

REGE: A Method for Incorporating Uncertainty in Graph Embeddings Zohair Shafi, Germans Savcisens and Tina Eliassi-Rad

2025 SIAM International Conference on Data Mining

Germans Savcisens Northeastern University

Northeastern University

Preliminaries

- Graph embedding
 - Let G = (V, E, X) be a graph with |V| = n nodes and |E| = m edges.
 - $X \in \mathbb{R}^{n \times r}$ is a node feature matrix with *r* features per node.
 - space.
- Uncertainty
 - Data: Uncertainty due to noisy or incomplete data
 - ●

• $f(G(V, E, X)) = Z \in \mathbb{R}^{n \times d}$ is a graph embedding function. It maps each node onto a d-dimensional

Model: Uncertainty due to parameters, optimization strategy, lack of training knowledge, etc.

Motivation

- Why should we expect a node to ensure space?
- Can we create a notion of a "radius embed?
- Could this "radius" help make node attacks?

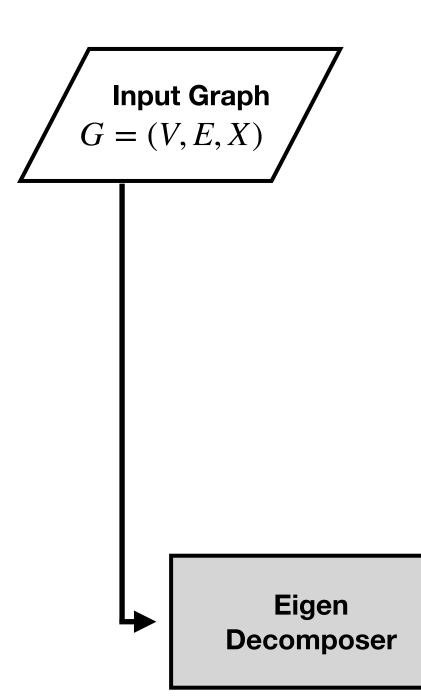
Why should we expect a node to embed in an exact spot in a d-dimensional

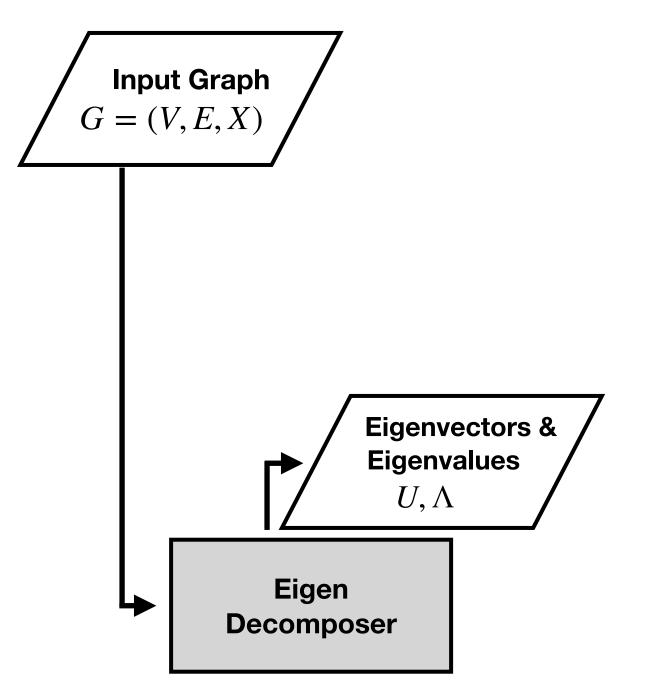
Can we create a notion of a "radius" around each node where the node may

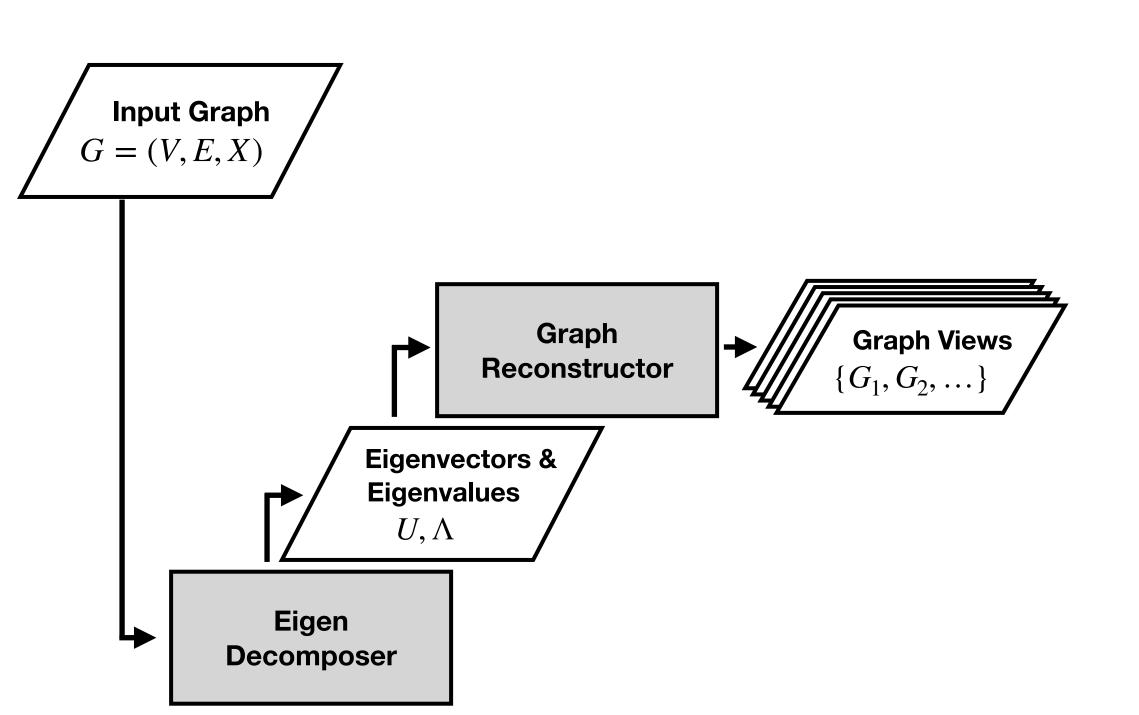
Could this "radius" help make node embeddings more robust to adversarial

