FORGE: <u>Foundational Optimization</u> <u>Representations from Graph Embeddings</u>

Zohair Shafi, Serdar Kadioglu

Mixed Integer Programming

$$f(x) = \min\{c^T x \mid Ax \le b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I\}$$

Mixed Integer Programming

$$f(x) = \min\{c^T x \mid Ax \le b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I\}$$

Objective Function

Mixed Integer Programming

Decision Variables

$$f(x) = \min\{c^T x \mid Ax \le b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I\}$$

Objective Function

Mixed Integer Programming

Decision Variables

$$f(x) = \min\{c^T x \mid Ax \le b, x \in \mathbb{R}^n, x_j \in \mathbb{Z} \ \forall j \in I\}$$

Constraints

Objective Function

Mixed Integer Programming

Decision Variables

$$f(x) = \min\{c^T x \mid Ax \le b, x \in \mathbb{R}^n | x_j \in \mathbb{Z} \ \forall j \in I\}$$

Constraints
Objective
Function

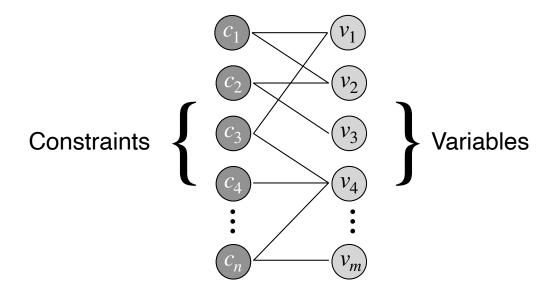
Some subset of these decision variables must have integer values

Motivation

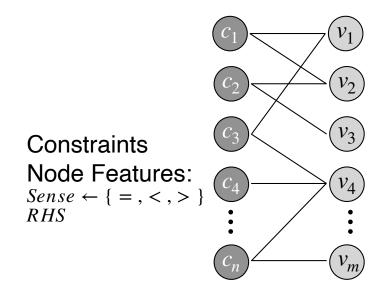
- There is an abundance of mixed integer programming (MIP) instances.
 - E.g., vehicle routing, job scheduling, flight scheduling, fibre optic network design
- Can we use these instances without solving them to create a "foundational" model?
- Why?
 - Recent advances in ML for CO problems are problem type or task specific.
 - A lot of training data is needed for current methods.
 - This training data is collected by solving instances which is extremely expensive.

 We aim to first learn the structure of a MIP problem in an unsupervised manner.

- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph



- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph

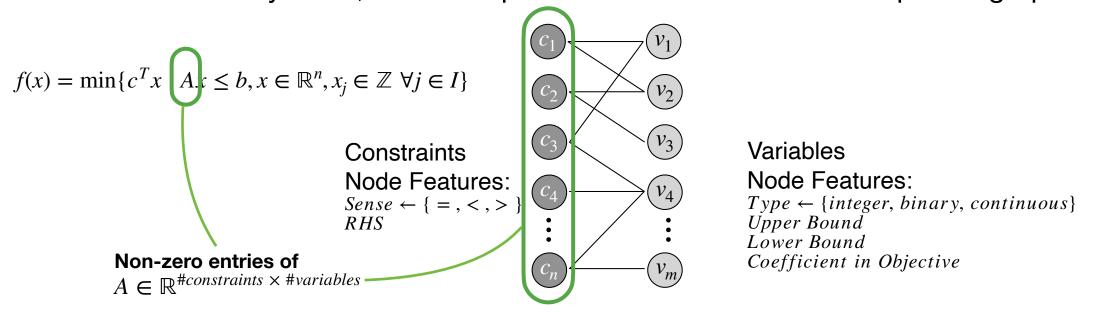


Variables

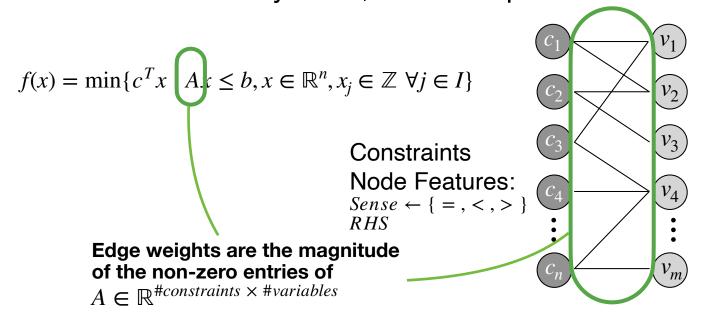
Node Features:

Type ← {integer, binary, continuous} Upper Bound Lower Bound Coefficient in Objective

- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph



- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph

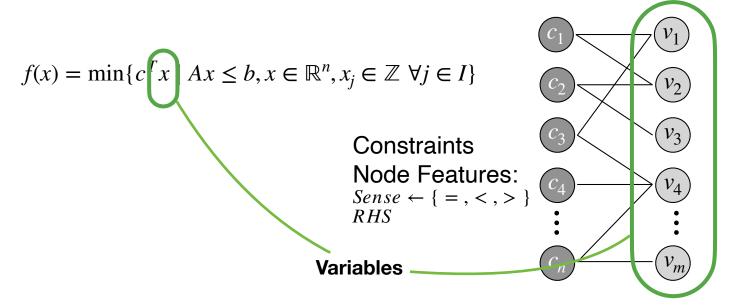


Variables

Node Features:

