

 Warm Starts
 Passin a.lp or a.mps file - get back a list of variables

e Set initial values of variables - solver specific - for example, hint values in
Gurobi

Summary

* FORGE uses a single model with ~3.25M parameters.

* FORGE can generate one embedding vector per MIP instance and can
effectively cluster unseen instances and place them within the space of all
MIP instances.

* FORGE can be fine tuned on a variety of tasks for multiple problem types.

* A single FORGE model can be used to predict both warm-starts as well
as integrality gaps for a variety of problem type and difficulty pairs.

arXiv Paper

Thank you!
Questions?