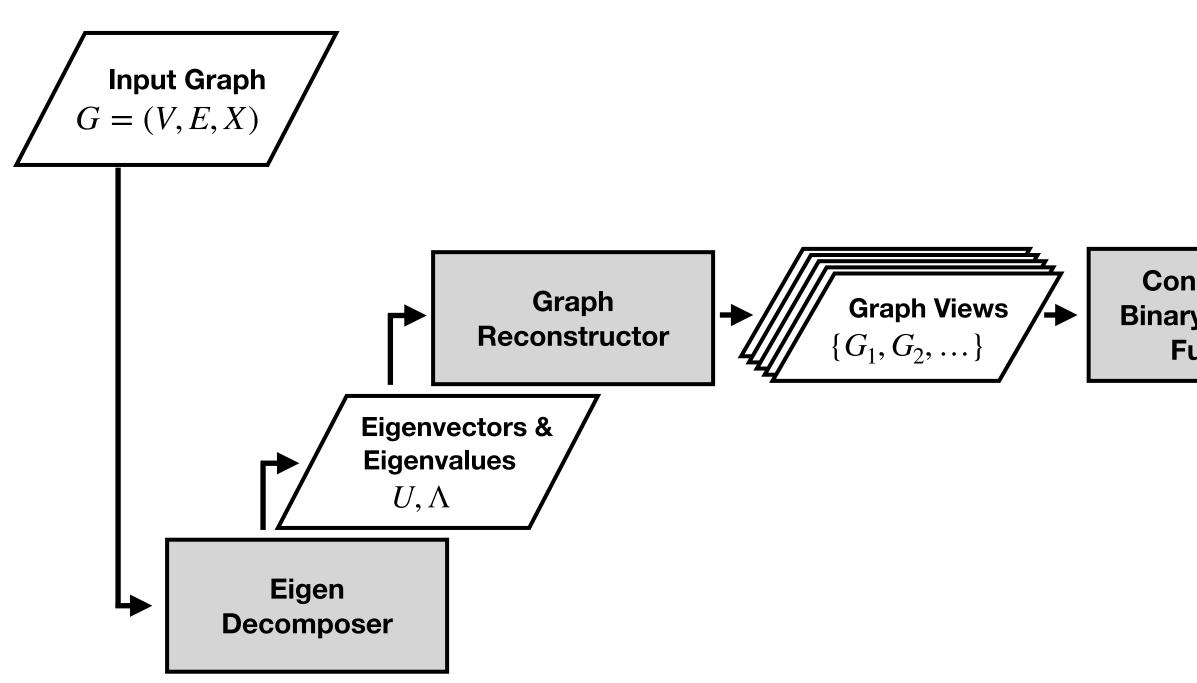
REGE: <u>Radius Enhanced Graph Embeddings</u>

- What does REGE do?
- How does it measure uncertainty in data?
- How does it measure uncertainty in the model?
- How does it incorporate uncertainty?
- How effective is it?