Type ← {integer, binary, continuous} Upper Bound Lower Bound Coefficient in Objective

- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph

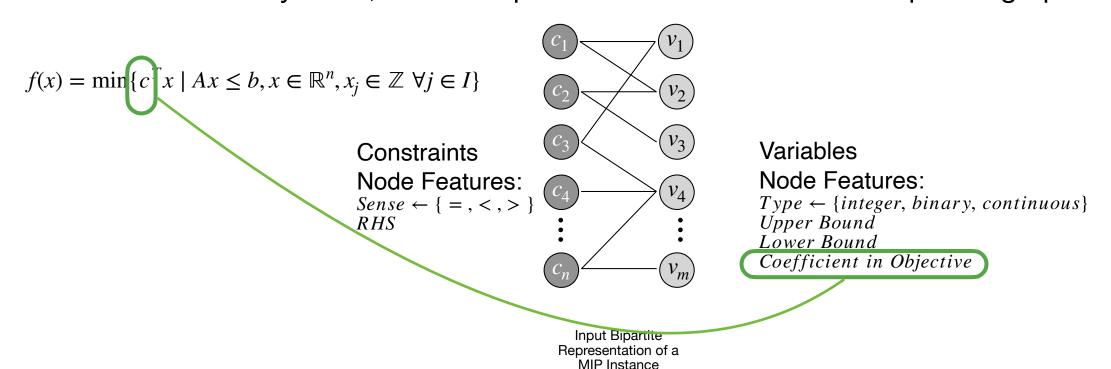


Variables

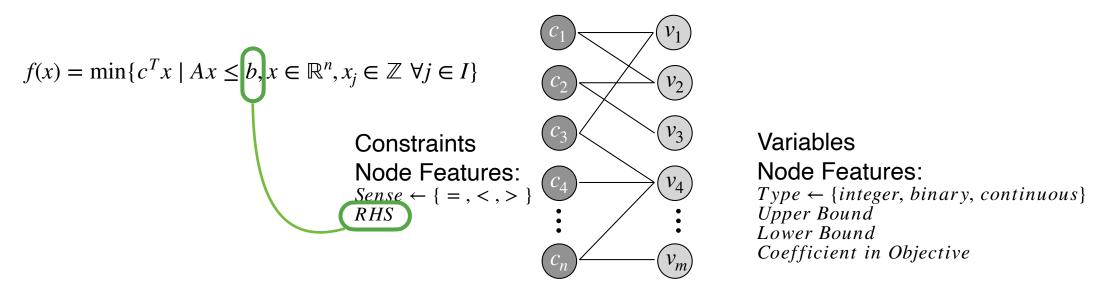
Node Features:

Type ← {integer, binary, continuous} Upper Bound Lower Bound Coefficient in Objective

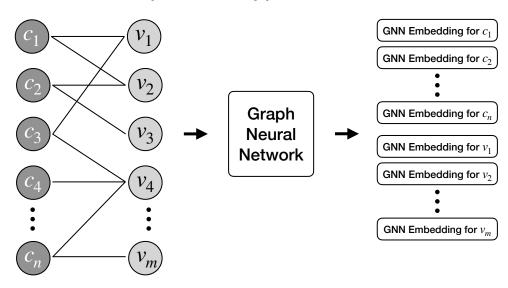
- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph



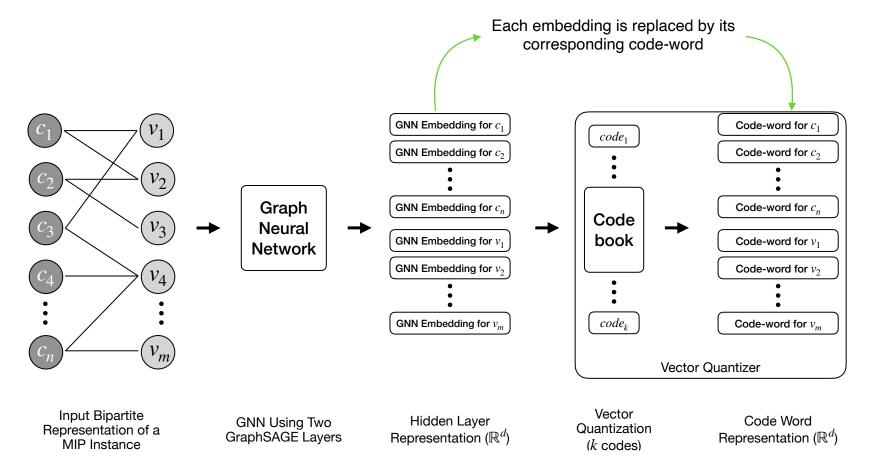
- We aim to first learn the structure of a MIP problem in an unsupervised manner.
- How?
 As is commonly done, we first represent a MIP instance as a bipartite graph



