
FORGE:  
Foundational Optimization
Representations from Graph Embeddings
 
Zohair Shafi, Serdar Kadioglu

Background
Mixed Integer Programming

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

Background
Mixed Integer Programming

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

Objective 
Function

Background
Mixed Integer Programming

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}
Decision Variables

Objective 
Function

Background
Mixed Integer Programming

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}
Decision Variables

Constraints
Objective 
Function

Background
Mixed Integer Programming

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}
Decision Variables

Constraints Some subset of these decision
variables must have integer

values
Objective 
Function

Motivation

• There is an abundance of mixed integer programming (MIP) instances.

• E.g., vehicle routing, job scheduling, flight scheduling, fibre optic network

design

• Can we use these instances without solving them to create a “foundational” model?

• Why?

• Recent advances in ML for CO problems are problem type or task specific.

• A lot of training data is needed for current methods.

• This training data is collected by solving instances which is extremely

expensive.

Methodology

• We aim to first learn the structure of a MIP problem in an unsupervised
manner.

Methodology

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph
c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints Variables{ }

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints  
Node Features:
Sense ← { = , < , > }
RHS

Variables  
Node Features: 
T ype ← {integer, binar y, continuous}
Upper Bound
Lower Bound
Coef f icient in Objective

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints  
Node Features:
Sense ← { = , < , > }
RHS

Variables  
Node Features: 
T ype ← {integer, binar y, continuous}
Upper Bound
Lower Bound
Coef f icient in Objective

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

Non-zero entries of  
A ∈ ℝ#constraints × #variables

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints  
Node Features:
Sense ← { = , < , > }
RHS

Variables  
Node Features: 
T ype ← {integer, binar y, continuous}
Upper Bound
Lower Bound
Coef f icient in Objective

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

Edge weights are the magnitude
of the non-zero entries of
A ∈ ℝ#constraints × #variables

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints  
Node Features:
Sense ← { = , < , > }
RHS

Variables  
Node Features: 
T ype ← {integer, binar y, continuous}
Upper Bound
Lower Bound
Coef f icient in Objective

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

Variables

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints  
Node Features:
Sense ← { = , < , > }
RHS

Variables  
Node Features: 
T ype ← {integer, binar y, continuous}
Upper Bound
Lower Bound
Coef f icient in Objective

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

• We aim to first learn the structure of a MIP problem in an unsupervised manner.

• How?  

As is commonly done, we first represent a MIP instance as a bipartite graph

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Constraints  
Node Features:
Sense ← { = , < , > }
RHS

Variables  
Node Features: 
T ype ← {integer, binar y, continuous}
Upper Bound
Lower Bound
Coef f icient in Objective

f(x) = min{cT x ∣ Ax ≤ b, x ∈ ℝn, xj ∈ ℤ ∀j ∈ I}

• This bipartite graph is then passed into a Graph Neural Network (GNN)

• But GNNs are not very good at preserving global structure due to inherence locality bias.

• Preserving global structure is important in CO problems, especially to generalize across
problem types.

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

• This is where Vector Quantization comes in.

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Each embedding is replaced by its
corresponding code-word

• This is where Vector Quantization comes in.

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Each embedding is replaced by its
corresponding code-word

This code-book acts as a learned
“glossary” or “vocabulary” of the different
types of variables and constrains seen

across MIP problems

• This is where Vector Quantization comes in.

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Each embedding is replaced by its
corresponding code-word

This code-book acts as a learned
“glossary” or “vocabulary” of the different
types of variables and constrains seen

across MIP problems

This helps capture the global context

Methodology
Vector Quantization Aside

Methodology
Vector Quantization Aside

 is the original node feature
 is the regenerated node feature
 is the matrix of all

vi
̂vi

X ̂vi

Methodology
Vector Quantization Aside

 is the original node feature
 is the regenerated node feature
 is the matrix of all

vi
̂vi

X ̂vi

Codebook Loss

Update codebook embeddings
to make them closer to encoder output

ezi

hi

Methodology
Vector Quantization Aside

 is the original node feature
 is the regenerated node feature
 is the matrix of all

vi
̂vi

X ̂vi

Codebook Loss

Update codebook embeddings
to make them closer to encoder output

ezi

hi

This update is only applied to codebook variables.
Gradients are not applied to hi