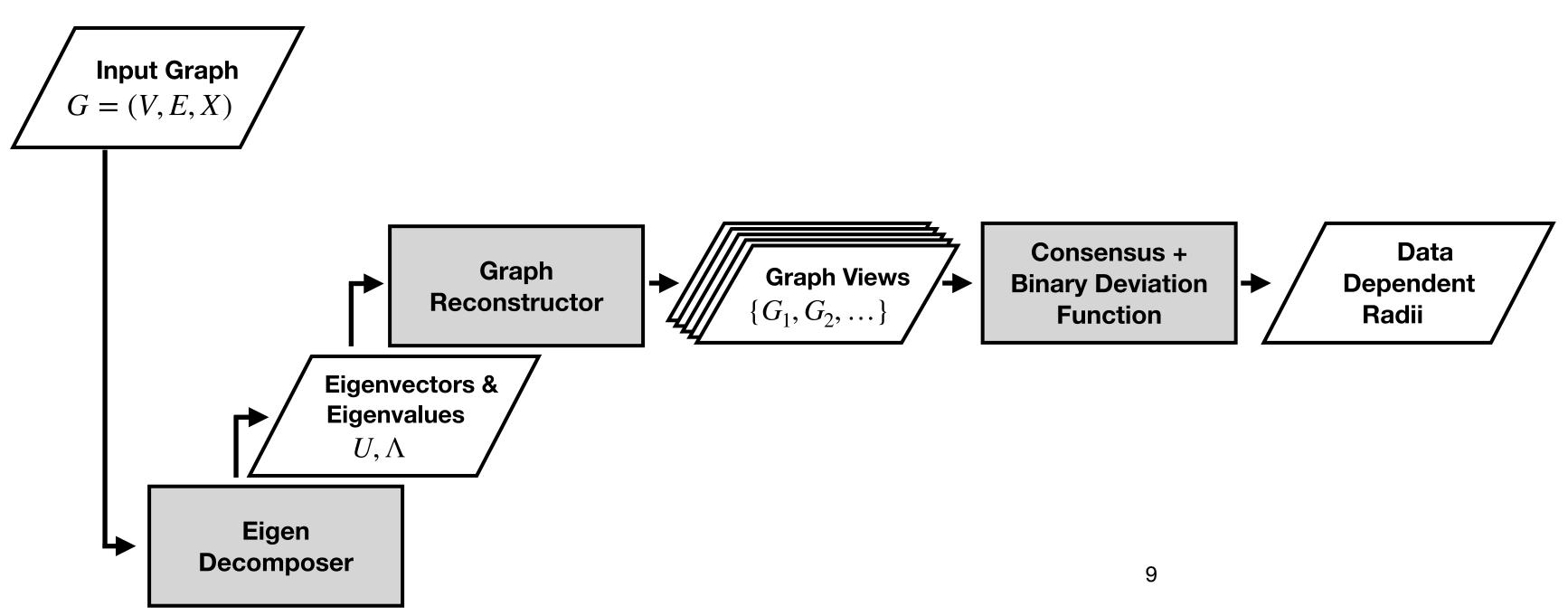






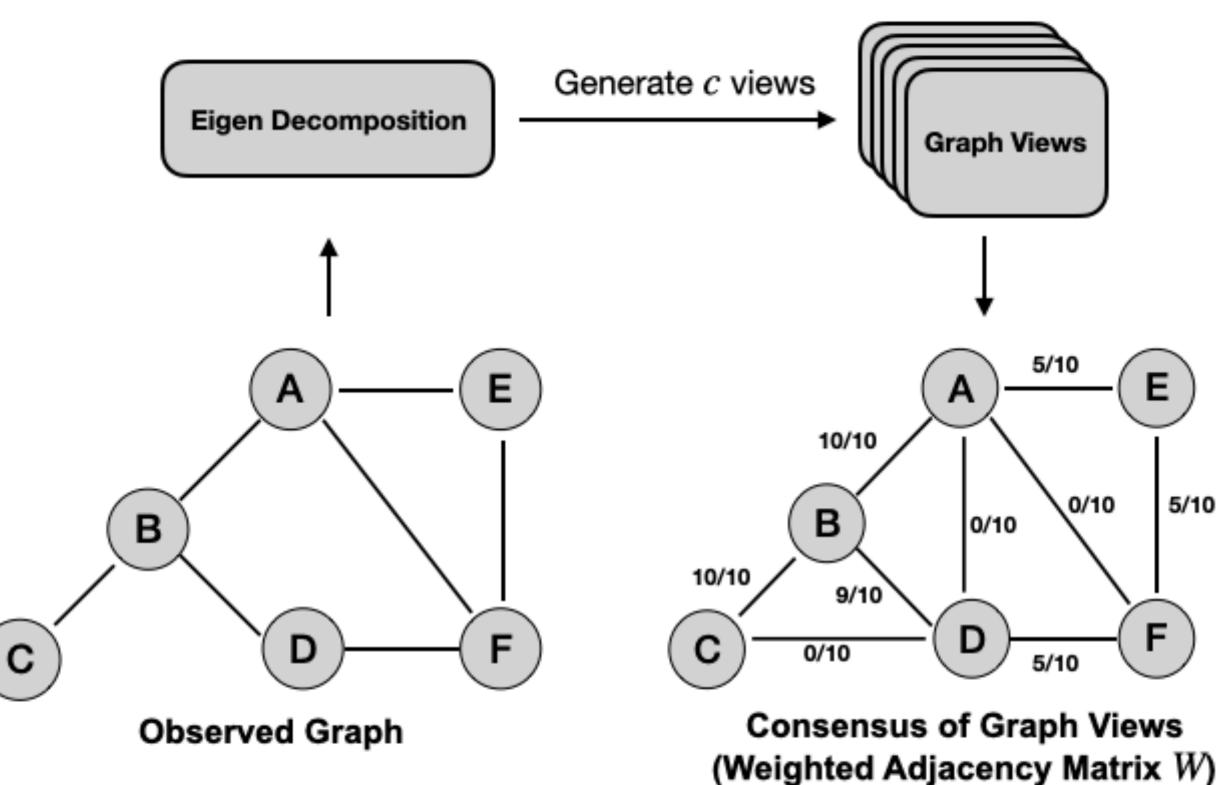


Consensus + Binary Deviation Function



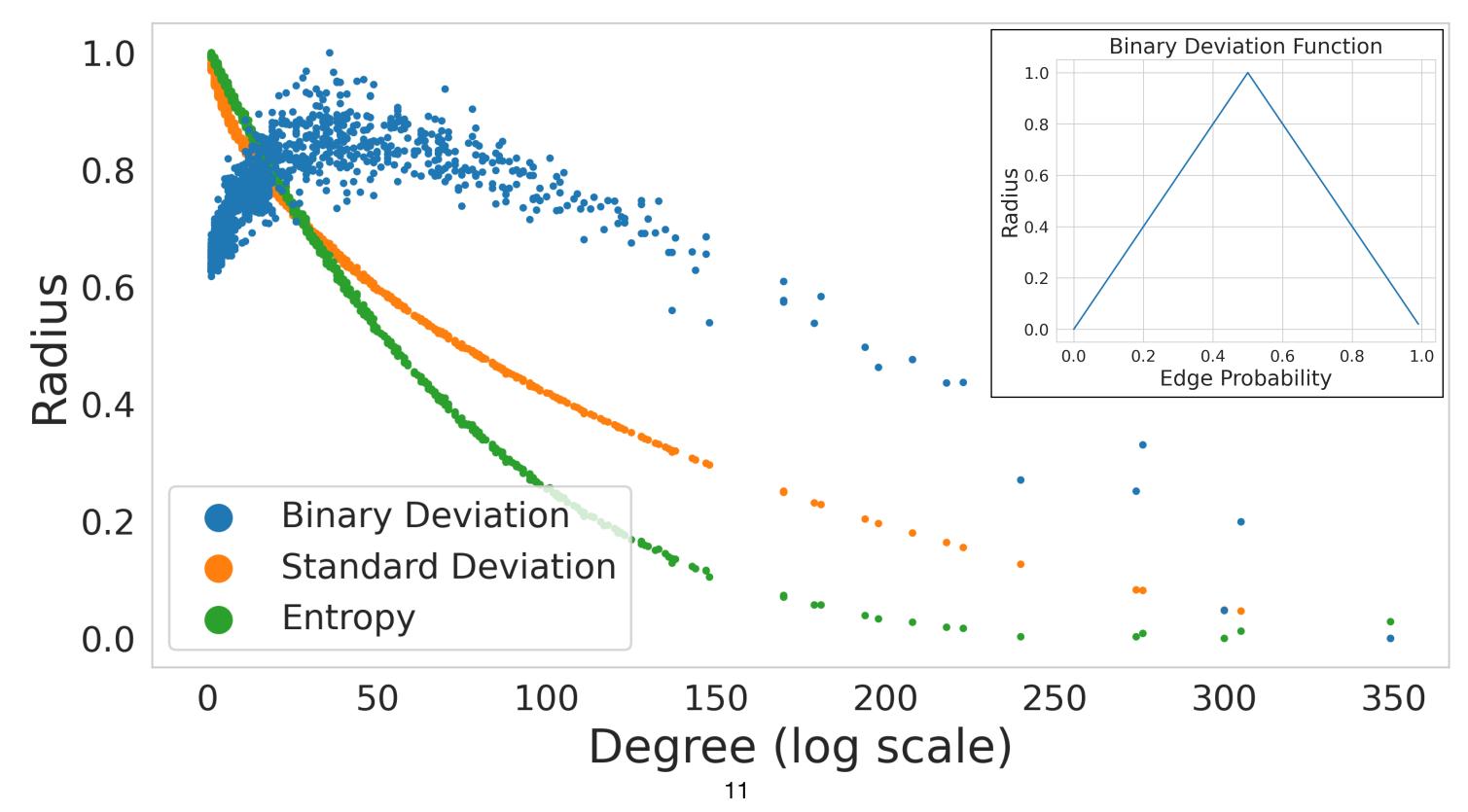
Data-dependent Radii (1/2)

- Given a graph G, compute its eigen-decomposition
- Reconstruct views of the graph (G_1, G_2, G_3, \ldots)
- Compute weighted adjacency matrix W, by averaging the adjacency matrices of each reconstructed graph