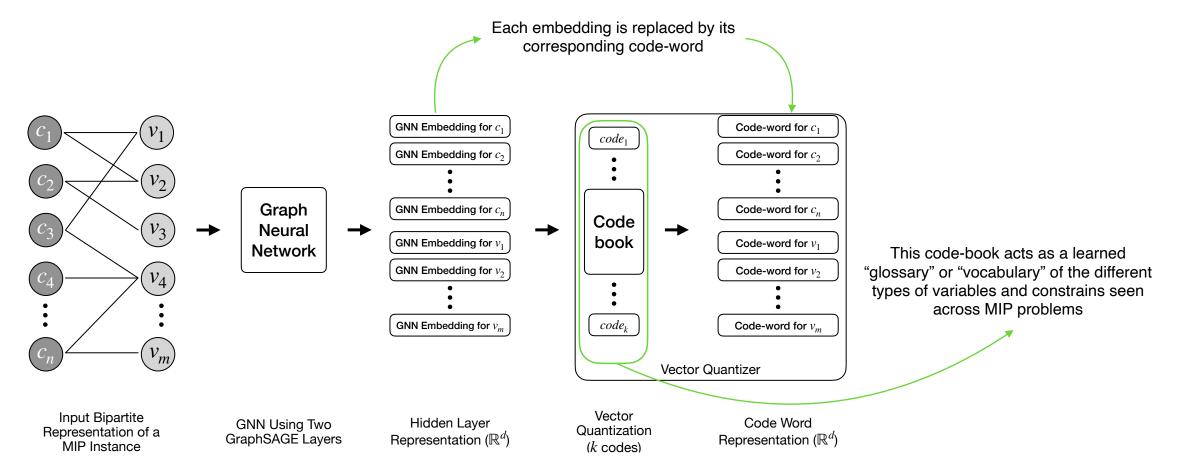
- This bipartite graph is then passed into a Graph Neural Network (GNN)
- But GNNs are not very good at preserving global structure due to inherence locality bias.
 - **Preserving global structure is important** in CO problems, especially to generalize across problem types.



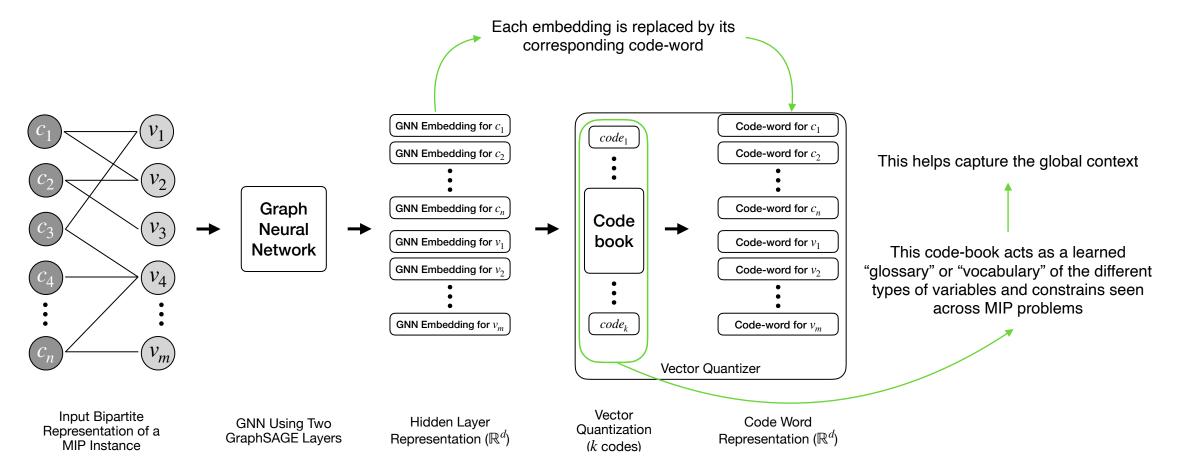
• This is where Vector Quantization comes in.



This is where Vector Quantization comes in.



This is where Vector Quantization comes in.



MethodologyVector Quantization Aside

 $\mathcal{L}_{Tokenizer} =$

Vector Quantization Aside

$$\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} +$$

$$\mathcal{L}_{Rec} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{\boldsymbol{v_i}^T \hat{\boldsymbol{v}_i}}{\|\boldsymbol{v}_i\| \cdot \|\hat{\boldsymbol{v}}_i\|} \right)^{\gamma}}_{ ext{node reconstruction}} + \underbrace{\left\| \boldsymbol{A} - \sigma(\hat{\boldsymbol{X}} \cdot \hat{\boldsymbol{X}}^T) \right\|_2^2}_{ ext{edge reconstruction}},$$

Vector Quantization Aside

 $\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} + \boxed{rac{1}{N} \sum_{i=1}^{N} \| ext{sg}[m{h}_i] - m{e}_{z_i}\|_2^2}$

Update codebook embeddings $\boldsymbol{e}_{\boldsymbol{z}_i}$ to make them closer to encoder output h_i

$$\mathcal{L}_{Rec} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{\boldsymbol{v_i}^T \hat{\boldsymbol{v}_i}}{\|\boldsymbol{v}_i\| \cdot \|\hat{\boldsymbol{v}}_i\|} \right)^{\gamma}}_{\text{node reconstruction}} + \underbrace{\left\| \boldsymbol{A} - \sigma(\hat{\boldsymbol{X}} \cdot \hat{\boldsymbol{X}}^T) \right\|_2^2}_{\text{edge reconstruction}},$$

Vector Quantization Aside

Codebook Loss

$$\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} + rac{1}{N} \sum_{i=1}^{N} \lVert ext{sg}[m{h}_i] - m{e}_{z_i}
Vert_2^2$$