Methodology
Vector Quantization Aside

 is the original node feature
 is the regenerated node feature
 is the matrix of all

vi
̂vi

X ̂vi

Codebook Loss Commitment Loss

Update encoder weights to be close to
chosen code to avoid fluctuations in
code assignment

hi
ezi

This update is only applied to encoder
variables.
Gradients are not applied to ezi

Methodology
Vector Quantization Aside

Codebook Loss Commitment Loss

Move cluster centroids only
(think standard k-means)

Move data embedding only

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Methodology
Vector Quantization Aside

Codebook Loss Commitment Loss

Move cluster centroids only
(think standard k-means)

Move data embedding only

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Vector Quantization essentially
replaces each green point with
the closest purple point

Methodology
Vector Quantization Aside

Codebook Loss Commitment Loss

Move cluster centroids only
(think standard k-means)

Move data embedding only

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Vector Quantization essentially
replaces each green point with
the closest purple point

The index of the cluster each data
point belongs to is the discrete
index/code assigned to that data
point

• Back to overview

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Each embedding is replaced by its
corresponding code-word

This code-book acts as a learned
“glossary” or “vocabulary” of the different
types of variables and constrains seen

across MIP problems

This helps capture the global context

• The code-words are then used to reconstruct the input graph structure and node features.

Methodology

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Methodology
Overall Architecture of Unsupervised Pre-training

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Methodology
Overall Architecture of Unsupervised Pre-training

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Observe that we get 2 types of embeddings

1. Embedding vector per variable and constraint

Methodology
Overall Architecture of Unsupervised Pre-training

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Observe that we get 2 types of embeddings

1. Embedding vector per variable and constraint

2. Distribution of codes assigned to get one vector per instance

Methodology
MIP Embedding Aside

Methodology
Overall Architecture of Unsupervised Pre-training

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

Graph
Neural

Network

GNN Using Two
GraphSAGE Layers

GNN Embedding for v1

GNN Embedding for v2

GNN Embedding for c1

GNN Embedding for c2

GNN Embedding for cn

GNN Embedding for vm

Hidden Layer
Representation ()ℝd

Code-word for v1

Code-word for v2

Code-word for c1

Code-word for c2

Code-word for cn

Code-word for vm

Code Word
Representation ()ℝd

Code
book

Vector
Quantization 

(codes)k

Node
Feature
Decoder

Edge
Decoder

Linear Decoder
Layers

c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Reconstructed
Instance

code1

codek

Vector Quantizer

Datasets

• MIPLIB
• 600 instances

Datasets

• MIPLIB
• 600 instances
• For each instance, create two more

instances by randomly deleting 5% and
10% of constraints

• Each instance maintains feasibility
• These 1800 instances are used to train the

unsupervised FORGE model

Datasets

• MIPLIB
• 600 instances
• For each instance, create two more

instances by randomly deleting 5% and
10% of constraints

• Each instance maintains feasibility
• These 1800 instances are used to train the

unsupervised FORGE model

• Distributional MIPLIB
• Set Cover (easy, medium, hard)
• Maximum Independent Set (easy, medium)
• Minimum Vertex Cover (easy, medium, hard)
• Generalized Independent Set (easy, medium,

hard, very-hard, very-hard2, ext-hard)
• Combinatorial Auction (very-easy, easy,

medium, very-hard, very-hard2)
• Item Placement (very-hard)
• Maritime Inventory Routing Problem (medium)

• 50 instances from each category - 1050 instances
used as the test set

Visualizing MIP Instances from Unsupervised Pre-training

(a) FORGE Embedding 
NMI: 0.843 ± 0.003

(b) Mean Readout  
NMI: 0.087 ± 0.035

(c) Label Propagation 
NMI: 0.7907 ± 0.025

Takeaway: 
FORGE can cleanly cluster out previously unseen MIP
instances with the highest NMI

Supervised Fine-tuning - Integrality Gap

• Can we fine tune FORGE to predict the integrality gap?

Supervised Fine-tuning - Integrality Gap

• What is an integrality gap?

Supervised Fine-tuning - Integrality Gap

• What is an integrality gap?