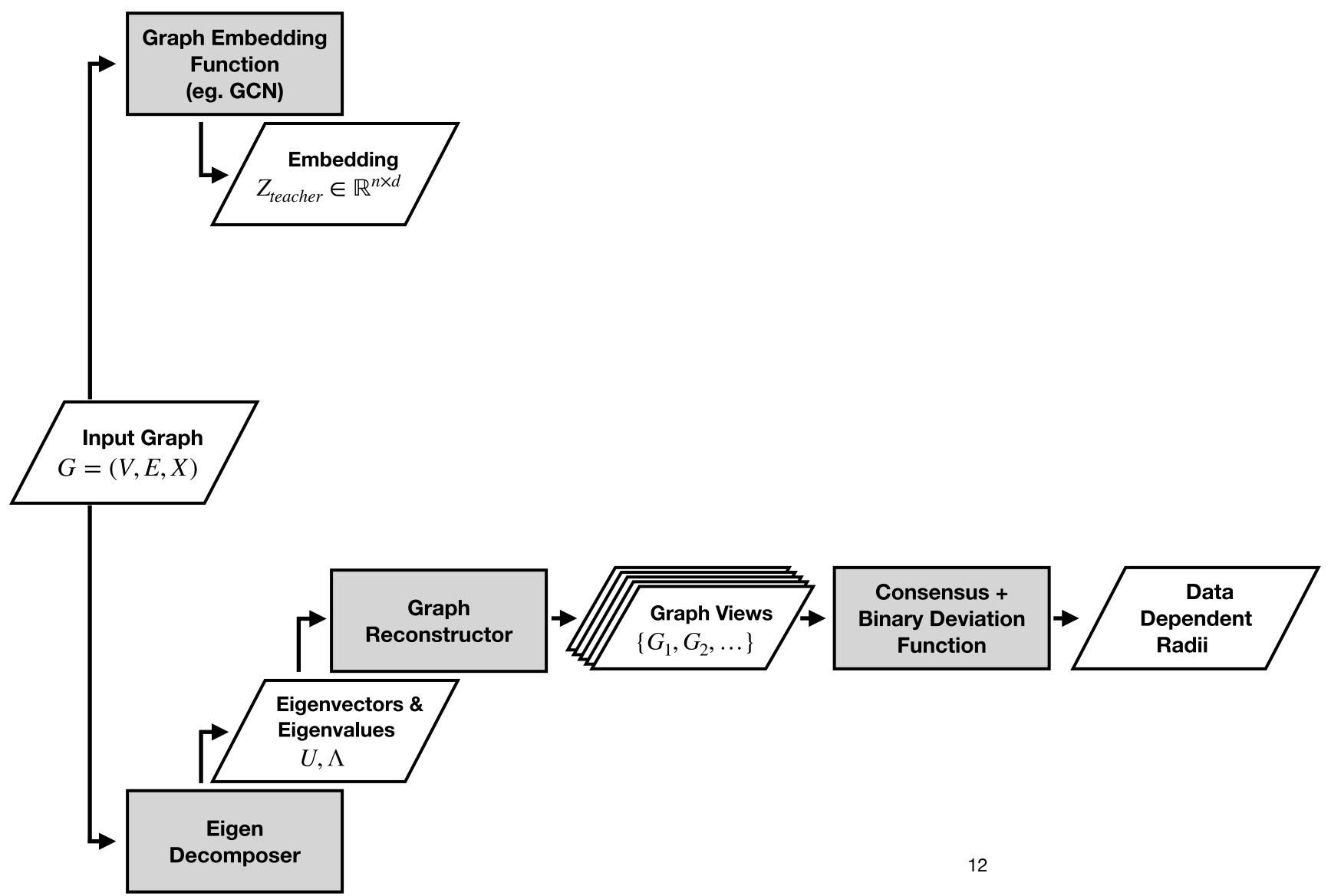


Data-dependent Radii (2/2)

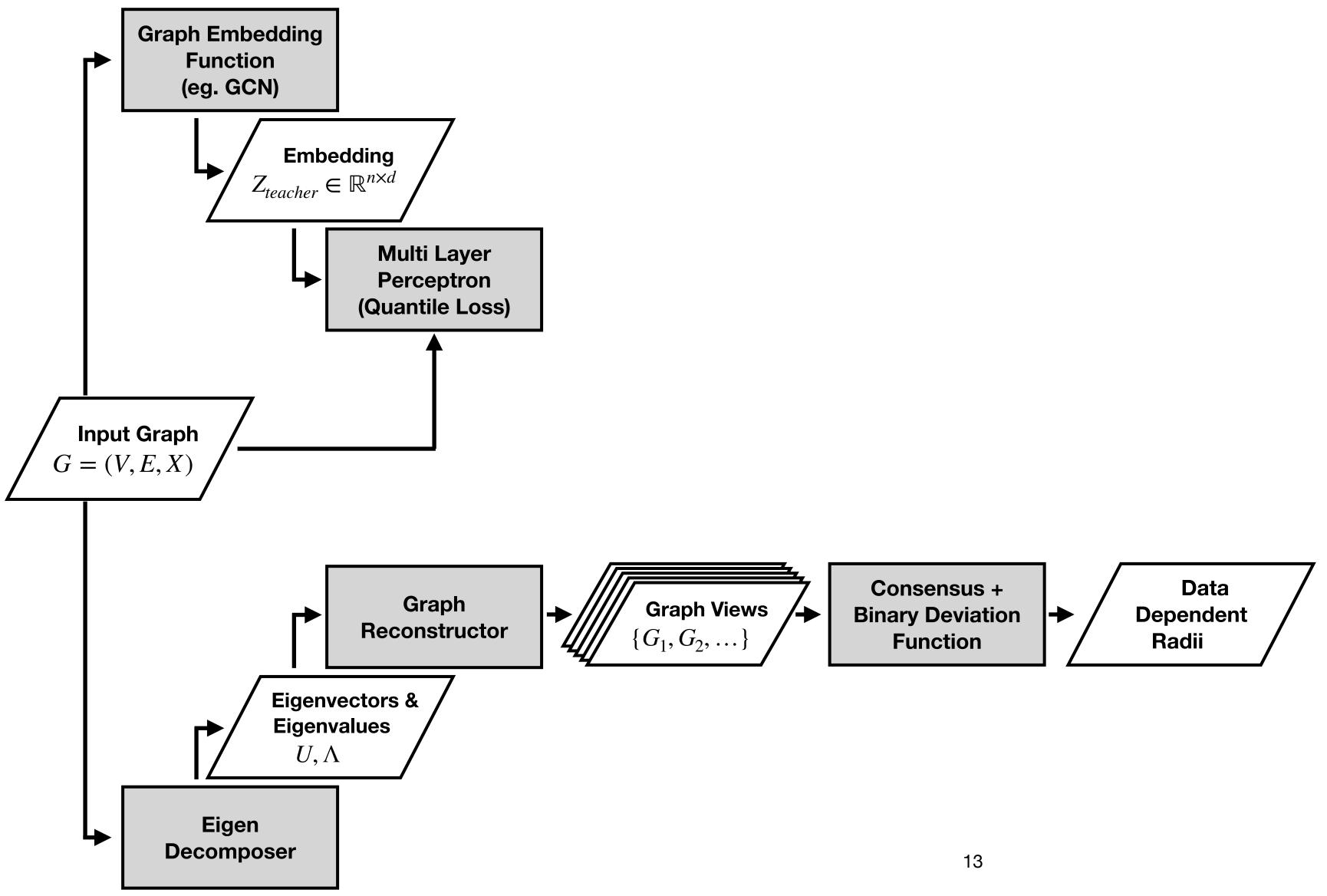
deviation function: $u_e = 1 - |W_{ij} - (1 - W_{ij})|$