Update codebook embeddings e_{z_i} to make them closer to encoder output h_i

This update is only applied to codebook variables. Gradients are ${\bf not}$ applied to h_i

$$\mathcal{L}_{Rec} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{\boldsymbol{v_i}^T \hat{\boldsymbol{v}_i}}{\|\boldsymbol{v}_i\| \cdot \|\hat{\boldsymbol{v}}_i\|} \right)^{\gamma}}_{\text{node reconstruction}} + \underbrace{\left\| \boldsymbol{A} - \sigma(\hat{\boldsymbol{X}} \cdot \hat{\boldsymbol{X}}^T) \right\|_2^2}_{\text{edge reconstruction}},$$

Vector Quantization Aside

$$\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} + \frac{1}{N} \sum_{i=1}^{N} \| \text{sg}[\boldsymbol{h}_i] - \boldsymbol{e}_{z_i} \|_2^2 + \frac{\eta}{N} \sum_{i=1}^{N} \| \text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i \|_2^2,$$

Update encoder weights h_i to be close to chosen code e_{z_i} to avoid fluctuations in code assignment

This update is only applied to encoder variables.

Gradients are **not** applied to e_{z_i}

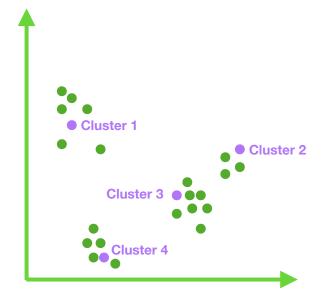
$$\mathcal{L}_{Rec} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{\boldsymbol{v_i}^T \hat{\boldsymbol{v}_i}}{\|\boldsymbol{v}_i\| \cdot \|\hat{\boldsymbol{v}}_i\|} \right)^{\gamma}}_{\text{node reconstruction}} + \underbrace{\left\| \boldsymbol{A} - \sigma(\hat{\boldsymbol{X}} \cdot \hat{\boldsymbol{X}}^T) \right\|_2^2}_{\text{edge reconstruction}},$$

Vector Quantization Aside

$$\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} + \left(\frac{1}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{h}_i] - \boldsymbol{e}_{z_i}\|_2^2 + \left(\frac{\eta}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i\|_2^2, \right)^2 + \left(\frac{\eta}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i\|_2^2, \right)^2$$

Move cluster centroids only (think standard k-means)

Move data embedding only

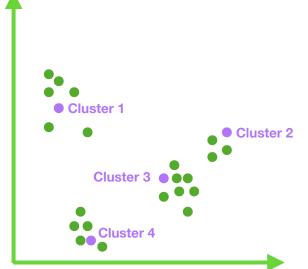


Vector Quantization Aside

$$\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} + \left(\frac{1}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{h}_i] - \boldsymbol{e}_{z_i}\|_2^2 + \left(\frac{\eta}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i\|_2^2, \right)^2 + \left(\frac{\eta}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i\|_2^2, \right)^2$$

Move cluster centroids only (think standard k-means)

Move data embedding only



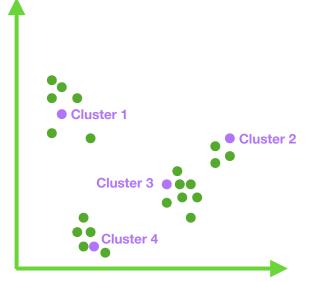
Vector Quantization essentially replaces each **green** point with the closest **purple** point

Vector Quantization Aside

$$\mathcal{L}_{Tokenizer} = \mathcal{L}_{Rec} + \left(\frac{1}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{h}_i] - \boldsymbol{e}_{z_i}\|_2^2 + \left(\frac{\eta}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i\|_2^2, \right)^2 + \left(\frac{\eta}{N}\sum_{i=1}^{N}\|\text{sg}[\boldsymbol{e}_{z_i}] - \boldsymbol{h}_i\|_2^2, \right)^2$$

Move cluster centroids only (think standard k-means)

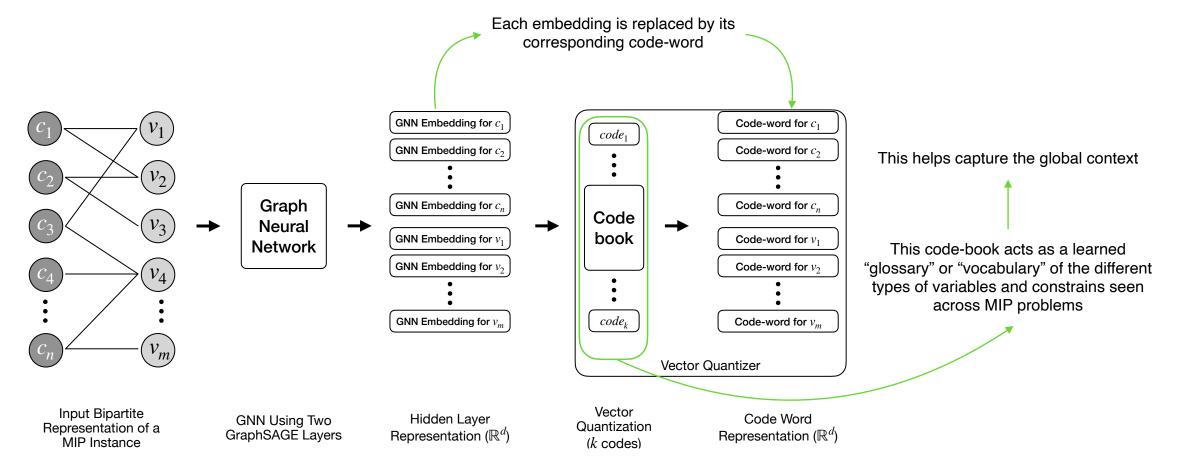
Move data embedding only



Vector Quantization essentially replaces each **green** point with the closest **purple** point