Incumbent  
Solution 1

Incumbent 
Solution 2

Incumbent  
Solution 3

Incumbent  
Solution 4

Incumbent 
 Solution 5

M
in

im
iz

e
O

bj
ec

tiv
e

of

In
te

ge
r P

ro
gr

am
 F

or
m

ul
at

io
n

M
ax

im
iz

e
O

bj
ec

tiv
e

of

Li
ne

ar
 P

ro
gr

am
 R

el
ax

at
io

n1000

989

966
945

923

Integer Program (IP) Linear Program (LP)
Relaxation

853.23

897.99

903.78

915.23

920.10
In

te
gr

al
ity

 
G

ap

LP Relaxation 
at Node 1

LP Relaxation 
at Node 2

LP Relaxation 
at Node k

LP Relaxation 
at Node k+1

LP Relaxation 
at Node k+2

803.23 LP Relaxation  
of the Instance

(a) Integrality Gaps (b) Distribution of Integrality Gaps
c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

of Solutions each
Variable has
Appeared In

0

2

2

5

5
Make Similar

Make Similar

Make Dissimilar

(c) Triplet Generation

Positive

Anchor

Negative

Supervised Fine-tuning - Integrality Gap

• We add a simple single layer prediction head to predict the integrality gap.

• The predicted gap is then used to compute a “pseudo-cut”.

• This pseudo-cut is added as a constraint to a solver.

• Note that a overestimation of the pseudo-cut would lead to a suboptimal

solution.

• FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as

well as 1050 Distributional MIPLIB instances. 
 
 

Supervised Fine-tuning - Integrality Gap

• We add a simple single layer prediction head to predict the integrality gap.

• The predicted gap is then used to compute a “pseudo-cut”.

• This pseudo-cut is added as a constraint to a solver.

• Note that a overestimation of the pseudo-cut would lead to a suboptimal

solution.

• FORGE is pre-trained to learn the structures of all 1800 MIPLIB instances as well

as 1050 Distributional MIPLIB instances.

• Fine Tuning Training Data: CA (very-easy, easy, medium), SC (easy, medium,

hard), and GIS (easy, medium, hard) with 50 instances for each. In total, we obtain
a total of 450 training instances.

Results - Integrality Gap

(a) Combinatorial Auction 
Primal Gap Gain: 76.77%

(b) Set Cover 
Primal Gap Gain: 29.59%

(c) Generalized Independent Set 
Primal Gap Gain: 84.52%

(d) Minimum Vertex Cover 
Primal Gap Gain: 32.38%

(a) Combinatorial Auction 
Primal Gap Gain: 76.77%

(b) Set Cover 
Primal Gap Gain: 29.59%

(c) Generalized Ind. Set 
Primal Gap Gain: 84.52%

(d) Minimum Vertex Cover  
Primal Gap Gain: 32.38%

Tests are run on 50 ‘very-hard’ unseen instances from Distributional MIPLIB.

Takeaway:
FORGE generated pseudo-cuts lead to a significant
decrease in primal gaps.

Supervised Fine-tuning - Warm Start

• Can we predict which variables will be part of the solution?

• How do we train this?

• Binary Cross Entropy - commonly used approach but has a large class
imbalance issue

Supervised Fine-tuning - Warm Start

• Can we predict which variables will be part of the solution?

• How do we train this?

• Binary Cross Entropy - commonly used approach but has a large class imbalance issue

• Triplet Loss:

• Generate 5 solutions

• Make variables appearing in  

solutions similar to each other

• Variables appearing in none of  

the solutions are used as negative 
variables

• Negative variables are further filtered 
as variables that don’t appear in any  
solution but are closest to positive variables  
in unsupervised embedding space

Incumbent  
Solution 1

Incumbent 
Solution 2

Incumbent  
Solution 3

Incumbent  
Solution 4

Incumbent 
 Solution 5

M
in

im
iz

e
O

bj
ec

tiv
e

of

In
te

ge
r P

ro
gr

am
 F

or
m

ul
at

io
n

M
ax

im
iz

e
O

bj
ec

tiv
e

of

Li
ne

ar
 P

ro
gr

am
 R

el
ax

at
io

n1000

989

966
945

923

Integer Program (IP) Linear Program (LP)
Relaxation

853.23

897.99

903.78

915.23

920.10

In
te

gr
al

ity
 

G
ap

LP Relaxation 
at Node 1

LP Relaxation 
at Node 2

LP Relaxation 
at Node k

LP Relaxation 
at Node k+1

LP Relaxation 
at Node k+2

803.23 LP Relaxation  
of the Instance

(a) Integrality Gaps (b) Distribution of Integrality Gaps
c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

of Solutions each
Variable has
Appeared In

0

2

2

5

5
Make Similar

Make Similar

Make Dissimilar

(c) Triplet Generation

Positive

Anchor

Negative

Supervised Fine-tuning - Warm Start

• Fine Tuning Training Data: 100 instances each from CA (easy, medium), SC
(easy, medium, hard) and GIS (easy, medium) for a total of 700 training
instances.