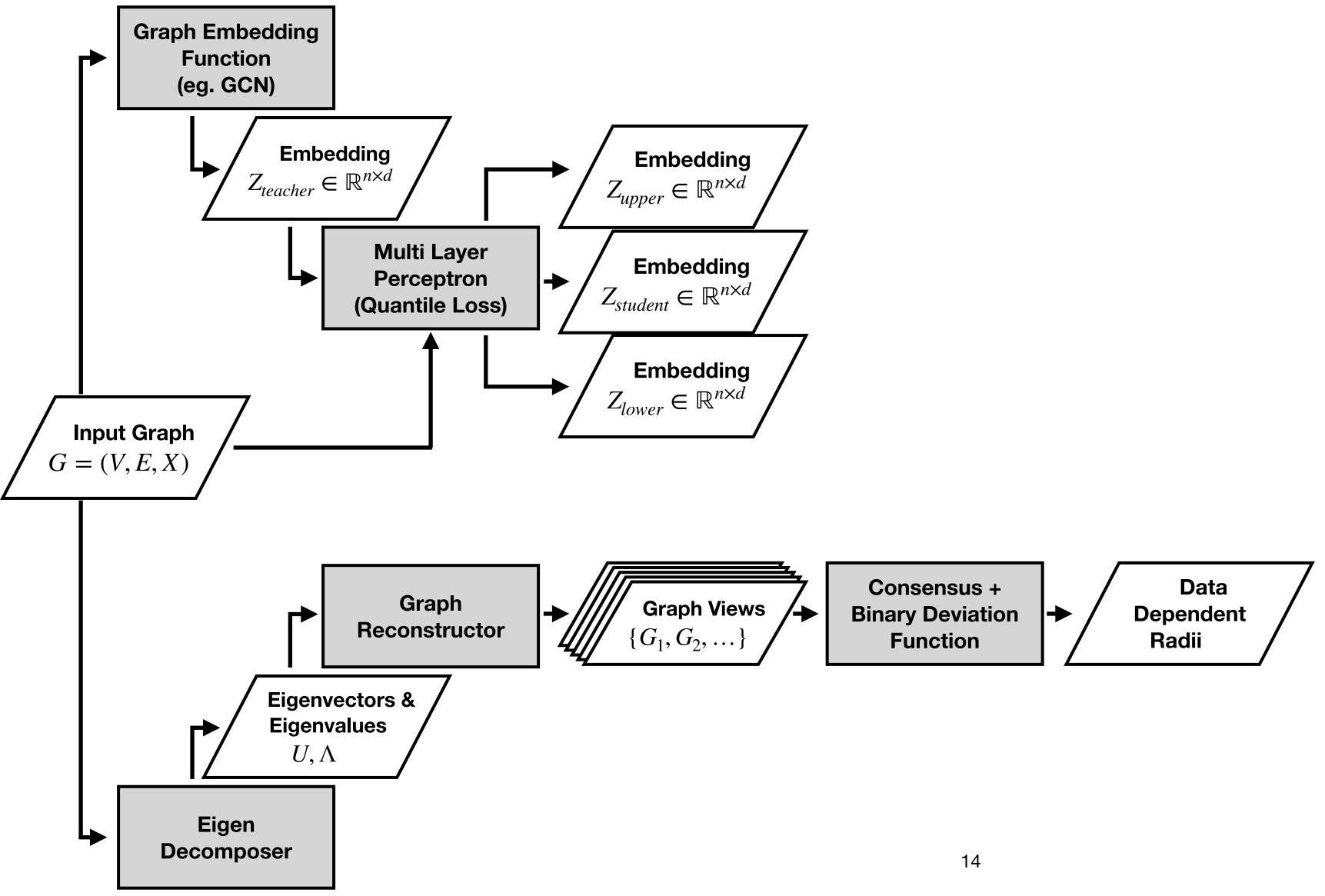
Given W, compute uncertainty for each edge e between nodes i, j using the binary