The index of the cluster each data point belongs to is the **discrete index/code** assigned to that data point

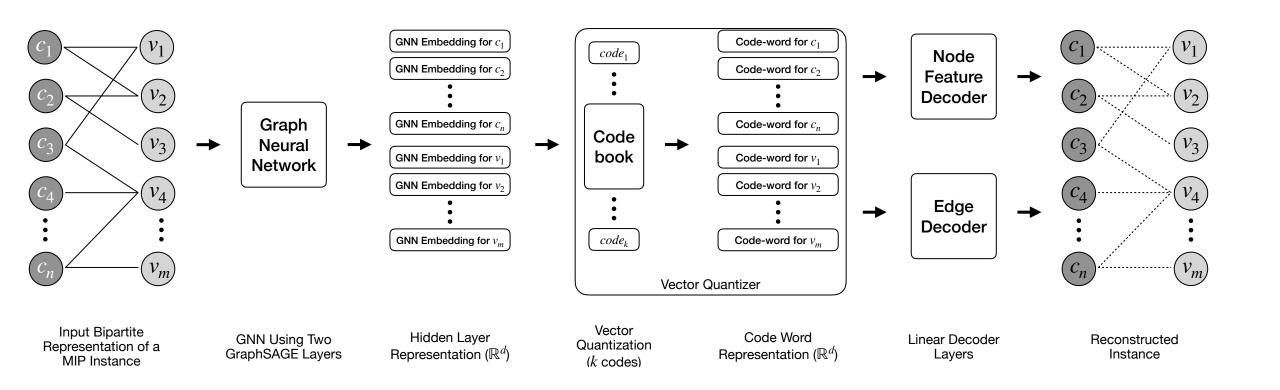
Back to overview



The code-words are then used to reconstruct the input graph structure and node features.

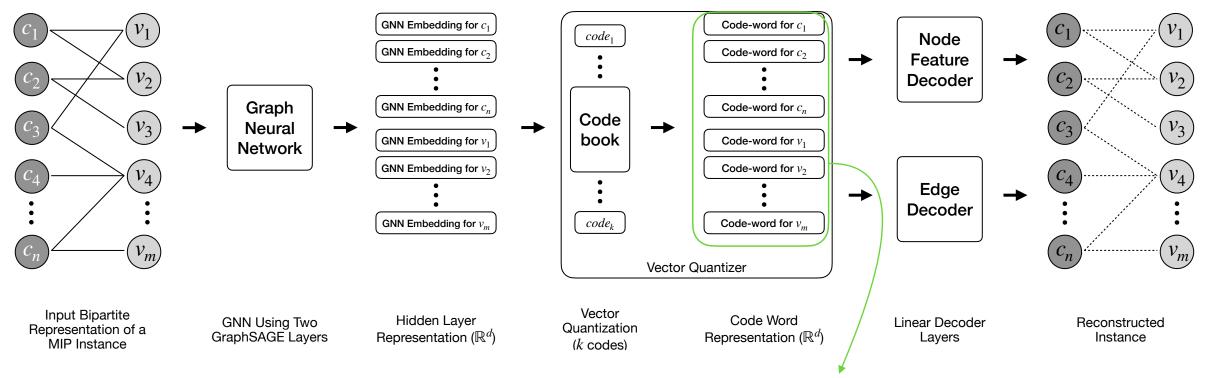


Overall Architecture of Unsupervised Pre-training



Overall Architecture of Unsupervised Pre-training

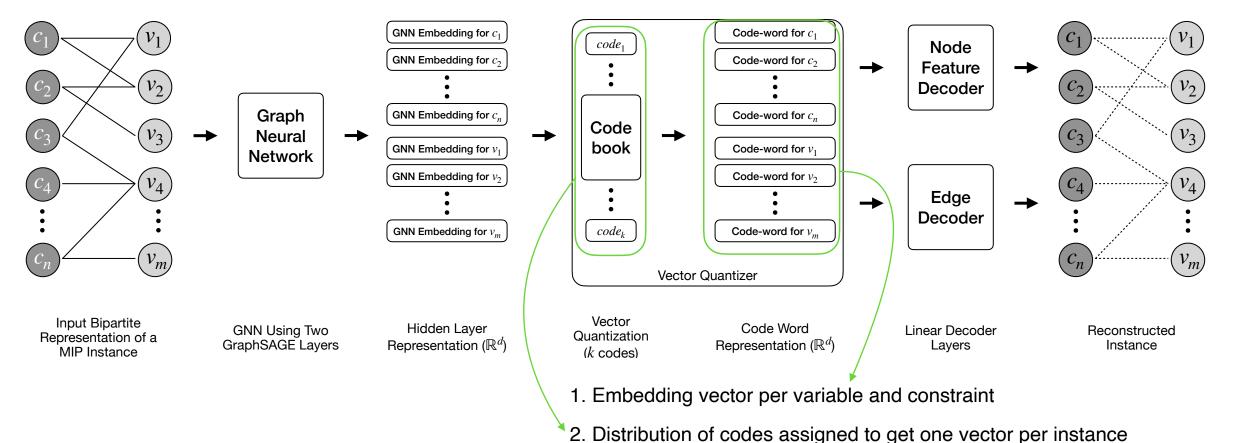
Observe that we get 2 types of embeddings