Incumbent  
Solution 1

Incumbent 
Solution 2

Incumbent  
Solution 3

Incumbent  
Solution 4

Incumbent 
 Solution 5

M
in

im
iz

e
O

bj
ec

tiv
e

of

In
te

ge
r P

ro
gr

am
 F

or
m

ul
at

io
n

M
ax

im
iz

e
O

bj
ec

tiv
e

of

Li
ne

ar
 P

ro
gr

am
 R

el
ax

at
io

n1000

989

966
945

923

Integer Program (IP) Linear Program (LP)
Relaxation

853.23

897.99

903.78

915.23

920.10

In
te

gr
al

ity
 

G
ap

LP Relaxation 
at Node 1

LP Relaxation 
at Node 2

LP Relaxation 
at Node k

LP Relaxation 
at Node k+1

LP Relaxation 
at Node k+2

803.23 LP Relaxation  
of the Instance

(a) Integrality Gaps (b) Distribution of Integrality Gaps
c1

c2

c3

c4

cn

v1

v2

v3

v4

vm

Input Bipartite
Representation of a

MIP Instance

of Solutions each
Variable has
Appeared In

0

2

2

5

5
Make Similar

Make Similar

Make Dissimilar

(c) Triplet Generation

Positive

Anchor

Negative

Results - Warm Start

(a) Combinatorial Auction 
Primal Gap Gain: 31.16%

(b) Set Cover 
Primal Gap Gain: 39.17%

(c) Generalized Independent Set 
Primal Gap Gain: 31.62%

(d) Minimum Vertex Cover  
Primal Gap Gain: 48.75%

(a) Combinatorial Auction 
Primal Gap Gain: 31.16%

(b) Set Cover 
Primal Gap Gain: 39.17%

(c) Generalized Ind. Set 
Primal Gap Gain: 31.62%

(d) Minimum Vertex Cover  
Primal Gap Gain: 48.75%

Takeaway:
Gurobi with FORGE generated warm starts leads to a
significant decrease in primal gaps and faster run times.

Tests are run on 50 ‘medium’ unseen instances from Distributional MIPLIB.

Additional Results
Integrality Gaps

• Li et al. [1] train a GNN on 38,256 instances from 643 generated problem
types and test on 11,584 instances spanning 157 problem types.

• We train on no additional data and test on 17,500 previously unseen
instances spanning 400 problem types, from the dataset in [1].

• FORGE achieves a mean deviation of 18.63% in integrality gap prediction,
outperforming the 20.14% deviation reported.

[1] Li, S., Kulkarni, J., Menache, I., Wu, C. and Li, B., Towards Foundation Models for Mixed Integer Linear Programming. In The Thirteenth International Conference on Learning
Representations.

Additional Results
Warm Starts

• We also compare warm starts with PS-Gurobi [2].

• FORGE embeddings for each variable and

constraint are added to PS-Gurobi.

• Since adding these embeddings increases model

complexity significantly, we also add random
embeddings of the same size to ensure any gains
are not due to larger model size.

• FORGE + PS-Gurobi outperforms the original
variant in terms of primal gap and run time.

[2] Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A., Sun, R. and Luo, X., A GNN-Guided Predict-and-Search Framework for Mixed-Integer Linear Programming. In The Eleventh
International Conference on Learning Representations.

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

(a) Combinatorial Auction 
Primal Gap Gain: 41.07%

(b) Generalized Ind. Set 
Primal Gap Gain: 50.51%

FORGE in Practice

• Integrality Gap

• Easiest to use

• Pass in a .lp or a .mps file - get back a real number

• Add constraint that the integer solution is greater than the real number

generated

• Warm Starts

• Pass in a .lp or a .mps file - get back a list of variables

• Set initial values of variables - solver specific - for example, hint values in

Gurobi

Summary

• FORGE uses a single model with ~3.25M parameters.

• FORGE can generate one embedding vector per MIP instance and can

effectively cluster unseen instances and place them within the space of all
MIP instances.

• FORGE can be fine tuned on a variety of tasks for multiple problem types.

• A single FORGE model can be used to predict both warm-starts as well

as integrality gaps for a variety of problem type and difficulty pairs.

arXiv Paper

Thank you!
Questions?