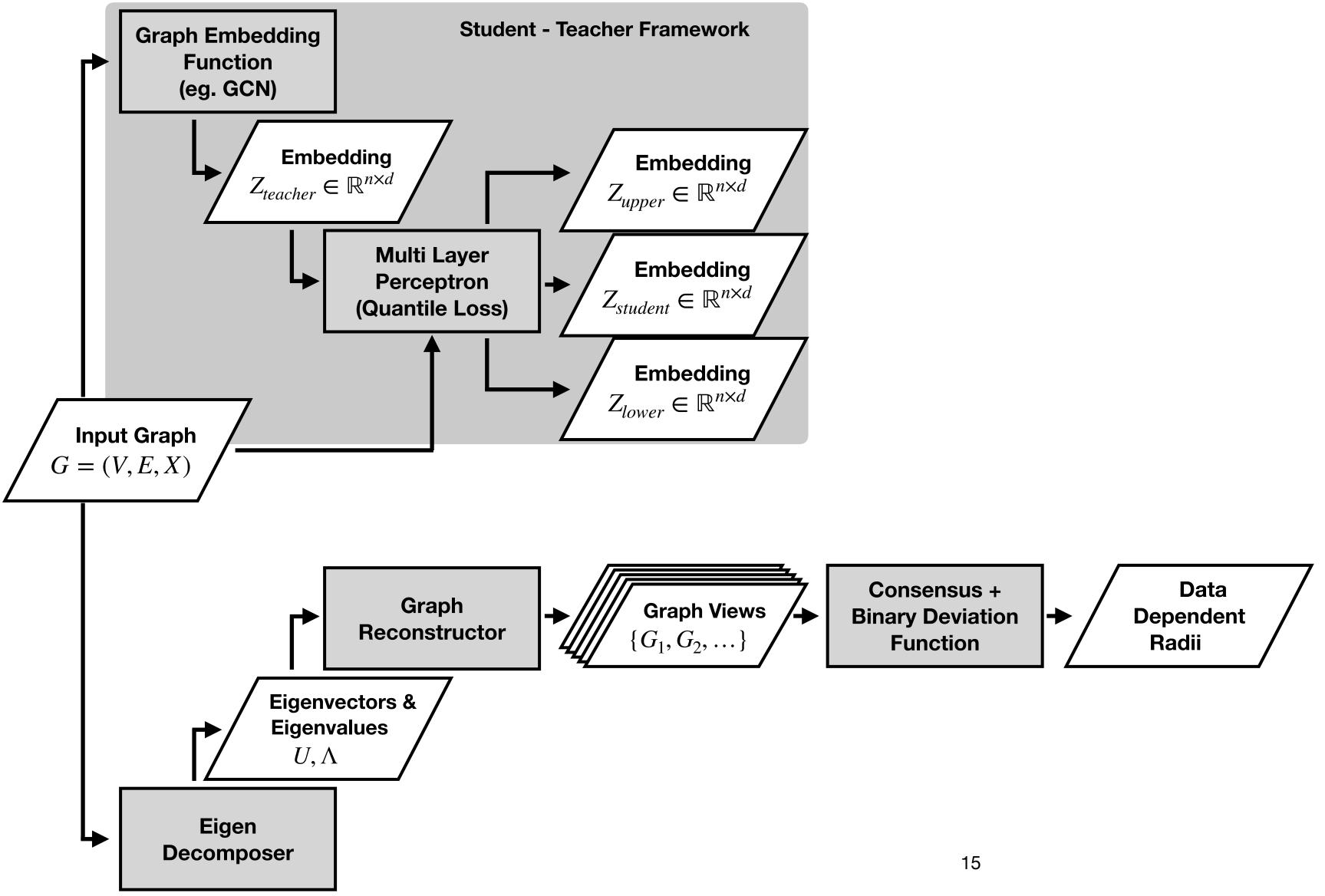


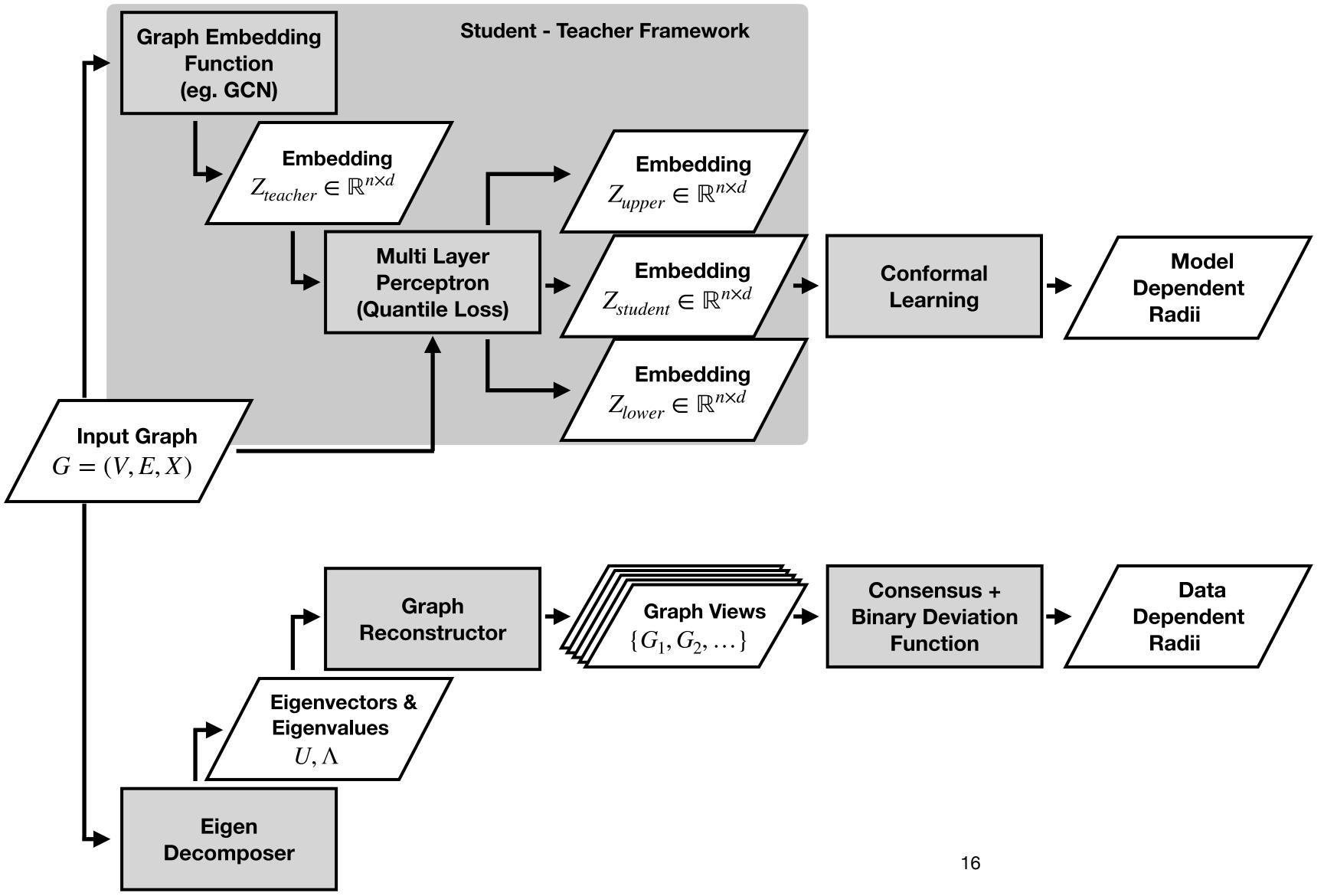








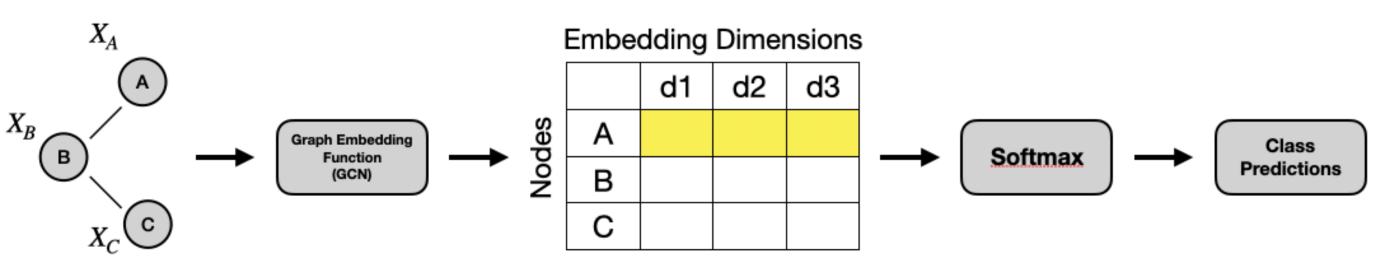




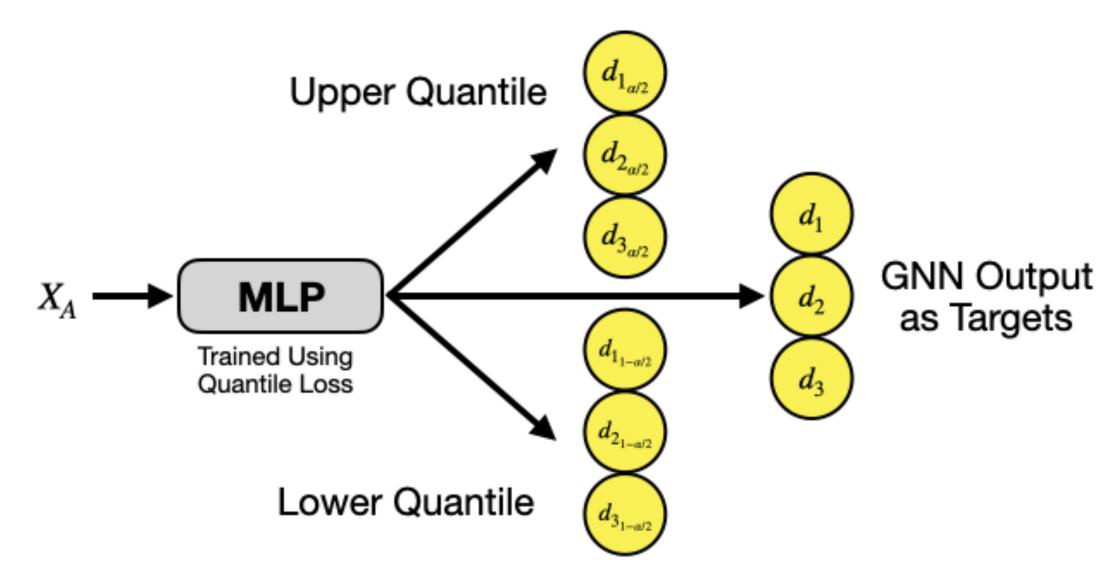
Model-dependent Radii

- Capture uncertainty around <u>each</u>
 <u>embedding dimension</u>
- Student-Teacher Framework
 - Learn an MLP to predict dimensions of a pre-trained GCN using quantile regression
 - This MLP predicts <u>upper</u> and <u>lower</u> quantiles
- Conformal learning used to <u>refine distance</u> between quantiles
- <u>Distance between upper and lower quantile</u> is considered as the uncertainty for that dimension