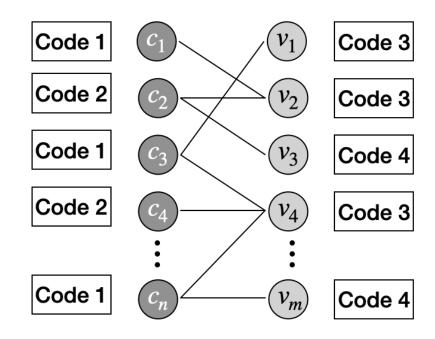
1. Embedding vector per variable and constraint

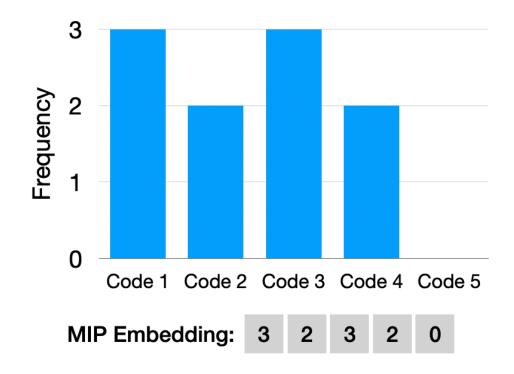
Overall Architecture of Unsupervised Pre-training

Observe that we get 2 types of embeddings

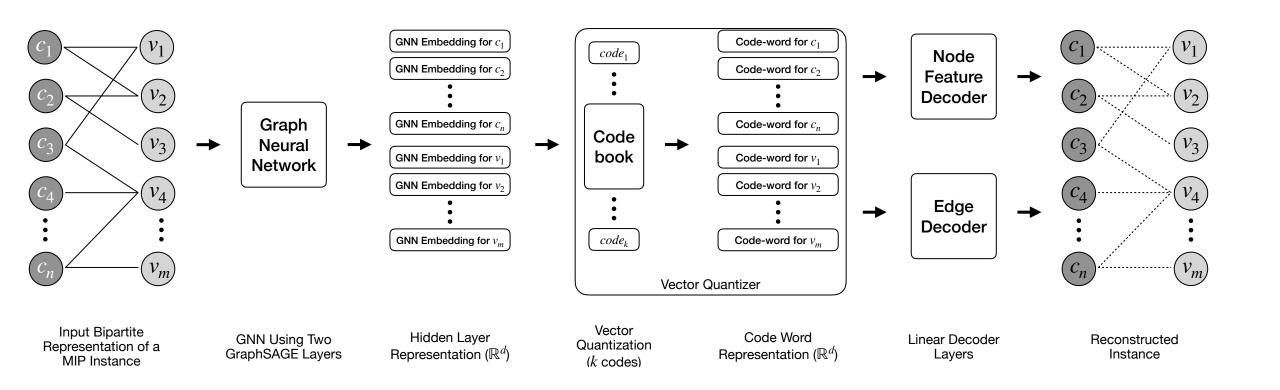


MethodologyMIP Embedding Aside





Overall Architecture of Unsupervised Pre-training



Datasets

- MIPLIB
 - 600 instances

Datasets

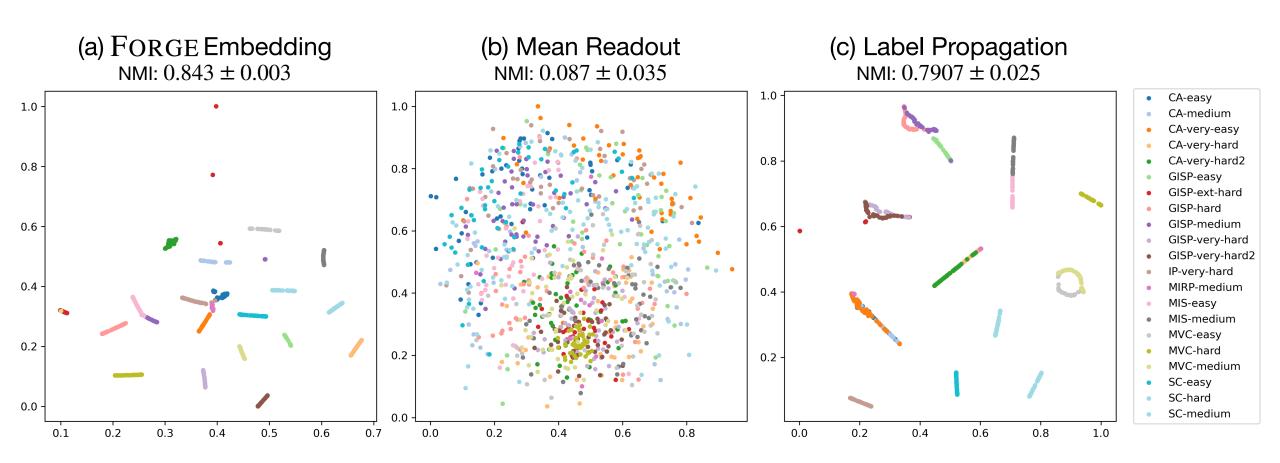
- MIPLIB
 - 600 instances
 - For each instance, create two more instances by randomly deleting 5% and 10% of constraints
 - Each instance maintains feasibility
 - These 1800 instances are used to train the unsupervised FORGE model

