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Background
Mixed Integer Programming

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}
Decision Variables

Constraints Some subset of these decision 
variables must have integer 

values
Objective 
Function



Motivation

• There is an abundance of mixed integer programming (MIP) instances.

• E.g., vehicle routing, job scheduling, flight scheduling, fibre optic network 

design 

• Can we use these instances without solving them to create a “foundational” model? 

• Why? 


• Recent advances in ML for CO problems are problem type or task specific. 

• A lot of training data is needed for current methods. 

• This training data is collected by solving instances which is extremely 

expensive.
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• This bipartite graph is then passed into a Graph Neural Network (GNN)

• But GNNs are not very good at preserving global structure due to inherence locality bias. 


• Preserving global structure is important in CO problems, especially to generalize across 
problem types.
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• This is where Vector Quantization comes in. 
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 is the original node feature
 is the regenerated node feature
 is the matrix of all 

vi
̂vi

X ̂vi

Codebook Loss Commitment Loss

Update encoder weights  to be close to 
chosen code  to avoid fluctuations in 
code assignment

hi
ezi

This update is only applied to encoder 
variables. 
Gradients are not applied to ezi
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Codebook Loss Commitment Loss

Move cluster centroids only 
(think standard k-means)

Move data embedding only

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Vector Quantization essentially 
replaces each green point with 
the closest purple point 

The index of the cluster each data 
point belongs to is the discrete 
index/code assigned to that data 
point



• Back to overview
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• The code-words are then used to reconstruct the input graph structure and node features. 
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Observe that we get 2 types of embeddings

1. Embedding vector per variable and constraint

2. Distribution of codes assigned to get one vector per instance
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Datasets

• MIPLIB 
• 600 instances 
• For each instance, create two more 

instances by randomly deleting 5% and 
10% of constraints 

• Each instance maintains feasibility 
• These 1800 instances are used to train the 

unsupervised FORGE model

• Distributional MIPLIB 
• Set Cover (easy, medium, hard)
• Maximum Independent Set (easy, medium)
• Minimum Vertex Cover (easy, medium, hard)
• Generalized Independent Set (easy, medium, 

hard, very-hard, very-hard2, ext-hard)
• Combinatorial Auction (very-easy, easy, 

medium, very-hard, very-hard2)
• Item Placement (very-hard)
• Maritime Inventory Routing Problem (medium)

• 50 instances from each category - 1050 instances 
used as the test set



Visualizing MIP Instances from Unsupervised Pre-training 

(a) FORGE Embedding 
NMI:  0.843 ± 0.003

(b) Mean Readout  
NMI: 0.087 ± 0.035

(c) Label Propagation 
NMI: 0.7907 ± 0.025

Takeaway: 
FORGE can cleanly cluster out previously unseen MIP 
instances with the highest NMI



Supervised Fine-tuning - Integrality Gap 

• Can we fine tune FORGE to predict the integrality gap? 



Supervised Fine-tuning - Integrality Gap 

• What is an integrality gap?



Supervised Fine-tuning - Integrality Gap 

• What is an integrality gap?
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Supervised Fine-tuning - Integrality Gap 

• We add a simple single layer prediction head to predict the integrality gap. 

• The predicted gap is then used to compute a “pseudo-cut”.


• This pseudo-cut is added as a constraint to a solver. 

• Note that a overestimation of the pseudo-cut would lead to a suboptimal 

solution. 

• FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as 

well as 1050 Distributional MIPLIB instances. 
 
 



Supervised Fine-tuning - Integrality Gap 

• We add a simple single layer prediction head to predict the integrality gap. 

• The predicted gap is then used to compute a “pseudo-cut”.


• This pseudo-cut is added as a constraint to a solver. 

• Note that a overestimation of the pseudo-cut would lead to a suboptimal 

solution. 

• FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as well 

as 1050 Distributional MIPLIB instances.

• Fine Tuning Training Data: CA (very-easy, easy, medium), SC (easy, medium, 

hard), and GIS (easy, medium, hard) with 50 instances for each. In total, we obtain 
a total of 450 training instances.