Teacher Model - A Standard GNN



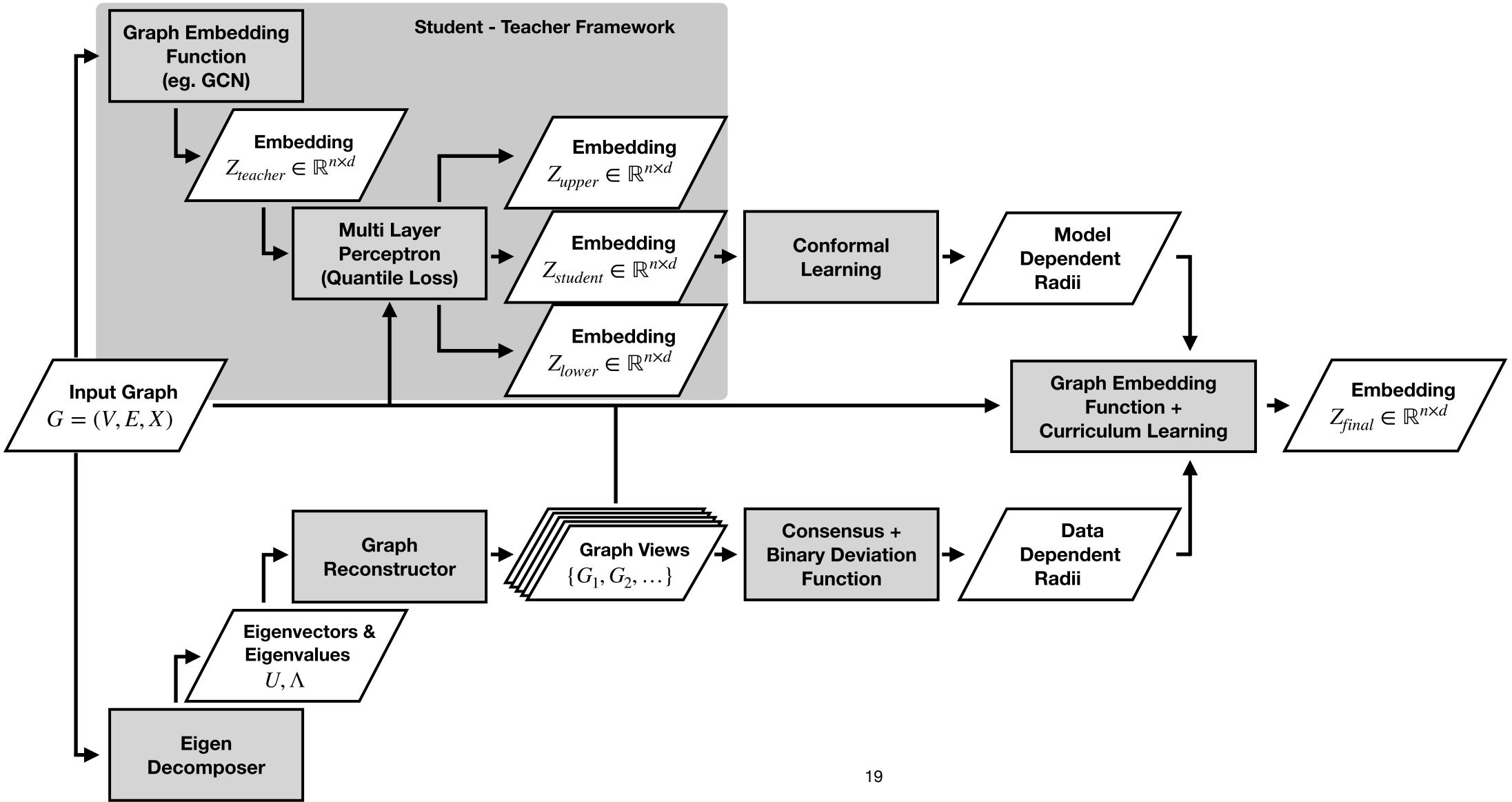
Student Model - Multi-layer Perceptron



How does REGE incorporate uncertainty?



How does REGE incorporate uncertainty?



How does REGE incorporate uncertainty? Noise

- REGE adds noise to hidden layer representations of each node.
- This noise is proportional to the radius value of • each node.
 - Nodes with low radius values have relatively \bullet stable embeddings.
 - Nodes with large radii have relatively unstable lacksquareembeddings.
- This controlled instability makes the model learn \bullet robust representations for the nodes.

$$x_i^l \leftarrow x_i^l + \mathcal{N}(0, r_i)$$

20

How does REGE incorporate uncertainty? Noise **Curriculum Learning**

- Recall that we reconstruct multiple views of a • REGE adds noise to hidden layer representations of each node. graph.
- This noise is proportional to the radius value of • each node.
 - Nodes with low radius values have relatively ulletstable embeddings.
 - Nodes with large radii have relatively unstable ulletembeddings.
- This controlled instability makes the model learn lacksquarerobust representations for the nodes.