Datasets

- MIPLIB
 - 600 instances
 - For each instance, create two more instances by randomly deleting 5% and 10% of constraints
 - Each instance maintains feasibility
 - These 1800 instances are used to train the unsupervised FORGE model

- Distributional MIPLIB
 - Set Cover (easy, medium, hard)
 - Maximum Independent Set (easy, medium)
 - Minimum Vertex Cover (easy, medium, hard)
 - Generalized Independent Set (easy, medium, hard, very-hard, very-hard2, ext-hard)
 - Combinatorial Auction (very-easy, easy, medium, very-hard, very-hard2)
 - Item Placement (very-hard)
 - Maritime Inventory Routing Problem (medium)
- 50 instances from each category 1050 instances used as the test set

Visualizing MIP Instances from Unsupervised Pre-training



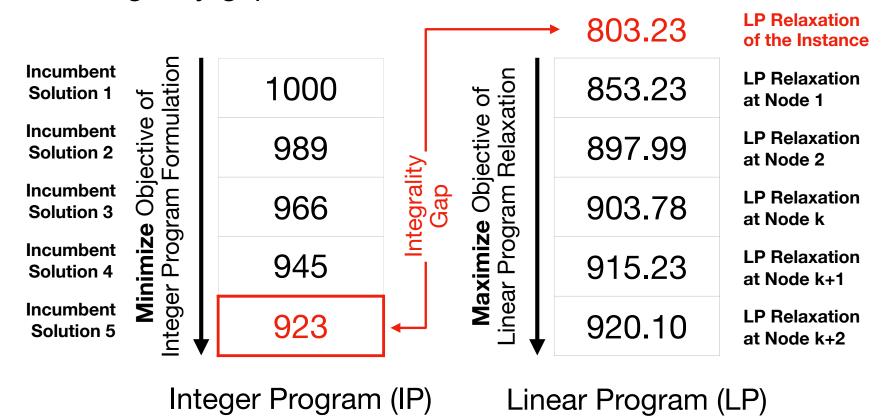
Takeaway:

FORGE can cleanly cluster out previously unseen MIP instances with the highest NMI

Can we fine tune FORGE to predict the integrality gap?

• What is an integrality gap?

What is an integrality gap?



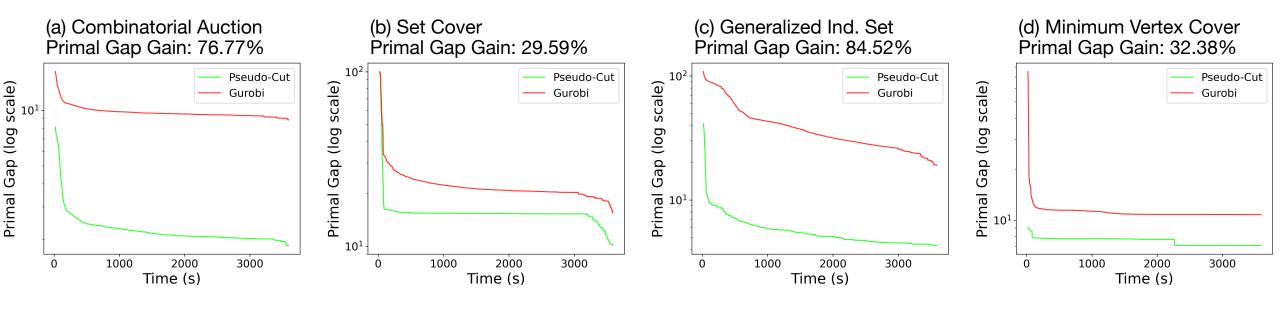
Relaxation

- We add a simple single layer prediction head to predict the integrality gap.
- The predicted gap is then used to compute a "pseudo-cut".
 - This pseudo-cut is added as a constraint to a solver.
 - Note that a overestimation of the pseudo-cut would lead to a suboptimal solution.
- FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as well as 1050 Distributional MIPLIB instances.

- We add a simple single layer prediction head to predict the integrality gap.
- The predicted gap is then used to compute a "pseudo-cut".
 - This pseudo-cut is added as a constraint to a solver.
 - Note that a overestimation of the pseudo-cut would lead to a suboptimal solution.
- FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as well as 1050 Distributional MIPLIB instances.
- Fine Tuning Training Data: CA (very-easy, easy, medium), SC (easy, medium, hard), and GIS (easy, medium, hard) with 50 instances for each. In total, we obtain a total of 450 training instances.

Results - Integrality Gap

Tests are run on 50 'very-hard' unseen instances from Distributional MIPLIB.



Takeaway:

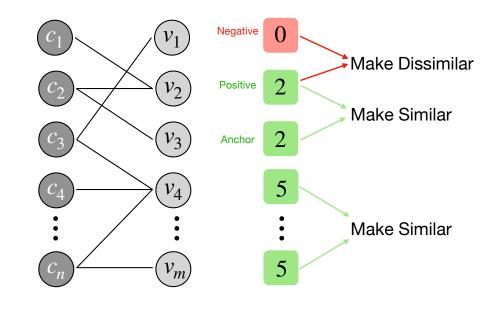
FORGE generated pseudo-cuts lead to a significant decrease in primal gaps.