Results - Integrality Gap 

(a) Combinatorial Auction 
Primal Gap Gain: 76.77%   

(b) Set Cover 
Primal Gap Gain: 29.59%

(c) Generalized Independent Set 
Primal Gap Gain: 84.52%

(d) Minimum Vertex Cover 
Primal Gap Gain: 32.38%

(a) Combinatorial Auction 
Primal Gap Gain: 76.77%   

(b) Set Cover 
Primal Gap Gain: 29.59%

(c) Generalized Ind. Set 
Primal Gap Gain: 84.52%

(d) Minimum Vertex Cover  
Primal Gap Gain: 32.38%

Tests are run on 50 ‘very-hard’ unseen instances from Distributional MIPLIB.

Takeaway: 
FORGE generated pseudo-cuts lead to a significant 
decrease in primal gaps. 



Supervised Fine-tuning - Warm Start

• Can we predict which variables will be part of the solution? 

• How do we train this? 


• Binary Cross Entropy - commonly used approach but has a large class 
imbalance issue 



Supervised Fine-tuning - Warm Start

• Can we predict which variables will be part of the solution? 

• How do we train this? 


• Binary Cross Entropy - commonly used approach but has a large class imbalance issue 

• Triplet Loss: 


• Generate 5 solutions

• Make variables appearing in   

solutions similar to each other 

• Variables appearing in none of  

the solutions are used as negative 
variables 


• Negative variables are further filtered 
as variables that don’t appear in any  
solution but are closest to positive variables  
in unsupervised embedding space
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Supervised Fine-tuning - Warm Start

• Fine Tuning Training Data:  100 instances each from CA (easy, medium), SC 
(easy, medium, hard) and GIS (easy, medium) for a total of 700 training 
instances. 
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Results - Warm Start

(a) Combinatorial Auction 
Primal Gap Gain: 31.16%   

(b) Set Cover 
Primal Gap Gain: 39.17%

(c) Generalized Independent Set 
Primal Gap Gain: 31.62%

(d) Minimum Vertex Cover  
Primal Gap Gain: 48.75%

(a) Combinatorial Auction 
Primal Gap Gain: 31.16%   

(b) Set Cover 
Primal Gap Gain: 39.17%

(c) Generalized Ind. Set 
Primal Gap Gain: 31.62%

(d) Minimum Vertex Cover  
Primal Gap Gain: 48.75%

Takeaway: 
Gurobi with FORGE generated warm starts leads to a 
significant decrease in primal gaps and faster run times. 

Tests are run on 50 ‘medium’ unseen instances from Distributional MIPLIB.



Additional Results
Integrality Gaps

• Li et al. [1] train a GNN on 38,256 instances from 643 generated problem 
types and test on 11,584 instances spanning 157 problem types.


• We train on no additional data and test on 17,500 previously unseen 
instances spanning 400 problem types, from the dataset in [1]. 


• FORGE achieves a mean deviation of 18.63% in integrality gap prediction, 
outperforming the 20.14% deviation reported. 

[1] Li, S., Kulkarni, J., Menache, I., Wu, C. and Li, B., Towards Foundation Models for Mixed Integer Linear Programming. In The Thirteenth International Conference on Learning 
Representations.



Additional Results
Warm Starts

• We also compare warm starts with PS-Gurobi [2]. 

• FORGE embeddings for each variable and 

constraint are added to PS-Gurobi.

• Since adding these embeddings increases model 

complexity significantly, we also add random 
embeddings of the same size to ensure any gains 
are not due to larger model size.


• FORGE + PS-Gurobi outperforms the original 
variant in terms of primal gap and run time. 

[2] Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R. and Luo, X., A GNN-Guided Predict-and-Search Framework for Mixed-Integer Linear Programming. In The Eleventh 
International Conference on Learning Representations.

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%   

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%   

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%   

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%   

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%



FORGE in Practice

• Integrality Gap 

• Easiest to use 

• Pass in a .lp or a .mps file - get back a real number 

• Add constraint that the integer solution is greater than the real number 

generated

• Warm Starts


• Pass in a .lp or a .mps file - get back a list of variables 

• Set initial values of variables - solver specific - for example, hint values in 

Gurobi 



Summary

• FORGE uses a single model with ~3.25M parameters.

• FORGE can generate one embedding vector per MIP instance and can 

effectively cluster unseen instances and place them within the space of all 
MIP instances. 


• FORGE can be fine tuned on a variety of tasks for multiple problem types. 

• A single FORGE model can be used to predict both warm-starts as well 

as integrality gaps for a variety of problem type and difficulty pairs.  

arXiv Paper



Thank you!  
Questions?