$$x_i^l \leftarrow x_i^l + \mathcal{N}(0, r_i)$$

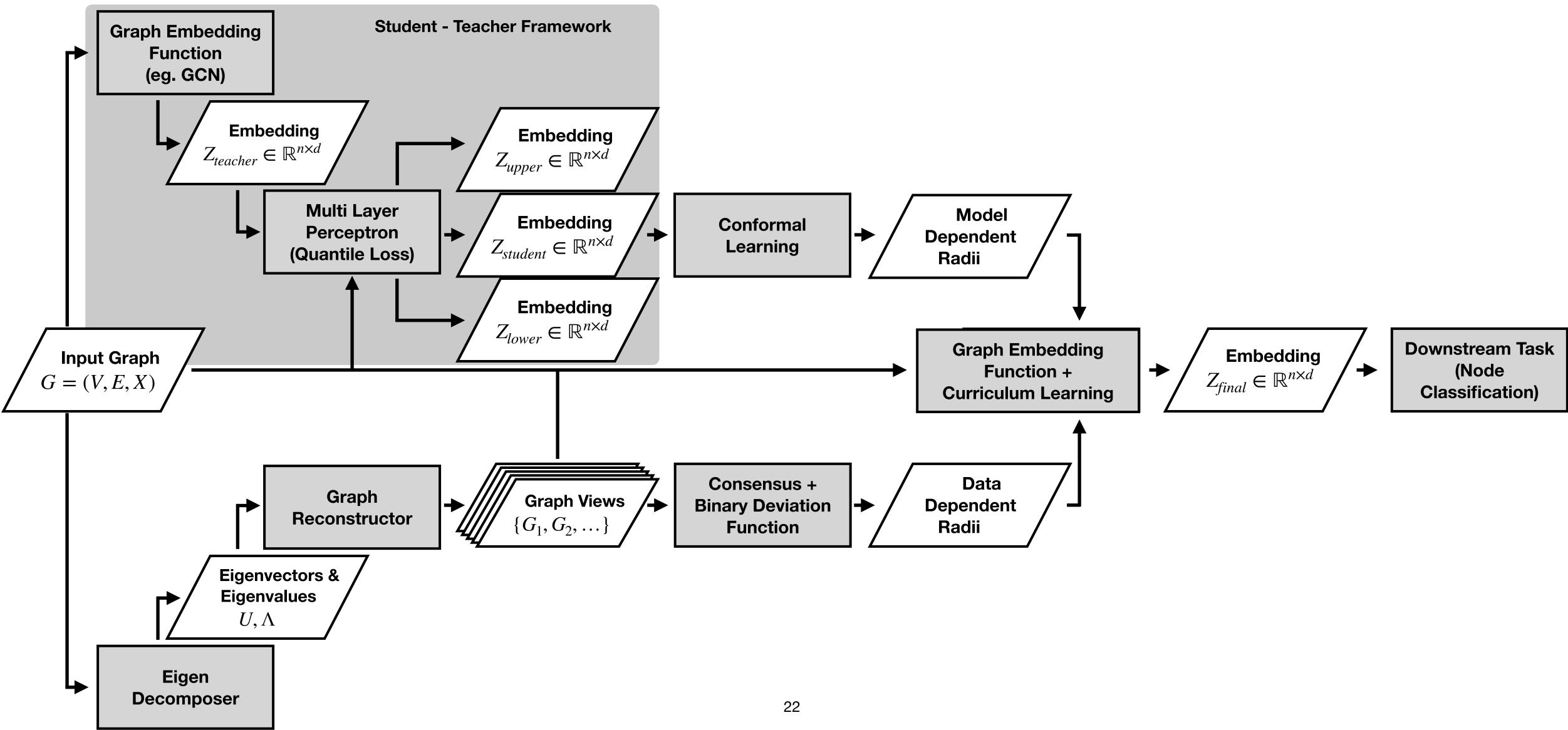
- Graph G_1 is reconstructed by using the <u>fewest</u> • <u>components</u> is the simplest graph with edges with high certainty
- As more components are added, so is more detail and smaller communities [1][2][3].
- We train the model starting on the simplest graph G_1 followed by G_2 and so on.

[1] S. Sawlani, L. Zhao, and L. Akoglu, "Fast attributed graph embedding via density of states," in ICDM (2021)

[3] M. Mitrovi´c and B. Tadi´c, "Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities," Physical Review E: Statistical, Nonlinear, and Soft Matter Physics (2009)

^[2] M. Cucuringu and M. W. Mahoney, "Localization on low-order eigenvectors of data matrices," arXiv preprint arXiv:1109.1355 (2011)

All together



REGE: <u>Radius Enhanced Graph Embeddings</u>

- What does REGE do?
- How does it measure uncertainty in data?
- How does it measure uncertainty in the model?
- How does it incorporate uncertainty?
- How effective is it?

Evaluation on PolBlogs (See paper for more results.)

- Highlighted in blue are recent methods
- Best results are shown in **bold**, with second best <u>underlined</u>.

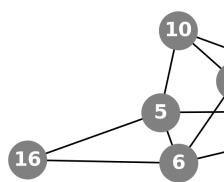
Method	MinMax (1%)	MinMax(10%)	Meta (1%)	Meta(10%)	GraD (1%)	GraD (10%)
GCN	$.944 \pm .001$	$.871 \pm .002$	$.859\pm.002$	$.726 \pm .004$	$.876\pm.005$	$.795\pm.002$
RGCN	$.936 \pm .002$	$.854 \pm .002$	$.850\pm.002$	$.699 \pm .007$	$.866 \pm .003$	$.811 \pm .003$
GCN-SVD	$.939 \pm .005$	$.885 \pm .002$	$.926\pm.002$	$.894 \pm .007$	$.883 \pm .004$	$\textbf{.865} \pm \textbf{.003}$
GNNGuard	$\textbf{.950} \pm \textbf{.004}$	$.861 \pm .001$	$.854\pm.002$	$.707 \pm .014$	$.855\pm.005$	$.812 \pm .002$
ProGNN	$.935 \pm .017$	$.869 \pm .029$	$.936 \pm .023$	$.823 \pm .055$	$.829 \pm .029$	$.859 \pm .005$
GADC	$.512 \pm .008$	$.512 \pm .008$	$.512 \pm .008$	$.512 \pm .008$	$.498 \pm .009$	$.497 \pm .014$
GraphReshape	$.935 \pm .007$	$.847 \pm .002$	$.850\pm.006$	$.694 \pm .002$	$.851 \pm .003$	$.803 \pm .004$
Ricci-GNN	$.941 \pm .004$	$.874 \pm .004$	$.932\pm.003$	$.928\pm.010$	$.875\pm.011$	$\textbf{.865} \pm \textbf{.008}$
REGE (D)	$.946 \pm .004$	$\textbf{.890} \pm \textbf{.004}$	$\textbf{.946} \pm \textbf{.007}$	$\textbf{.950} \pm \textbf{.005}$	$.887 \pm .002$	$\textbf{.865} \pm \textbf{.003}$
REGE (M)	$.929 \pm .009$	$.880 \pm .006$	$.931 \pm .017$	$.942 \pm .017$	$\textbf{.889} \pm \textbf{.002}$	$.861 \pm .004$

REGE (M): Model-dependent Radii

Methods in the red box are some of the well-established defense methods

REGE on Karate Club Data vs. Model Dependent Rad

- DDR Data-dependent radii
- MDR Model-dependent radii
- Low degree nodes (red) show
 low DDR possibly due to
 consistent edge reconstruction



 The same nodes show high MDR - indicating that GNNs may not do as well for low degree nodes

	Node	Degree	DDR
	0	16	1.0
	1	9	0.41
b Network	2	10	0.5
	3	6	0.45
	4	3	0.16
lii	5	4	0.22
	6	4	0.19
	7	4	0.24
	8	5	0.29
	9	2	0.0
	10	3	0.16
	11	1	0.01
	12	2	0.02
	13	5	0.31
18	14	2	0.07
	15	2	0.08
11 21 15 14	16	2	0.12
30	17	2	0.0
	18	2	0.0
4 8 32 29 20	19	3	0.06
	20	2	0.04
2 23 22	21	2	0.03
31	22	2	0.06
17 3	23	5	0.25
28 25 9	24	3	0.13
	25	3	0.02
	26	2	0.08
24	27	4	0.21
	28	3	0.1
	29	4	0.23
	30	4	0.26
	31	6	0.2
	32	12	0.73
25	33	17	0.98
			I

REGE: Takeaway points

- REGE improves the robustness of graph embeddings.
- How?
 - It incorporates data and model uncertainty during training.
- How effective is it?
 - <u>accuracy on adversarially attacked datasets</u>.

It outperforms state of the art methods in terms of <u>node classification</u>