Supervised Fine-tuning - Warm Start

- Can we predict which variables will be part of the solution?
- How do we train this?
 - Binary Cross Entropy commonly used approach but has a large class imbalance issue

Supervised Fine-tuning - Warm Start

- Can we predict which variables will be part of the solution?
- How do we train this?
 - Binary Cross Entropy commonly used approach but has a large class imbalance issue
 - Triplet Loss:
 - Generate 5 solutions
 - Make variables appearing in solutions similar to each other
 - Variables appearing in none of the solutions are used as negative variables
 - Negative variables are further filtered as variables that don't appear in any solution but are closest to positive variables in unsupervised embedding space

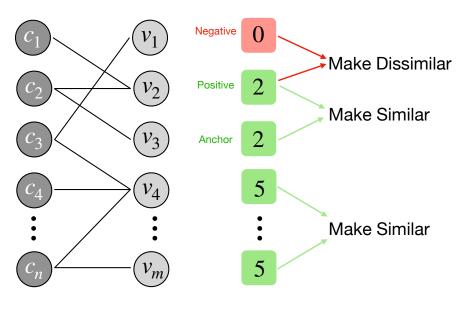


Input Bipartite
Representation of a
MIP Instance

of Solutions each Variable has Appeared In

Supervised Fine-tuning - Warm Start

• Fine Tuning Training Data: 100 instances each from CA (easy, medium), SC (easy, medium, hard) and GIS (easy, medium) for a total of 700 training instances.

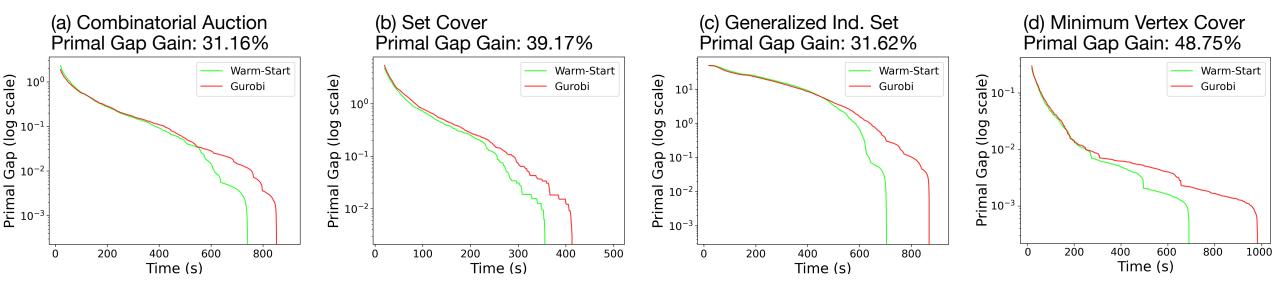


Input Bipartite
Representation of a
MIP Instance

of Solutions each Variable has Appeared In

Results - Warm Start

Tests are run on 50 'medium' unseen instances from Distributional MIPLIB.



Takeaway:

Gurobi with FORGE generated warm starts leads to a significant decrease in primal gaps and faster run times.

Additional Results

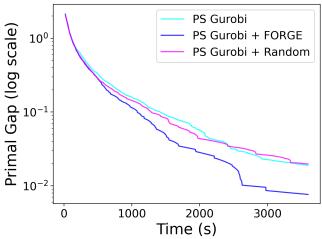
Integrality Gaps

- Li et al. [1] train a GNN on 38,256 instances from 643 generated problem types and test on 11,584 instances spanning 157 problem types.
- We train on **no additional data** and test on 17,500 previously unseen instances spanning 400 problem types, from the dataset in [1].
- FORGE achieves a mean deviation of 18.63% in integrality gap prediction, outperforming the 20.14% deviation reported.

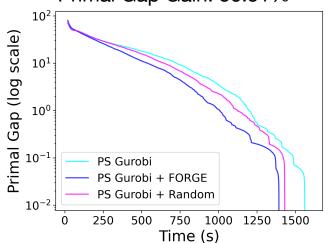
Additional Results

Warm Starts

- We also compare warm starts with PS-Gurobi [2].
 - FORGE embeddings for each variable and constraint are added to PS-Gurobi.
 - Since adding these embeddings increases model complexity significantly, we also add random embeddings of the same size to ensure any gains are **not due to larger model size**.
 - FORGE + PS-Gurobi outperforms the original variant in terms of primal gap and run time.



(b) Generalized Ind. Set Primal Gap Gain: 50.51%



FORGE in Practice

- Integrality Gap
 - Easiest to use
 - Pass in a .lp or a .mps file get back a real number
 - Add constraint that the integer solution is greater than the real number generated
- Warm Starts
 - Pass in a .lp or a .mps file get back a list of variables
 - Set initial values of variables solver specific for example, hint values in Gurobi

Summary

- FORGE uses a single model with ~3.25M parameters.
- FORGE can generate one embedding vector per MIP instance and can effectively cluster unseen instances and place them within the space of all MIP instances.
- FORGE can be fine tuned on a variety of tasks for multiple problem types.
 - A single FORGE model can be used to predict both warm-starts as well as integrality gaps for a variety of problem type and difficulty pairs.

Thank you! Questions?